
Faster simulation of self-avoiding walks promises to untangle

knotty problems in polymer science

For further information: Dr Nathan Clisby, email: nclisby@unimelb.edu.au,
Tel.: +61 3 8344 3759, Fax: +61 3 9347 8165,
Additional resources: http://clisby.net/

Comments, complaints to Jason M. Whyte, jason.whyte@unimelb.edu.au

April 13, 2016

Abstract

First proposed by Orr in 1947, the mathematical notion of a ‘self-avoiding walk’
(SAW) is simple to define, yet incredibly useful to the understanding of particular types
of physical phenomena. For example, under certain conditions, SAWs can exactly model
some properties of polymers — long chains of fundamental units (monomers) held together
by chemical bonds. SAWs are not only a useful modelling tool; over decades their study
has stimulated theoretical developments in areas including mathematics, physics and
computer science.

The challenging problems posed by SAWs have drawn the interest of winners of the
Fields medal, an award considered the equivalent of a Nobel Prize in the discipline of
mathematics. Researchers from The School of Mathematics and Statistics at The Uni-
versity of Melbourne have a history of making contributions to the study of SAWs. In
continuing this record, Dr Nathan Clisby was awarded a prestigious Future Fellowship
by the Australian Research Council to foster his research into the efficient simulation of
SAWs. These awards enable outstanding mid-career researchers to continue their research
in Australia. Nathan’s work underpins advances in certain branches of mathematics and
physics. It also promises insight into long-unexplained phenomena, such as knotting in
polymers.

1 Self-avoiding walks, polymers and stubborn mathematical problems

We begin our overview of the contributions made by Nathan’s research to the study of self-
avoiding walks (SAWs) with a summary of their properties.

1.1 An introduction to SAWs

A SAW occurs on a ‘regular lattice’ of some fixed dimension d in which points are spaced
evenly according to some rule. Figure 1 shows one regular lattice in each of two dimensions
(d = 2) and three dimensions (d = 3). Other regular lattices for d = 2 are comprised of
repeating shapes such as triangles or hexagons, and extensions exist for higher dimensions.

An n-step SAW (where n will always represent a positive integer) is a sequence of n+ 1
distinct lattice points ω0, ω1, . . . , ωn, each a nearest neighbour of its predecessor. We can
think of these points as defining a path (or conformation) traced out on a regular lattice by
a pipe cleaner that is subject to constraints. One end — representing the ‘zeroth’ monomer
— is placed at the lattice’s origin (this defines ω0). The pipe cleaner is bent some integer
number of times (between 0 and n inclusive) to make a path through n lattice points that
are nearest neighbours. Vitally, the pipe cleaner cannot intersect itself. The position of the

1



Figure 1: A square lattice (d = 2, left) and a simple cubic lattice (d = 3, right).

end furthest from the origin (ωn) gives the location of the n-th monomer. Figure 2a shows
an example of a SAW on a square lattice.

If the n + 1 lattice points ω0, ω1, . . . , ωn are not required to be distinct, the sequence
defines an ‘n-step random walk’ . From a starting point ω0, the walk takes its first step to
ω1, a lattice point that is a nearest neighbour. It continues stepping in this manner for a
total of n steps and may visit a point one or more times. A random walk has the ‘Markovian’
property, which allows its simulation in a stepwise manner. That is, the only information
we need to simulate the next step of the walk is its current location. Figure 2b shows an
example of a simple random walk. SAWs do not have the Markovian property, which makes
their simulation more complicated than that of random walks.

(a) A self-avoiding walk (b) A simple random walk

Figure 2: The figures use a square lattice to show an example of each of (a) a self-avoiding
walk and (b) a simple random walk. In each case the filled circle shows ω0 = (0, 0), the
lattice’s origin. While arrows are useful for showing the progress of a random walk from the
origin, they are inappropriate for a SAW.

The number of distinct n-step SAWs conformations on some regular lattice is represented
by cn. For n tending towards infinity, it is widely believed that cn follows the (asymptotic)
relation1

cn ∼ Aµnnγ−1, (1)

where constant A and ‘growth constant’ µ depend on the type of lattice. The ‘critical ex-
ponent’ γ depends only on d. For example, it is expected that for large n the expressions
for cn on a square lattice and a hexagonal lattice have the same µ value as for both d = 2.

