Phase Transition in Spin Glasses

A.P. Young

Invited talk at “Monte Carlo Algorithms in Statistical Physics”, University of Melbourne, July 26, 2010

Collaborators:

Work supported by the NSF
Phase Transition in Spin Glasses

A.P. Young

Invited talk at “Monte Carlo Algorithms in Statistical Physics”,
University of Melbourne, July 26, 2010

Collaborators:

Work supported by the NSF
Overview

• Basic Introduction
 • What is a spin glass? Why are they important?
 • Why are Monte Carlo simulations for spin glasses hard?
 • Try to answer two important questions concerning phase transitions in spin glasses:
 • Is there a phase transition in an isotropic Heisenberg spin glass?
 • Is there a transition in an Ising spin glass in a magnetic field (Almeida-Thouless line)?
What is a spin glass?

A system with disorder and frustration

Most theory uses the simplest model with these ingredients: the Edwards-Anderson Model:

\[\mathcal{H} = - \sum_{\langle i,j \rangle} J_{ij} S_i \cdot S_j - \sum_i h_i \cdot S_i. \]

Interactions are quenched and are random (have either sign).

Take a Gaussian distribution: \([J_{ij}]_{\text{av}} = 0; \quad [J_{ij}^2]_{\text{av}}^{1/2} = J \) (\(= 1 \))

Spins, \(S_i \), fluctuate and have \(m \)-components:

\[m = 1 \quad (\text{Ising}) \]
\[m = 2 \quad (\text{XY}) \]
\[m = 3 \quad (\text{Heisenberg}). \]
Slow dynamics The dynamics is very slow at low T. System not in equilibrium due to complicated energy landscape: system trapped in one “valley” for long times.

Many interesting experiments on non-equilibrium effects (aging). Here concentrate on equilibrium phase transitions.
Spin Glass Systems

• The canonical spin glass:
 Dilute magnetic atoms, e.g. Mn in non-magnetic metal, e.g. Cu.
 RKKY interaction, sign oscillates with distance ⇒ frustration

• Important because relevant to other systems with complex energy landscape.
 • “Vortex glass” transition in high-Tc superconductors
 • Optimization problems
 • Protein folding
 • Error correcting codes
 •

• Advantage of spin glasses:
 • very precise experiments (coupling to field)
 • “simple” models which can be easily simulated
Spin Glass Phase Transition

Phase transition at $T = T_{SG}$.

For $T < T_{SG}$ the spin freeze in some random-looking orientation.

As $T \to T_{SG}^+$, the correlation length ξ_{SG} diverges.

The correlation $\langle S_i \cdot S_j \rangle$ becomes significant for $R_{ij} < \xi_{SG}$, though the sign is random. A quantity which diverges is the spin glass susceptibility

$$\chi_{SG} = \frac{1}{N} \sum_{i,j} \langle S_i \cdot S_j \rangle^2_{av},$$

(notice the square) which is accessible in simulations. It is also essentially the same as the non-linear susceptibility, χ_{nl}, defined by

$$m = \chi h - \chi_{nl} h^3 + \cdots$$

(m is magnetization, h is field), which can be measured experimentally. For the EA model $T^3 \chi_{nl} = \chi_{SG} - \frac{2}{3}$.
Overview

• Basic Introduction
 • What is a spin glass? Why are they important?
 • Why are Monte Carlo simulations for spin glasses hard?
• Try to answer two important questions concerning phase transitions in spin glasses:
 • Is there a phase transition in an isotropic Heisenberg spin glass?
 • Is there a transition in an Ising spin glass in a magnetic field (Almeida-Thouless line)?
Why is Monte Carlo hard (for SG)?

• Dynamics is very slow.
 System is trapped in valley separated by barriers.
 Use parallel tempering to speed things up.

• Need to repeat simulation for many samples
 but is trivially parallelizable.
Parallel Tempering

Problem: Very slow Monte Carlo dynamics at low-T;

System trapped in a valley. Needs more energy to overcome barriers. This is achieved by parallel tempering (Hukushima and Nemoto): simulate copies at many different temperatures:

$$
\begin{align*}
 & T_1 & T_2 & T_3 & \quad & T_{n-2} & T_{n-1} & T_n \\
\end{align*}
$$

Lowest T: system would be trapped:

Highest T: system has enough energy to fluctuate quickly over barriers. Perform global moves in which spin configurations at neighboring temperatures are swapped.

Result: temperature of each copy performs a random walk between T_1 and T_n.

Advantage: Speeds up equilibration at low-T.

c.f. previous talks at this meeting by Machta and Yllanes
Overview

• Basic Introduction
 • What is a spin glass? Why are they important?
 • Why are Monte Carlo simulations for spin glasses hard?

