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Self-avoiding walks
Pivot algorithm
SAW-tree, a data structure for fast pivot moves

How can we extend this idea?

m Dense polymers - new symmetries
m R}, - estimate observables
m 4 - neither local nor global

@ Conclusion
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Self-avoiding walk model

@ A walk on a lattice, step to neighbouring site provided it
has not already been visited.
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@ Polymers can’t have two monomers in the same place -
key property of polymers in a good solvent.

@ SAW exactly captures universal properties of polymers.

@ E.g. typical size of a SAW / polymer grows with the
number of monomers, N, as:

R = DN*

@ D is model dependent, but the critical exponent v is a
universal quantity.
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Pivot algorithm

@ No exact solution for SAW.

@ Markov chain Monte Carlo (MCMC) sampling very
powerful for SAW, especially for d = 3.

@ Estimate physical properties of system by sampling from
all possible configurations (state space).

@ Basic idea: generate new configurations by deforming
current configuration via a “move”.
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Pivot algorithm

@ Local moves make a small deformation, e.g. adding or
removing a monomer, O(N?) moves to get an “essentially
new" configuration.

@ Global moves can do much better.

@ Pivot move: O(1) successful moves for an essentially new
configuration.

@ Lal (1969) invented pivot algorithm, but key paper is by
Madras and Sokal (1988).
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Pivot algorithm

@ Procedure:

m Choose a pivot site at random

m Then rotate or reflect one of the two parts of the walk.

m Retain new walk if it is self-avoiding, otherwise restore
original walk.

@ “Global” because on average half of the monomers are
moved.

@ Ergodic, samples SAWs uniformly at random.
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@ Time O(N) to write down an N-step walk, so this must
be best possible for pivot move?

@ In fact, don't need to write down! = o(N) (Kennedy,
2002)

@ Bookkeeping can be handled efficiently in binary tree
structure. = O(log N) (C., 2010)
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SAW-tree representation of a walk.
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Key properties of the SAW-tree data structure.
@ Each node contains:

m Symmetry information (for rotations / reflections);

m “Bounding box" information (for intersection testing);

m Information about moments of positions, allowing for
exact calculation of R? and R2.

@ Tree structure can be altered via “tree rotations”, so that
symmetry operations can be applied to any section of the
walk.

@ Binary tree has typical height O(log N).
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@ With a binary tree implementation, pivot move has global
effect for local cost.
@ O(log N) for:
m Rotating part of the walk.
m Checking for self-intersections between two pieces.
m Calculating global observables such as R? and Rg2.
@ Very fast, can rapidly simulate SAW with many millions
of steps.
@ How can we extend this key idea - fast global moves - to
other models?
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Hamiltonian paths

@ Hamiltonian paths are self-avoiding walks which visit
every site in a graph.

@ Models crystal phase of polymers.

@ Examples on 20x20 and 200200 lattice (from generator

at:
http://lattice.complex.unimelb.edu.au/hamilt onian,path)
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Hamiltonian paths

@ Some effective MCMC moves for sampling dense polymers
are based on changing the topology of configurations.

@ One example: backbite move, which is likely to be
ergodic for the simple cubic lattice.
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Each time we make a backbite move we create a loop, delete

the edge which completes the loop, and reverse the orientation

of the remaining edges of the loop.
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Backbite move

@ For the simple cubic lattice, loops are of mean size O(N).
@ This suggests time O(N) to perform a backbite move.

@ However, can use binary tree data structure with time
reversal as our symmetry operation.

@ Only trick required is bookkeeping for determining
neighbours.
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Results
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m Moves have mean size O(N).
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Results

° 72
m Moves have mean size O(N~0-%).
m L =28192, N =67108864: 360000 steps, versus 6.77
tree rotations.
° 73
m Moves have mean size O(N).
m L =512, N=134217728: 46 million steps, versus 20.6
tree rotations.
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Hydrodynamic radius

: 2 : 2
@ Calculating RZ easy, just keep track of ends. R; almost
as easy.

@ Why not R,?

1 1

-1
R'=m 2
i# Y

5 a b
<Rh>NDhN (1+W+W+"'>

m Relevant to experiments.
m Strong corrections to scaling, large N should make a big
difference.
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Hydrodynamic radius
Can't rapidly calculate Ry, as it depends non-linearly on

all O(N?) interparticle distances, c.f. O(log N) to
perform a pivot.

@ So estimate R, instead!
@ MCMC: Time average(O) = Ensemble average(O).
@ Key insight: for an unbiased estimator E(O),

Time average(E(O)) = Ensemble average(O).

Our estimator is a weighted version of 1/r;, monomers i
and j chosen at random.

1.591 + 0.007, (Diinweg et al., 2002), vs
1.58040 =+ 0.00002.
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Counting SAW

@ Number of SAW of length N, cy, tells us about how many
conformations are available to SAW of a particular length:

ey ~ A NN [1 + corrections]

@ We wish to count ¢y, and estimate pu.

@ Can estimate cy/(cn/2)? via pivot algorithm - probability
that when two SAW are concatenated the result is
self-avoiding.

@ Then use

2

_Cn [ Cny2 N/k

W=z \a. | %
N/2 N/4
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Counting SAW

@ Sites of the walk which are close to the concatenation
point have a much greater influence on the probability,
than sites which are far away.

@ Pivot sites chosen uniformly: 7, = Q(N) (due to trapped
configurations).

@ Instead, choose distance from joint uniformly from all
distance scales.

o = ;= 4.684039931(27) (C., 2013)

@ This idea can be applied to other systems with additional
length scales: confined polymers, bridges, star polymers,
perhaps #-polymers.

Assorted Monte Carlo 31/ 32




SAW Pivot algorithm Dense polymers Hydrodynamic radius "

Conclusion

@ Many opportunities to look for fast algorithms for
polymer systems.

Assorted Monte Carlo 32/ 32




Pivot algorithm Dense polymers Hydrodynamic radius "

SAW

Conclusion

@ Many opportunities to look for fast algorithms for
polymer systems.

@ Confined polymers, novel observables, dense polymers,
f-polymers, bridges, co-polymers, ---7?

Assorted Monte Carlo 32 /32




SAW Pivot algorithm Dense polymers Hydrodynamic radius "

Conclusion

@ Many opportunities to look for fast algorithms for
polymer systems.

@ Confined polymers, novel observables, dense polymers,
f-polymers, bridges, co-polymers, ---7?

@ Pivot algorithm only part of the story.
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