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Outline

• Critical exponents for SAWs.
• The pivot algorithm.
• Improving implementation of the pivot algorithm.
• Calculating ν (in the canonical ensemble).
• How can we efficiently calculate γ and µ?
• Lessons for other problems: confined polymers, knots.
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Critical phenomena

• The number of SAWs of length N, cN , tells us about how
many conformations are available to SAWs of a particular
length:

cN ∼ A Nγ−1µN [1 + corrections]

• Mean square end to end distance tells us about the size of
a typical SAW:

〈R2
e 〉N ∼ DeN2ν [1 + corrections]

• We wish to determine γ, ν, and µ as accurately as possible
for SAWs on Z3.
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Markov chain Monte Carlo

• Sample from a probability distribution.
• Generate a new configuration from current one.
• Ensure that chain samples uniformly from whole set of

configurations.
• Efficiency for calculating observable A determined by

degree of correlation in the time series Ai . In particular, the
integrated autocorrelation time τ of the chain.
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Markov chain Monte Carlo
• N ≡ system size.
• Run Markov chain for T time steps,

Error(AN) =

√
var(AN)τN

T
.

• Neglects CPU time taken to execute a step; real error is
limited by computer time t = T CPUN :

Error(AN) =

√
var(AN)τNCPUN

t
.

• To decrease error
Plan A: solve model exactly.
Plan B:

• Choose another observable to reduce var(AN).
• Choose your moves wisely to reduce τN (pivots).
• Design better data structures to reduce CPUN .
• Buy a GPU cluster to increase t .
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Pivot algorithm

• Invented in 1969 by Lal, reinvented in 1985 by MacDonald
et al. and then Madras.

• The power of the method only realised since influential
paper by Madras and Sokal in 1988 (over 500 citations).

• Monte Carlo method of choice for studying SAWs and
similar models when the length of the walk is fixed.
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Pivot algorithm

• Want to sample from the set of SAWs of a particular length.
• Set up a Markov chain as follows:

• Randomly select a pivot site on the current SAW
configuration.

• Randomly choose a lattice symmetry q (rotation or
reflection).

• Apply this symmetry to one of the two subwalks created by
splitting the walk at the pivot site.

• If walk is self-avoiding: accept the pivot and update the
configuration.

• If walk is not self-avoiding: reject the pivot and keep the old
configuration.

• The pivot algorithm is ergodic, and satisfies detailed
balance which ensures that SAWs are sampled uniformly
at random.
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Will now show a sequence of successful pivots applied to an
n = 65536 site SAW on the square lattice.
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Why is it so effective?

• Pivots are rarely successful.
• Every time a pivot attempt is successful there is a large

change in global observables.
• After each successful pivot, the successive values of

global properties e.g. mean square end-to-end distance
〈R2

e〉N , are (almost) uncorrelated.
• However local observables require O(N) successful pivots.
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A better implementation
• Madras and Sokal (1988): implementation CPU time of

approximately O(N0.89) per attempted pivot for Z3.
• Kennedy (2002): implementation which is approximately

O(N0.74).

New “SAW-tree” implementation exploits geometric properties
of walks.
• Represent the SAW as binary trees, with “bounding box”

information for sub-walks.
• Other things to keep track of, so results in a complicated

data structure.
• Most operations take O(log N), including intersection

testing after a pivot attempt.



Introduction Pivot Better pivot γ and µ Applications Summary References

CPU time per attempted pivot, for SAWs of length N:

Lattice Madras and Sokal Kennedy SAW-tree

Square O(N0.81) O(N0.38) o(log N)

Cubic O(N0.89) O(N0.74) O(log N)
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CPU time per attempted pivot, for SAWs of length N:
Z2 Z3

N S-t (µs) M&S/S-t K/S-t S-t (µs) M&S/S-t K/S-t
31 0.41 0.894 1.06 0.59 0.981 1.37

1023 0.87 5.15 1.90 1.71 6.31 3.75
32767 1.27 68.6 4.92 3.36 79.2 21.5

1048575 2.91 2510 32.2 7.53 3830 385
33554431 4.57 35200 134 12.58 61700 7130
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Calculating ν

• We sampled SAWs in the canonical ensemble, calculating
metric properties at each pivot attempt.

• N up to 33× 106, about 2× 1013 pivot attempts, 16500
CPU hours.

• Estimated ν = 0.587597(7).
• Previous estimates are 0.5874(2) (MC, Prellberg, 2001)

and 0.58756(5) (MCRG, Belohorec, 1997).
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What to do with our new hammer?

• γ and µ are calculated naturally in the grand canonical
ensemble of variable length walks.

• Our new hammer works in the canonical ensemble.
• Methods I will use are straightforward and obvious -

suggested by Madras and Sokal (1988).
• Gives some insight which may be more widely useful.
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• Most straightforward method to calculate γ: dimerization,
i.e. concatenating two SAWs to see if they form a longer
SAW.

