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A typical SAW of 5000 steps on the simple cubic lattice:
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SAW exactly captures universal properties of polymers.

E.g. typical size of a SAW / polymer grows with the
number of monomers, N , as:

R = DNν

D is model dependent, but the critical exponent ν is a
universal quantity.

No exact solution for SAW.

Markov chain Monte Carlo (MCMC) sampling very
powerful for SAW, especially for d = 3.
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Markov chain Monte Carlo (MCMC)

Estimate physical properties of system by sampling from
all possible configurations (state space).

Basic idea: generate new configurations by deforming
current configuration via a “move”.

Local moves:

fast, easy to implement;
move slowly around state space.

Global moves:

difficult to find one which is not always rejected;
slow, harder to implement;
move rapidly around state space.

MCMC estimation of π
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Key ideas for radically efficient MCMC algorithm:

large deformations which are “allowed” by the system
with fair probability.

efficient implementation which implements global move
for local cost.
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Pivot algorithm

Local moves, such as adding or removing a monomer,
require O(N2) moves to get an “essentially new”
configuration.

Global moves can do much better.

Pivot move: O(1) successful moves for an essentially new
configuration.

Lal (1969) invented pivot algorithm, but key paper is by
Madras and Sokal (1988).
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Pivot algorithm

Procedure:

Choose a pivot site at random
Then rotate or reflect one of the two parts of the walk.
Retain new walk if it is self-avoiding (success!),
otherwise restore original walk.

Often successful because individual parts necessarily
remain self-avoiding (local structure preserved) – only
need to check that no new intersections are introduced
between the parts.

“Global” because on average half of the monomers are
moved.

Ergodic, samples SAWs uniformly at random.
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Pivot algorithm simulation
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SAW Monte Carlo Pivot algorithm Hamiltonian paths Conclusion

Time O(N) to write down an N-step walk, so this must
be best possible for pivot move?

In fact, don’t need to write down! ⇒ o(N) (Kennedy,
2002)

Just need to verify that walk is self-avoiding after a pivot
move, and be able to answer queries about global
properties.

Bookkeeping can be handled efficiently in binary tree
structure. ⇒ O(log N) (C., 2010)
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Key properties of the SAW-tree data structure.

Each node contains:

Symmetry information (for rotations / reflections);
“Bounding box” information, aka bounding volume
hierarchy (for intersection testing);
Information about observables.

Tree structure can be altered via “tree rotations”, so that
symmetry operations can be applied to any section of the
walk.

Binary tree has typical height O(log N).
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Example SAW-tree moves.
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How do we apply symmetry to steps 2,3,4? Restructure the
binary tree via a “tree rotation”.
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With a binary tree implementation, pivot move has global
effect for local cost.

O(log N) for:

Rotating part of the walk.
Checking for self-intersections between two pieces.
Calculating global observables such as R2

e and R2
g .

Very fast, can rapidly simulate SAW with many millions
of steps.

How can we extend this key idea - fast global moves - to
other models?
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Hamiltonian paths

Hamiltonian paths are self-avoiding walks which visit
every site in a graph.

Hamiltonian path generator, see
http://lattice.complex.unimelb.edu.au/hamiltonian path
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Backbite moves for sampling Hamiltonian paths.

Each time we make a backbite move we create a loop, delete
the edge which completes the loop, and reverse the orientation
of the remaining edges of the loop.
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SAW Monte Carlo Pivot algorithm Hamiltonian paths Conclusion

Backbite move

For the simple cubic lattice, loops are of mean size O(N).

This suggests time O(N) to perform a backbite move.

But, again we don’t need to explicitly “write down” each
step of the walk, just need to be able to store information
about structure, and find neighbours of walk ends.

Use binary tree data structure with time reversal as our
symmetry operation, with bookkeeping for determining
neighbours.
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SAW Monte Carlo Pivot algorithm Hamiltonian paths Conclusion

This time binary tree has time reversal symmetry elements in
the nodes.
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SAW Monte Carlo Pivot algorithm Hamiltonian paths Conclusion

How do we reverse sequences of steps which don’t align with
the tree?
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SAW Monte Carlo Pivot algorithm Hamiltonian paths Conclusion

Results

Z2: L = 8192, N = 67 108 864: 360 000 steps, versus
6.77 tree rotations.

Z3: L = 512, N = 134 217 728: 46 million steps, versus
20.6 tree rotations.
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SAW Monte Carlo Pivot algorithm Hamiltonian paths Conclusion

Conclusion

Finding the right computer representation can allow for
global changes to made for local cost.

Apply global move without explicitly evaluating all of the
effects of the move - just need to be able to test some
properties of the object efficiently.

Linear order of walks makes things easy; can we apply
these principles elsewhere?
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