1Where ∼ is a shorthand for ‘behaves like’.

2



While the dependency of cn on µn is established, the existence of γ has not yet been proven
for 2 ≤ d ≤ 4.

By knowing each of the cn conformations of n-step SAWs, we can calculate some property
(‘observable’) of this set. One example is the ‘mean square size’ of SAWs (average square
end-to-end distance) represented by 〈R2

e〉n. This is obtained by determining the distance of
the n-th monomer from the origin for each conformation, squaring this value, and averaging
the set of values. It is believed that as n tends to infinity we have the asymptotic relationship

〈R2
e〉n ∼ Dn2ν , (2)

where ν is a universal constant for a given d and is regarded as another critical exponent.
The constant D depends on the lattice type.

The strong conviction that relationships (1) and (2) are correct has led to much research
aimed at determining the critical exponents γ and ν. This requires values (or at least good
estimates) of cn and 〈R2

e〉n for large n as inputs to the estimation process. We must overcome
some very difficult problems in order to obtain this information.

To gain some appreciation for such problems and the means of addressing them, we give
an overview of polymers, an early application of SAWs proposed by Flory in 1949.

1.2 An introduction to features of polymers

Polymers feature in many industries and products. Two examples are polyethylene used in
garden chairs, and paint used to protect steel from rust. Biological polymers include DNA,
the store of genetic information required for an organism’s reproduction. Two simplified
polymer structures are shown in Figure 3.

Figure 3: The chemical structure of polyethylene, highlighting its repeating unit (left)
and a simplified structure of double-stranded DNA (right, blue and red spheres represent
monomers). (DNA image from [1])

A polymer may have millions or even billions of monomers. Forces due to these influ-
ence a polymer’s shape (generally ‘conformation’). Their effect is subject to the polymer’s
environment; this may be an industrial solvent or the cytoplasm of a cell. Conformation in-
fluences a polymer’s properties. For example, compared to an enzyme’s ideal conformation,
a mis-folded version may have a decreased ability to catalyse a chemical reaction. Varied
consequences in humans include Alzheimer’s disease ([2]).

1.3 The surprisingly profitable connection between polymers and SAWs

SAWs exactly model certain features of ‘isolated polymers’. These are polymers in dilute
solution in a ‘good solvent’, one that negates the attractive forces between non-adjacent
monomers. As a result, multiple monomers do not occupy the same region of space. This
creates an ‘excluded volume effect’, causing the polymers to spread out in the solvent volume
much more than they would otherwise. This characteristic gives some intuitive motivation
for the modelling of a polymer conformation with a SAW.

3



The study of isolated polymers in solution has provided experimental justification for mod-
elling their properties with SAWs. For example, light scattering experiments have estimated
the mean size of polymers (average end-to-end distance) of a known number of monomers
n. These experiments were performed for multiple n. Results obtained gave an empirical
relationship for how mean square polymer size grows with n. For large n, mean square size
grows with a factor of n2ν , as was proposed for mean square size of n-step SAWs in (2). The
experimentally-derived estimate of ν is limited to two decimal place accuracy. However, it is
in agreement with the estimate of ν to five decimal places calculated using Nathan’s methods
applied to n-step SAWs with appropriate n values. This agreement between experimental
and computationally-derived values holds regardless of the type of lattice used as long it is
in three dimensions, and regardless of the isolated polymer’s composition.

The ability of SAWs — a simple model that does not attempt to model physical features
in detail — to exactly capture properties of isolated polymers exemplifies a useful property.
That is, certain systems exhibit properties that change with n (say, number of steps or
monomers) according to the same critical exponent. These systems are said to belong to
the same ‘universality class’. The ability of mathematical systems to provide insights into
properties of real systems from the same universality class is a powerful technique in research
into ‘critical phenomena’.

1.4 Practicalities of the use of SAWs in estimating the properties of physical systems

Determining cn for SAWs on a one-dimensional (d = 1) regular lattice (points on a straight
line) is trivial. An n-step SAW with one end at the origin can only have the other end either
n lattice points to the left or right. Hence, cn = 2 for any n. However, the problem of
calculating cn for large n — or even obtaining a good estimate for it — for lattices of interest
to physical applications is much more complex.