• Try to answer two important questions concerning phase transitions in spin glasses:
 • Is there a phase transition in an isotropic Heisenberg spin glass?
 • Is there a transition in an Ising spin glass in a magnetic field (Almeida-Thouless line)?
Finite Size Scaling

Assumption: size dependence comes from the ratio L/ξ_{bulk} where

$$\xi_{\text{bulk}} \sim (T - T_{SG})^{-\nu}$$

is the bulk correlation length.

In particular, the finite-size correlation length varies as

$$\frac{\xi_L}{L} = X \left(L^{1/\nu}(T - T_{SG}) \right),$$

since ξ_L/L is dimensionless (and so has no power of L multiplying the scaling function X).

Hence data for ξ_L/L for different sizes should intersect at T_{SG} and splay out below T_{SG}.

Let's first see how this works for the Ising SG …
Results for Ising SG

FSS of the correlation length of the Ising SG
(from Katzgraber et al (2006))

Correlation length determined from k-dependence of the FT of the spin-spin correlations $\langle S_i S_j \rangle^2$.

Method first used for SG by Ballesteros et al. but for the $\pm J$ distribution.

The clean intersections (corrections to FSS visible for $L=4$) imply

$T_{SG} \approx 0.96$

Previously, Marinari et al found $T_{SG} \approx 0.95 \pm 0.04$ by a different analysis.
Chirality

- **Unfrustrated**: Thermally activated chiralities (vortices) drive the Kosterlitz-Thouless Berezinskii transition in 2d XY ferromagnet.
- **Frustrated**: Chiralities are quenched in by the disorder at low-T because the ground state is non-collinear.

Define Chirality by (Kawamura)

\[
\kappa_{ij}^{\mu} = \begin{cases} \\
\frac{1}{2\sqrt{2}} \sum'_\langle l,m \rangle \text{sgn}(J_{lm}) \sin(\theta_l - \theta_m), & \text{XY (}\mu \perp \text{ square)} \\
S_{i+\hat{\mu}} \cdot S_i \times S_{i-\hat{\mu}}, & \text{Heisenberg} \\
\end{cases}
\]
Motivation for Vector Model

• Old Monte Carlo for Heisenberg: T_{SG}, if any, seems very low, probably zero.

• Kawamura: $T_{SG} = 0$, but transition in the chiralities, $T_{CG} > 0$, this implies “spin-chirality decoupling”. Subsequently Kawamura suggests that $T_{SG} > 0$ but $T_{SG} < T_{CG}$.

• But: alternative of a single transition proposed by Nakamura and Endoh, Lee and APY, Campos et al, Pixley and APY.

Here: describe recent work on FSS of the correlation lengths of both spins and chiralities for the Heisenberg spin glass. Useful because

• this was the most successful approach for the Ising spin glass
• treat spins and chiralities on equal footing
Over-relaxation Moves

In addition to
- Heat bath (single spin) moves, and
- Parallel tempering moves,

the simulation is considerably speeded up by mainly using
- “over-relaxation” moves.

Advantages:
- Over-relaxation sweep takes less CPU time than heatbath sweep
- Many fewer sweeps are needed to equilibrate (surprising!)
Results for Heisenberg Spin Glass

(Fernandez, Gaviro, Martin-Mayor, Tarancon, APY (2009). Equilibration tested on a sample-by-sample basis, see the previous talk by David Yllanes)

Are there two (nearby) transitions or just one?
Results for Heisenberg Spin Glass

(Fernandez, Gavirio, Martin-Mayor, Tarancón, APY (2009). Equilibration tested on a sample-by-sample basis, see the previous talk by David Yllanes)

Are there two (nearby) transitions or just one?

Viet and Kawamura, $L \leq 24$, claim $T_{CG} = 0.145$, $T_{SG} = 0.120$
Results for Heisenberg Spin Glass

(Fernandez, Gaviro, Martin-Mayor, Tarancon, APY (2009). Equilibration tested on a sample-by-sample basis, see the previous talk by David Yllanes)

Are there two (nearby) transitions or just one?

Viet and Kawamura, \(L \leq 24 \), claim \(T_{CG} = 0.145, T_{SG} = 0.120 \)

Our data: difference in transition temps. is small, consistent with 0
Overview

• Basic Introduction
 • What is a spin glass? Why are they important?
 • Why are Monte Carlo simulations for spin glasses hard?

• Try to answer two important questions concerning phase transitions in spin glasses:
 • Is there a phase transition in an isotropic Heisenberg spin glass?
 • Is there a transition in an Ising spin glass in a magnetic field (Almeida-Thouless line)?
Is there an AT line?

In MFT there’s a transition in a field for an Ising spin glass the de Almeida Thouless (AT) line from a spin glass phase (divergent relaxation times, “replica symmetry breaking”) to a paramagnetic phase (finite relaxation times, “replica symmetry”).

