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Exactly captures universal properties such as critical
exponents.
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A typical SAW of 5000 steps on the simple cubic lattice:
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Polymers can’t have two monomers in the same place.

This is the key property of polymers in a good solvent.

SAW exactly captures universal properties of polymers.

E.g. growth in size of a polymer grows as number of
monomers increases.
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Typical size of a SAW / polymer grows with the number
of monomers, N , as:

R = DNν

Size can be defined in various ways:

〈R2
e 〉: mean square end-to-end distance

〈R2
g 〉: mean square radius of gyration

〈Rh〉: mean hydrodynamic radius

D is non-universal, different for every kind of polymer
molecule, or every choice of grid for SAW.

Flory exponent ν is universal! Exactly the same in each
case.
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Pivot algorithm

Markov chain Monte Carlo (MCMC) sampling very
powerful for SAW, especially for d = 3.

Estimate physical properties of system by sampling from
all possible configurations (state space).

Basic idea: generate new configurations by deforming
current configuration via a “move”.
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Pivot algorithm

How can we sample self-avoiding walks?

Local moves make a small deformation, e.g. adding or
removing a monomer, O(N2) moves to get an “essentially
new” configuration.

Global moves can do much better.

Pivot move: O(1) successful moves for an essentially new
configuration.
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Pivot algorithm

Procedure:

Choose a pivot site at random
Then rotate or reflect one of the two parts of the walk.
Retain new walk if it is self-avoiding, otherwise restore
original walk.

“Global” because on average half of the monomers are
moved.

Ergodic, samples SAWs uniformly at random.
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Time O(N) to write down an N-step walk, so this must
be best possible for pivot move?

In fact, don’t need to write down!

Bookkeeping can be handled efficiently in binary tree
structure.
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SAW-tree representation of a walk.
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With a binary tree implementation, pivot move has global
effect for local cost.

O(log N) for:

Rotating part of the walk.
Checking for self-intersections between two pieces.
(Relies on the fact that monomers which are close on
the chain are also close in space.)
Calculating global observables such as R2

e and R2
g .

Very fast, can rapidly simulate SAW with many millions
of steps.

Flory exponent: ν = 0.587597± 0.000009 (Clisby, 2010).
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Hydrodynamic radius

Calculating R2
e easy - just need to keep track of ends.

R2
g almost as easy.

Burkhard (2010): Why not calculate Rh?

R−1h =
1

N2

∑
i 6=j

1

rij

〈Rh〉 ∼ DhNν

(
1 +

a

N1−ν +
b

N0.53
+ · · ·

)

Relevant to experiments.
Strong corrections to scaling, large N should make a big
difference.
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Hydrodynamic radius

Answer #1 (2010): Can’t rapidly calculate Rh, as it
depends non-linearly on all O(N2) interparticle distances.

Answer #2 (2011): Estimate Rh instead!

MCMC: Time average(O) = Ensemble average(O).

Key insight: for an unbiased estimator E (O),
Time average(E (O)) = Ensemble average(O).

This is “obvious”, but identity is not commonly utilised.

Our situation is unusual since calculation of the
observable is the bottleneck!

Our estimator is a weighted version of 1/rij , monomers i
and j chosen at random.
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Results

Estimated 〈Rh〉 and 〈Rg〉/〈Rh〉 to extremely high
precision, for SAW with lengths from 256 to 4194304.

Clearly observed 2 competing corrections to scaling, with
correct exponents.
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New approach allows us to calculate “difficult”
observables such as Rh.

Estimated 〈Rh〉 with unprecedented accuracy.

Extend to dense polymers, off-lattice walks, θ-polymers.

Release an open source software library for polymer
simulation.

Combine Monte Carlo and molecular dynamics?
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