For lattices with d = 2 or d = 3 (recall the examples shown in Figure 1), for small values
of n we can count the n-step SAWs directly to determine cn. However, counting becomes
impractical for relatively small n. Hence, it is necessary to simulate SAWs with the aim of
obtaining a good approximation to cn. The nature of SAWs poses certain difficulties for such
simulations. Unlike a random walk, it is difficult to simulate a SAW in a stepwise manner.
One difficulty is that of ‘trapping’; after k < n steps we may arrive at a conformation for
which no further step is possible. This possibility makes stepwise simulation of n-step SAWs
inefficient as computational effort is spent without obtaining a valid conformation. As a
result, much research has gone into simulation methods more likely to produce SAWs for
large n.

1.5 Challenges and opportunities in the study of SAWs

The ‘hard counting problem’ of exactly determining cn for general n and fixed d and lattice
type has been studied for more than 60 years. The problem may be ‘unsolvable’ in the sense
that there may not exist a ‘nice’ expression for cn.2 Whether the problem is unsolvable or
not is an open question. This makes the problem of continuing interest to communities of
mathematicians and physicists. To them it is an intrinsically interesting and rich problem
quite apart from any physical applications.

2That is, the expression for cn may not be like (1) — one that is written in terms of standard mathematical
functions. Further, there might not even be an algorithm able to determine cn in polynomial time. Such an
algorithm has a run time that is expected to be manageable even for very large n. It is greatly preferable to
an exponential time algorithm for which run time increases drastically with n. This can make run time very
long for relatively small n values, making the algorithm impractical for the much larger n values of interest.

4



The problem of obtaining cn has stimulated research in various areas. Efforts in the field
of combinatorics are aimed at improving approximations to cn. This in turn has prompted
the development of enumeration algorithms in computer science. Probability theory has
incorporated ideas from SAWs in the development of the concepts of ‘lace expansion’ and
‘Stochastic Löwner Evolution’. SAWs are also a limiting case of the ‘n-vector models’ pro-
posed to explain aspects of the behaviour of materials. For n = 1 this model class yields the
famous Ising model of ferromagnetism which is central to the theory of critical phenomena.

In terms of applications, the study of SAWs has impacted various areas, including polymer
physics, chemistry, and materials science. These disciplines have considered polymer systems,
including branched and ring polymers, to investigate properties such as the distribution of
polymer sizes. SAWs do not attempt to model the chemistry that influences the conformations
of non-isolated polymers. However, this effect is included in more sophisticated models that
build on the framework provided by SAWs, such as the HP (hydrophobic) model.

In biology, models related to SAWs are suitable for studying or representing processes such
as protein folding3 and the folding of RNA enclosed by a viral capsid. Another application,
understanding the knotting of DNA, is a particular challenge for methods of simulating
SAWs. Polymer knotting only becomes common when the number of constituent monomers
is of the order of millions. Until relatively recently, algorithms for simulation of SAWs with
correspondingly large n were impractical. This was due to algorithms requiring prohibitively
long run times to produce results sufficiently accurate to be useful. Nathan’s work has
overcome this difficulty by reformulating the problem.

The next section considers the problem of simulating SAW conformations in detail. We
will subsequently outline the development of some techniques used for this purpose. Finally,
we will take an overview of Nathan’s innovative refinements which make great strides in the
simulation of self-avoiding walks.

2 Algorithms for SAW simulation and the need for speed

An important feature of any algorithm is the number of computer operations it takes to
complete a task. This number is directly related to the algorithm’s run time. If one algorithm
uses fewer operations than another to achieve a comparable result, it is considered more
efficient.

There are a variety of algorithms for the computer simulation of SAW conformations.
We will describe a type that features prominently in Nathan’s research, and progress with
making these more efficient.

2.1 Markov Chain Monte Carlo methods for simulation of SAWs

Suppose that each n-step SAW configuration on some regular lattice is called a ‘state’ and the
entire collection of these is a ‘state space’. This formulation allows us to consider algorithms
that produce SAW conformations by using Markov Chain Monte Carlo (MCMC) simulation.4

They provide a means of drawing a number of states from the state space. This is termed

3For example, ‘lock and key’ models in which one protein’s conformation induces a change in that of
another.