• Probability of successful concatenation is our observable,
and

pN =
c2N−1

c2
N−1

∼ Aµ2N−1(2N − 1)γ−1

A2µ2N−2(N − 1)2γ−2

∼ 2γ−1µ

A
N1−γ [1 + corrections]

• Generate two Markov chains of N − 1 step walks using
pivot algorithm.

• How can we minimize τN?

Error(pN) =

√
var(pN)τNCPUN

t
.
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• How many pivots must be completed before two walks are
essentially new configurations with respect to observable
pN?

• Shape of walks close to the joint clearly important.
• Simple argument suggests mean distance from joint where

first intersection occurs is O(N2−γ).
• Definition: the k -atmosphere of a walk is the number of

ways of extending the walk by k steps so that it is still self
avoiding.
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• Trapped SAWs (with 0 endpoint atmosphere) have small
but positive density in set of SAWs for Z2 and Z3

(calculated for Z2 by Owczarek and Prellberg, 2008).
• Shortest trapped end-pattern: these configurations have

positive density in set of SAWs.

• Trapped SAWs cannot be concatenated no matter what the
rest of the walk is like.
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• Choose Pr(i) ∝ 1
i .

• Sites chosen at all length scales with equal probability.
Probability that i ∈ [L,2L] is O(1/ log N).

• Plausible upper bound for τN is the time necessary for
successful pivots to be achieved at all possible length
scales, i.e. O(log N) successful pivots.
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Autocorrelation function

• Variance of an observable, var(A) = 〈A2〉 − 〈A〉2.
• The autocorrelation function for the time series

measurement of an observable A is

ρAA(t) =
〈AsAs+t〉 − 〈A〉2

var(A)
.

• Integrated autocorrelation time then:

τint(A) =
1
2
+
∞∑

t=1

ρAA(t)

• What is τint for pN?
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Autocorrelation function for pN on Z3, N = 1023
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Autocorrelation function for pN on Z3, N = 1048575
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Integrated autocorrelation time
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Comparison of parameter estimates.

• From 〈pN〉, accurate calculation of the critical exponent γ
for d = 3, γ = 1.156957(9).

• Compare with 1.1573(2) (MC, Hsu & Grassberger, 2004),
1.1575(6) (MC, Caracciolo et al. 1998), and 1.1569(6)
(enumeration, Clisby et al. 2007).
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Calculation of µ
• Calculate by sampling SAWs uniformly at random via pivot

algorithm; attempt to extend one of the ends using walks of
k steps with no immediate returns (slightly different in our
case).

• Observable is the probability of the resulting walk being
self-avoiding:

ON =
cN+k

(2d − 1)kcN

∼ AµN+k (N + k)γ−1

(2d − 1)kAµNNγ−1

∼ µk

(2d − 1)k

[
1 +

k(γ − 1)
N

+ corrections
]

• Again, shape near joint is crucial. We choose uniformly at
random on log-transformed distance from joint.
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• Estimate µ = 4.6840398(9) in 6500 CPU hours (data run
not yet complete).

• Compare with 4.684038(6) (MC, Hsu & Grassberger,
2004), 4.684043(12) (enumeration, Clisby et al., 2007).

• In 60× 106 CPU years I could beat Iwan Jensen’s estimate
for Z2 from SAP series!

• (There should be a better way of calculating µ.)
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Confined polymers

• Length scales introduced by putting polymer in a confined
region, e.g. between two parallel plates, or in a tube.

• Perform “moves” on sub-walks.
• If we select endpoints of sub-walks uniformly from

log(distance), we guarantee that all length scales will be
accounted for.

• Potential move set:
• Two-point moves, endpoints fixed (Madras 1990).
• Two-point moves, endpoints free.
• Cut-and-paste moves, e.g. swap two sub-walks.
• One-point pivots. (Free endpoints, one of the points is the

end of walk).

• These moves may well have different characteristic length
scales; automatic tuning by selecting site separation
uniformly from log(distance).
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Knots

• Knots have been found to be localized on polygons.
• Pivot algorithm, with two-point moves (Madras et al., 1990,

and Janse van Rensburg, Whittington & Madras, 1990), is
very effective at sampling polygon configurations.

• Probability of success decreases with distance between
points; could improve by selecting log(distance) uniformly
at random. Will improve acceptance probability, and
therefore decrease autocorrelation time for knot type.
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Other thoughts

• Star polymers / branched polymers (distance to branch
point)

• Polymers tethered to a surface.
• Cluster moves for hard spheres? (select particles in a disc

/ sphere, relevant length is size of cluster)
• Sampling of lattice models? (equivalent to multi-grid Monte

Carlo?)
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Summary

• Exploiting geometry of problem via SAW-tree data
structure has resulted in much faster implementation of
pivot algorithm.

• For problems where there are multiple length scales · · ·
• and Monte Carlo moves on all length scales are equally

computationally cheap · · ·
• choose Monte Carlo moves so that all length scales of the

system are probed.
• Generalisation: spend same amount of CPU time

attempting moves on all length scales.
• Either way, at most modest log N penalty; if combined with

uniform sampling performance is at most a factor of 2
worse, and gain can be much greater than 2.
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