The AT line is a **ergodic-non ergodic transition with no change in symmetry**

Does an AT line occur in real systems?

- “Replica Symmetry Breaking” picture: Yes, see (a)
- “Droplet” Picture: No, see (b)
In MFT, \(\chi_{SG} \) diverges on AT line where now

\[
\chi_{SG}(k) = \frac{1}{N} \sum_{i,j} [(\langle S_i S_j \rangle - \langle S_i \rangle \langle S_j \rangle)^2]_{av} e^{ik \cdot (R_i - R_j)}.
\]

Convert this to correlation length \(\xi_L \)

\(\chi_{SG} \) in a field not accessible in experiment is in simulations.

Best to use FSS of \(\frac{\xi_L}{L} \) to look for transition.

i.e. look for intersections:

With a small field of 0.1 (c.w. \(T_{SG} \approx 0.96 \))

no sign of a transition. (Katzgraber, APY)
Results of Simulations

In MFT, χ_{BG} diverges on AT line where now

$$\chi_{BG}(k) = \frac{1}{N} \sum_{i,j} [(\langle S_i S_j \rangle - \langle S_i \rangle \langle S_j \rangle)^2]_{av} e^{ik \cdot (R_i - R_j)}.$$

Convert this to correlation length ξ_L.

χ_{BG} in a field not accessible in experiment is in simulations.

Best to use FSS of ξ_L/L to look for transition.

i.e. look for intersections:

With a small field of 0.1 (c.w. $T_{SG} \approx 0.96$)

no sign of a transition. (Katzgraber, APY)

Seems to be no AT line in 3 dimensions (except perhaps at extremely small fields).
Conclusions

• Spin glasses are related to a range of problems in science, and have the advantage that there are “simple” models which can be simulated, and experiments can probe them in exquisite detail since they couple to a magnetic field.
Conclusions

• Spin glasses are related to a range of problems in science, and have the advantage that there are “simple” models which can be simulated, and experiments can probe them in exquisite detail since they couple to a magnetic field.

• Monte Carlo simulations are very useful. Parallel tempering is very effective. For Heisenberg, use mainly over-relaxation sweeps.
Conclusions

• Spin glasses are related to a range of problems in science, and have the advantage that there are “simple” models which can be simulated, and experiments can probe them in exquisite detail since they couple to a magnetic field.

• Monte Carlo simulations are very useful. Parallel tempering is very effective. For Heisenberg, use mainly over-relaxation sweeps.

• In this talk I showed:
Conclusions

• Spin glasses are related to a range of problems in science, and have the advantage that there are “simple” models which can be simulated, and experiments can probe them in exquisite detail since they couple to a magnetic field.

• Monte Carlo simulations are very useful. Parallel tempering is very effective. For Heisenberg, use mainly over-relaxation sweeps.

• In this talk I showed:
 • Finite temperature transition in 3-d Ising SG is well understood.
Conclusions

• Spin glasses are related to a range of problems in science, and have the advantage that there are “simple” models which can be simulated, and experiments can probe them in exquisite detail since they couple to a magnetic field.

• Monte Carlo simulations are very useful. Parallel tempering is very effective. For Heisenberg, use mainly over-relaxation sweeps.

• In this talk I showed:
 • Finite temperature transition in 3-d Ising SG is well understood.
 • There is a finite-temperature transition in the three-dimensional Heisenberg spin glass. The spin-glass and chiral-glass transition temperatures are very close and may well be equal.
Conclusions

• Spin glasses are related to a range of problems in science, and have the advantage that there are “simple” models which can be simulated, and experiments can probe them in exquisite detail since they couple to a magnetic field.

• Monte Carlo simulations are very useful. Parallel tempering is very effective. For Heisenberg, use mainly over-relaxation sweeps.

• In this talk I showed:
 • Finite temperature transition in 3-d Ising SG is well understood.
 • There is a finite-temperature transition in the three-dimensional Heisenberg spin glass. The spin-glass and chiral-glass transition temperatures are very close and may well be equal.
 • There does not appear to be an Almeida-Thouless line in three dimensions, though it may occur for \(d \) greater than a critical value (perhaps 6).
Conclusions

• Spin glasses are related to a range of problems in science, and have the advantage that there are “simple” models which can be simulated, and experiments can probe them in exquisite detail since they couple to a magnetic field.

• Monte Carlo simulations are very useful. Parallel tempering is very effective. For Heisenberg, use mainly over-relaxation sweeps.

• In this talk I showed:
 • Finite temperature transition in 3-d Ising SG is well understood.
 • There is a finite-temperature transition in the three-dimensional Heisenberg spin glass. The spin-glass and chiral-glass transition temperatures are very close and may well be equal.
 • There does not appear to be an Almeida-Thouless line in three dimensions, though it may occur for d greater than a critical value (perhaps 6).
 • (The last two are not yet universally accepted.)