4Briefly, a Markov chain is random process which is in one state of a state space at any instant of time.
For any such state, there is some probability (possibly zero) of moving to any other state or remaining in
the current state at any instant. A common application of Markov chains is in modelling a ‘birth and death’
process. The state space is the set of non-negative integers, representing the possible number of individuals in
a population. At any instant there is some probability of certain events occurring. A birth (death) increases
(decreases) the value of the state by one. If neither of these events occur, the state is unchanged. We will see
the meaning of ‘Monte Carlo’ shortly.

5



‘sampling from the state space’. We will give a general description of such algorithms applied
to our context.

A MCMC-type algorithm begins with an initial n-step SAW conformation. This, and
any subsequent conformation, is stored in computer memory through a particular value of a
‘data structure’. Typically this is a table which encodes the position on the lattice occupied
by each of the n+ 1 monomers.

The first step of the algorithm is to deform the initial configuration via a ‘move’ chosen
at random. Any move has two possible results. If the result is a SAW it is ‘accepted’
and becomes the updated conformation. The data structure is modified to record this new
conformation. Otherwise, the result is ‘rejected’ and the initial conformation becomes the
updated conformation, requiring no change to the data structure. Regardless of whether the
updated conformation is a consequence of acceptance or rejection, it is used to calculate the
value of some observable (such as mean square size). The updated conformation itself may
be stored for later use. It is deformed in the next step of the algorithm by another randomly
selected move. The algorithm continues in the manner described above until it has made
some specified number of moves. The set of values obtained for the observable of interest are
used to calculate some overall property of n-step SAWs (such as 〈R2

e〉n).5

If sampling from the state space is allowed to proceed for long enough, the algorithm will
obtain a sample of states that is ‘representative’ of the state space. To explain this, suppose
it were possible to calculate some observable for each state in the state space. The number
of times each distinct value occurs divided by the total number of values gives the ‘relative
frequency’ of that particular value. When an observable is calculated from a representative
sample, each distinct value will occur with approximately the same relative frequency as it
does in the state space. For this reason, calculations using a representative sample with
respect to some observable tend to provide a reasonable approximation to the average of
that observable for the state space. Accordingly, calculations which use an unrepresentative
sample will likely give an inaccurate estimate of the state space property of interest.6

The relative efficiency of MCMC algorithms for the simulation of SAW conformations is
largely influenced by two factors. The first we will call ‘exploration cost’. This relates to the
average number of moves for a particular Markov chain required to obtain a large change in
the value of some observable. If this value is large, the observable is described as having ‘long-
range correlations’. As the exploration cost is reduced, an algorithm will tend to explore the
state space more quickly. This in turn reduces the time required for an algorithm to obtain a
representative sample. The second factor may be called ‘update cost’. We can think of this
as the average number of operations required to update and store each conformation.

Most efforts to improve efficiency of MCMC algorithms for SAWs (polymers) focused on
reducing the exploration cost. Even with these improvements, algorithm run times are still
impractical for the large n of particular interest. However, the coupling of earlier develop-
ments with Nathan’s methods for reducing the update cost of MCMC algorithms has made
algorithms applicable to much larger n than previously.

We will briefly review some developments in MCMC algorithms for SAWs in order to

5The generation of a summary statistic (such as 〈R2
e〉n) from samples drawn at random from a state space

is a characteristic of ‘Monte Carlo’ methods.
6Suppose we wish to estimate the average valuation of two bedroom houses in the metropolitan area of an

Australian city. If we could determine the valuation of every house in this state space we would calculate the
exact average valuation. As this is not practical, we must sample from the state space instead. Suppose we
chose only to record the valuation of two bedroom houses in a prestigious suburb. These are likely to have
valuations that are much more similar to each other than to houses picked at random from the metropolitan
area. Also, their valuations are likely to be larger than those seen in many other suburbs in the city. As the
sample of houses over-represents the more highly valued houses in the state space, it is not a representative
sample. An average house valuation calculated from this unrepresentative sample is likely to substantially
overestimate the actual average.

