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Critical phenomena

• The number of SAWs of length n, cn, tells us about how
many conformations are available to SAWs of a particular
length:

cn ∼ A nγ−1µn [1 + corrections]

• Mean square end to end distance tells us about the size of
a typical SAW:

〈R2
e〉 = Dn2ν [1 + corrections]

• We wish to determine γ and ν as accurately as possible.



Pivot algorithm Conclusion

Pivot algorithm

• Want to sample from the set of SAWs of a particular length.
• Set up a Markov chain as follows:

• Randomly select a pivot site on the current SAW
configuration.

• Randomly choose a lattice symmetry q (rotation or
reflection).

• Apply this symmetry to one of the two subwalks created by
splitting the walk at the pivot site.

• If walk is self-avoiding: accept the pivot and update the
configuration.

• If walk is not self-avoiding: reject the pivot and keep the old
configuration.

• The pivot algorithm is ergodic, and satisfies detailed
balance which ensures that SAWs are sampled uniformly
at random.
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Will now show a sequence of successful pivots applied to an
n = 65536 site SAW.
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How often are pivots successful?
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How often are pivots successful?
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Why is it so effective?

• Pivots are rarely successful.
• Every time a pivot attempt is successful there is a large

change in global observables.
• After each successful pivot, the successive values of

global properties e.g. R2
e are (almost) uncorrelated.

• Integrated autocorrelation time for global observables
O(np), p ≈ 0.19 for square lattice, p ≈ 0.11 for cubic.

• Monte Carlo methods which rely on local rather than global
moves and typically take much more CPU time to generate
an effectively independent configuration.
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Implementation
Madras and Sokal, 1988:
• Use a hash table to test for self-intersections.
• When a pivot is attempted, build up new configuration

incrementally, starting at pivot site.
• If resulting configuration is:

• Not self-avoiding (Prob ∼ 1), then intersection will typically
be found in time O(n1−p).

• Self-avoiding (Prob ∼ n−p), must generate whole walk, time
O(n).

• Overall, O(n1−p) time per attempted pivot.
• If we update the whole data structure after each successful

update, then this is the best possible implementation
Kennedy, 2002:
• Complicated implementation, O(nα) (α < 1− p) version of

the pivot algorithm! Don’t need to update the whole data
structure after each successful update.
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Fast pivot algorithm
• Ingredients for a fast implementation of the pivot algorithm:

• a fast test for intersections for a proposed pivot move;
• a fast update operation to change walk if pivot is accepted.

• Key observation: a SAW can be decomposed into two
(equal) subwalks, with a symmetry operation
concatenating the two subwalks.

• Results in a natural binary tree structure.
• State of a walk, which includes information on global

observables such as R2
e , only depends on the states of its

two subwalks.
• R2

e , R2
g , R2

m can all be calculated in this way.
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Intersection testing

• How much information do we need about a walk in order to
decide whether it is self-avoiding?

• Imagine looking at a walk with a magnifying glass.
• For parts of the walk which are far apart we can easily see

that there are no intersections.
• Whenever parts of the walk approach each other we need

to examine the walk closely using magnifying glass.
• Degree of magnification depends on how closely they

approach.

• This idea captured by storing bounding box information.
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A 65536 site SAW.
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Attempt to pivot (rotate 90◦) around green star.
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How does the intersection testing algorithm determine if the
new configuration is self-avoiding?
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Bounding boxes intersect, and so two halves of the walk may
intersect.
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Refine bounding boxes; intersection can only occur between
subwalks whose bounding boxes intersect.
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Mean number of intersection tests necessary for a
pivot attempt (successful and unsuccessful pivots).
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• CPU time per attempted pivot, for a SAW of length n:

Madras and Sokal Kennedy New method
Square n0.81 n0.38 log n
Cubic n0.89 n0.74 log n

• Approximate CPU time per attempted pivot for n = 106:

Madras and Sokal Kennedy New method
Square 1240 15.5 1
Cubic 1410 202 1
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Critical exponents: ν

• Pivot algorithm samples uniformly from within set of SAWs
with fixed length, calculate 〈R2

e〉, 〈R2
g〉, 〈R2

m〉, and hence
estimate ν.

• Lengths ranged from 500 to 33 million, 1.9× 1013

configurations in total (16500 CPU hours).
• Fit coefficients in asymptotic form:

〈R2
e〉 = Dn2ν [1 + corrections] .
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Critical exponents: γ

• Two Markov chains of n-step SAWs generated via the pivot
algorithm.

• Probability that can concatenate the two SAWs to form a
valid 2n-step walk is:

Pn =
c2n

c2
n
≈ Aµ2n(2n)γ−1

(Aµnnγ−1)2

≈ 2γ−1

Anγ−1

• Note: preferentially choose pivot sites near the ends being
concatenated.

• Estimate γ from Pn.
• Lengths ranged from 500 to 33 million, 0.8× 1013

configurations in total (12500 CPU hours).
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Conclusion

• Preliminary estimates are ν = 0.587596(10) and
γ = 1.156954(15). These values are an order of
magnitude more accurate than any other estimates in the
literature.

• Up to 109 steps possible.
• Method can be easily extended to continuum (off lattice)

walks.
• Can be applied to other models, e.g. polymers in a

confined space, polymers with short range attraction
(hydrogen bonding).

• Other applications? e.g. pivot algorithm can be used to
study protein conformations, ultra long polymers for
industrial purposes.
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SAP on cubic lattice with n = 92672.
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