6



illustrate the usefulness of Nathan’s contribution.

2.2 MCMC algorithms using local moves, and their limitations

Originally MCMC methods applied to the simulation of n-step SAWs deformed a confor-
mation using ‘local moves’. Each of these makes a small change to the conformation. For
example, a monomer might be deleted from one end and added to the other. This type of
move is known as a ‘slithering snake’, as employed by the ‘reptation algorithm’ for moving a
SAW around a lattice. Another type of local move — the ‘bead flip’ — changes the position
of one monomer. An example is shown in Figure 4.

Figure 4: An example of a ‘bead flip’ local move. The left image shows a fragment of
the original conformation of a SAW, as determined by certain lattice points (filled circles).
On changing one of these points to a new point (unfilled circle), a new conformation — not
necessarily a SAW — is produced (right). Dashed lines show new features of the conformation
resulting from the move.

Relatively speaking, local moves in MCMC methods have a low update cost and a high
exploration cost. As a result, for large n they take an impractically long time to obtain a
representative sample from the state space of cn n-step SAWs. Hence, if run time is limited,
we will expect to obtain a sample for which many conformations have similar values of an
observable.7 The problem is exacerbated as n becomes increasingly large. This feature limits
the use of MCMC methods employing local moves to relatively small n as otherwise we are
unlikely to obtain reasonable estimates of some observable.

We might expect that the increase in algorithm run time for very large n will be offset by
ongoing increases in computing power. This rate of increase is well-established. In 1965 Moore
observed that the number of transistors on an integrated circuit was increasing exponentially
with time, doubling around every two years. Known as ‘Moore’s Law’, this rule of thumb
remains a good approximation of how computing power increases over time. Since 1985, the
number of transistors on a desktop computer has increased from approximately three hundred
thousand to three billion. Computer hardware is also much cheaper than previously due to
mass production. The overall result is an increase in computer power per dollar (neglecting
the costs of electricity and maintenance) by a factor of the order of 10 million.

This increase in computing power meant that researchers could use MCMC methods to
obtain accurate estimates of observables of n-step SAWs for n of the order of hundreds.
However, simulation for much larger n is required if we wish to gain insights into properties
of polymers by estimating critical exponents. For these larger n, MCMC methods using local

7To continue the house valuation analogy used earlier, suppose we wished to explore the valuations of two
bedroom houses by moving around a map at random. Suppose we start at a particular two bedroom house
in our original expensive suburb. In this context, a local move is the equivalent of moving one house in any
direction. The move is accepted if the new house has two bedrooms, and is rejected otherwise. It will take a
relatively large number of moves to get out of our original suburb, and hence away from a region of similar
house prices. We would expect the algorithm to take even more moves to get out of the relatively expensive
inner-city suburbs and out to the considerably less expensive outer suburbs. Hence, an average house price
computed for a relatively small number of moves will contain a disproportionate number of expensive homes,
causing an overestimate of the average valuation.

7



moves still have impractically long run times. Hence, hardware advances alone cannot enable
the simulation of SAWs of a size that can push the frontiers of theoretical understanding.

The need to make algorithms faster stimulated further algorithm development.

2.3 Global moves in MCMC SAW simulation: a pivotal advance

The next generation of MCMC algorithms employed ‘global moves’ to deform SAW confor-
mations. The pivot algorithm, invented by Lal in 1969 ([3]) and studied in depth by Madras
and Sokal in 1988 ([4]), famously utilises a type of global move called a ‘pivot move’. A
pivot move involves selecting a monomer at random (called the ‘pivot site’) and applying a
transformation (most simply, a reflection or rotation) around that point. In terms of our
pipe cleaner analogy, choosing a monomer about which to apply a move divides the SAW
into two fragments, one on each side of the chosen monomer. One part of the SAW is held in
place, this is the ‘stationary fragment’. The other, the ‘mobile fragment’, is bent or rotated
around the chosen monomer (which itself does not move) without changing its shape so that
it touches a different sequence of lattice points. Figure 5 shows an example of a pivot move
that is a rotation.

Figure 5: A SAW showing the mobile fragment enclosed by the dashed curve (left), and
the SAW produced by application of a particular global move to the original conformation
(right). The global move applied is a rotation of the mobile fragment 90 degrees to the right
around the pivot site, the monomer indicated by the dotted line.

A global move applied to an n-step SAW tends to have a greater update cost than a local
move applied for the same n for two reasons. First, a global move shifts a much greater
number of monomers than a local move does.8 Second, deciding whether to accept or reject
a global move requires checking more lattice points in the new conformation to determine
whether it is a SAW. However, the distinct advantage of global moves over local moves is
their lower exploration cost.9

The pivot algorithm improves algorithm run time by a factor that depends on n. Let us
consider n = 109 (one billion) which is the number of monomers necessary for quantitative
understanding of polymer knotting. In this case the speed up of SAW simulation algorithms
is by a factor of 100 million. Speed up from the pivot algorithm made it possible to extend
the simulation and useful calculation of properties of n-step SAWs from n of the order of
hundreds to tens of thousands.

In 2002, Tom Kennedy [5] devised a means of significantly reducing the update cost of the
pivot algorithm. This made it feasible to use simulation to accurately estimate observables

8Typically a substantial fraction of the total number of monomers is moved. This is most obvious when
considering a global move applied around a monomer located away from the ends of a SAW.

9Returning again to our house valuation problem, a global move is equivalent to moving from the current
location to a randomly-selected house within a 10 km radius. An accepted move can potentially move us a
large distance away from the previous two bedroom home.

8



of SAWs having hundreds of thousands or even millions of steps. However, the increase in
algorithm run time with n still makes the standard algorithms unsuited to the very large n
of practical interest.

Inspired by Kennedy’s contribution, Nathan considered how to further reduce the update
cost in MCMC algorithms employing global moves. His original approach was to rethink the
manner in which SAWs are represented on a computer. His efforts have greatly extended the
usefulness of the pivot algorithm.

3 The breakthrough: think globally, act locally!

Nathan’s breakthrough followed an insight into the effect of a global move on a SAW con-
figuration. A global move shifts each monomer in the mobile fragment to a new position in
space. However, it does not change the fragment’s ‘shape’, that is, the relative positions of
its monomers.

Figure 5 illustrates this effect. The left figure shows a monomer directly above the pivot
site in the original SAW conformation. The right figure shows that the global move shifts this
monomer to the right of the pivot site. All other parts of the SAW’s shape are unchanged
even though the global move causes a large change to the original configuration.

The conservation of features of a SAW’s shape by a global move has a useful consequence.
In both the stationary and mobile fragments the SAW property is retained. Hence, it is
only necessary to test whether the latter fragment intersects the former after the move. This
reduces the amount of checking required by a MCMC algorithm in judging whether to accept
or reject a move. Implementing this would result in an algorithm with a reduced update cost.

Nathan realised that storing fragment shapes — rather than monomer locations — was
the key to this implementation. To achieve this he changed the data structure used from a
table to a type of ‘binary tree’ he named the ‘SAW-tree’ (Clisby [6, 7]).

A SAW-tree consists of cells arranged in levels. A cell contains the shape of a SAW
fragment and aggregate information about its spatial extent. An example of a SAW-tree is
shown in Figure 6. The top level has one cell containing the entire SAW conformation. This
is divided into two fragments, with each assigned to a child cell at the next tree level. The
similar application of this rule to each cell in a level causes the tree to grow downwards. The
final level of the tree is reached when each cell contains the simplest type of fragment, one
composed of two monomers.

The spatial information attached to each cell made it possible to decide rapidly that
fragments do not overlap following the application of a global move to a conformation. This
made it possible to check whether or not an entire conformation was a SAW more quickly
than before. The SAW-tree also made it faster to update a stored SAW conformation as a
result of a global move as this required relatively minor changes to the data structure. The
combined effect was to reduce the update cost of a global move to that of a local move.

Nathan’s MCMC algorithm for SAW simulation employing global moves and a SAW-tree
data structure is clearly superior to earlier efforts. The use of global moves ensures a relatively
low exploration cost whilst the new data structure results in a substantially lower update cost
than the previous generation of MCMC algorithms. Testing Nathan’s algorithm against the
test case of n-step SAWs with n = 109 steps showed a speed up of algorithm run time by
a further factor of one million relative to the previous global-move MCMC algorithms on
modern computers.

Comparison of Nathan’s algorithm against earlier algorithms for simulating SAW confor-
mations illustrates the importance of this speed up. Nathan’s algorithm was used to sample
33 million step SAW conformations for about an hour of CPU time on a desktop computer.
The estimates obtained for SAW observables (such as mean square length) had acceptably

9



Figure 6: A SAW-tree representation of a self-avoiding walk.

small error bars and were expected to be close to the true value in each case. It would take
around seven years of CPU time to obtain comparably accurate estimates of observables using
previous methods.

4 The future: SAW-trees and branching out into other complex computa-
tional problems

The improved efficiency achieved by Nathan’s algorithm has clear benefits for the study of
SAWs. One concerns n-step SAWs for relatively small n. Researchers can revisit these to
obtain more precise estimates of observables more quickly than before. Also, it is now possible
to access a new regime in SAW simulation. We can routinely obtain good estimates of the
properties of SAWs having hundreds of millions of monomers.10 This will enable a comparison
of the prevalence of knots in large n-step SAWs with that detected in correspondingly large
polymers (see Figure 7). The results will contribute to a greater understanding of how the
features of polymer conformations change with the number of monomers. This may provide
insight into questions such as how the presence of knotting influences DNA replication. The
accurate estimates of observables obtained for various large n have already provided better
quality inputs for the estimation of the critical exponents described in Section 1.

Nathan’s SAW-tree algorithm also provides a general-purpose method for studying a wide
range of other polymer problems. These include the study of the conformations of branched
polymers and the behaviour of polymers confined between surfaces.

Many advances in mathematical research grow from an unique insight brought by an
individual to their problem. Nathan’s original perspective on SAWs promises a fundamental
contribution to the simulation of complex systems. Recall the key benefit of changing from
the conventional data structure to the SAW-tree: a substantially lower update cost. This
success suggests that customising a data structure to suit features of a particular system
will similarly improve the efficiency of simulation algorithms employed. Nathan is currently
working on applying the same underlying idea — i.e. fast data structures for global moves
— to other models used in mathematical physics.

The development of powerful computer tools is akin to the invention of new instruments
or techniques for physical experiments; both allow us to study new physical regimes. It is

10Recall that this is the order of the number of monomers for which knots become prevalent in polymers.

10



Figure 7: A knotted self-avoiding polygon (a SAW that forms a closed loop, left) and an
electron micrograph of DNA showing a knot (right, image from Wasserman, Dungan, and
Cozzarelli [8]).

technically difficult to implement a software toolkit due to the complexity of the computer
code required, and the corresponding ease of making mistakes in the programming effort.
To ameliorate this, Nathan will be sharing his computer code in the near future. This will
enable researchers to avoid ‘reinventing the wheel’ as they may adapt his software for their
own problems.

References

[1] http://medical-treatment.org/95-frontallobe/244-frontallobe.html

[2] Chaudhuri, Tapan K. and Paul, Subhankar. Protein-misfolding diseases and chaperone-
based therapeutic approaches. FEBS Journal, 273(12):1331–1349, 2006.

[3] M. Lal. ‘Monte Carlo’ computer simulation of chain molecules. I. Molecular Physics,
17:57–64, 1969.

[4] N. Madras and A. D. Sokal. The pivot algorithm: A highly efficient Monte Carlo method
for 0.0 the self-avoiding walk. Journal of Statistical Physics, 50:109–186, 1988.

[5] T. Kennedy. A faster implementation of the pivot algorithm for self-avoiding walks.
Journal of Statistical Physics, 106:407–429, 2002.

[6] N. Clisby. Accurate estimate of the critical exponent ν for self-avoiding walks via a fast
implementation of the pivot algorithm. Phys. Rev. Lett., 104:055702, 2010.

[7] N. Clisby. Efficient implementation of the pivot algorithm for self-avoiding walks. Journal
of Statistical Physics, 140:349–392, 2010.

[8] S. A. Wasserman, J. M. Dungan, and N. R. Cozzarelli. Discovery of a predicted DNA
knot substantiates a model for site-specic recombination. Science, 229:171–174, 1985.

11


