Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	000000	00

A probabilistic algorithm for gene-species reconciliation with segmental duplications

Yao-ban Chan¹

Celine Scornavacca² Michael Charleston³

¹ School of Mathematics and Statistics / Melbourne Integrative Genomics

² Institut des Sciences de l'Évolution Université Montpellier ³ School of Natural Sciences University of Tasmania

Guttmann 2025

Introduction	Reconciliations	The algorithm	Results	Conclusion
•0000	000000000	000000	000000	00
INTRODUCTION	N			

Introduction	Reconciliations	The algorithm	Results	Conclusion
•0000	000000000	000000	000000	00
INTRODUCTIO	N			

The first genome sequencing (completed 2003) took \$3 billion and 13 years. Nowadays, a human genome can be sequenced for \$500 in a few days.

Introduction	Reconciliations	The algorithm	Results	Conclusion
•0000	000000000	000000	000000	00
INTRODUCTIO	N			

The first genome sequencing (completed 2003) took \$3 billion and 13 years. Nowadays, a human genome can be sequenced for \$500 in a few days.

Modern human genomic databases (such as the UK Biobank) contain full genomes of 500,000 individuals.

Introduction	Reconciliations	The algorithm	Results	Conclusion
•0000	000000000	000000	000000	00
INTRODUCTIO	N			

The first genome sequencing (completed 2003) took \$3 billion and 13 years. Nowadays, a human genome can be sequenced for \$500 in a few days.

Modern human genomic databases (such as the UK Biobank) contain full genomes of 500,000 individuals.

This hugely increasing amount of information requires sophisticated and efficient mathematical methods for its analysis.

Introduction	Reconciliations	The algorithm	Results	Conclusion
O●OOO	0000000000	000000	000000	00
INTRODUCTIO	N			

In phylogenetics, we study the evolutionary history of species and how they relate to each other.

Introduction	Reconciliations	The algorithm	Results	Conclusion
O●OOO	000000000	000000	000000	00
INTRODUCTIO	N			

In phylogenetics, we study the evolutionary history of species and how they relate to each other.

It is thought that all species are descended from a single prehistoric species, but we are not yet able to analyse all 8.7 million species at once.

Introduction	Reconciliations	The algorithm	Results	Conclusion
O●OOO	0000000000	000000	000000	00
INTRODUCTIO	N			

In phylogenetics, we study the evolutionary history of species and how they relate to each other.

It is thought that all species are descended from a single prehistoric species, but we are not yet able to analyse all 8.7 million species at once.

Instead, we concentrate on a species family — a group of species that are (supposedly) descendants of a common ancestor.

Introduction	Reconciliations	The algorithm	Results	Conclusion
PHYLOGENIES	000000000	000000	000000	00

The evolution of a species family is depicted by a phylogeny or phylogenetic tree.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	00
PHYLOGENIES				

The evolution of a species family is depicted by a phylogeny or phylogenetic tree.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	00
PHYLOGENIES				

Introduction	Reconciliations	The algorithm	Results	Conclusion
○○○●○	000000000	000000	000000	00
PHYLOGENIES				

In a phylogenetic tree:

• Leaves represent existing species;

Introduction	Reconciliations	The algorithm	Results	Conclusion
○○○●○	000000000	000000	000000	00
PHYLOGENIES				

In a phylogenetic tree:

- Leaves represent existing species;
- Internal nodes represent (hypothetical) ancestors;

Introduction	Reconciliations	The algorithm	Results	Conclusion
○○○●○	000000000	000000	000000	00
PHYLOGENIES				

In a phylogenetic tree:

- Leaves represent existing species;
- Internal nodes represent (hypothetical) ancestors;
- Branch lengths represent the times that these ancestors existed.

Introduction	Reconciliations	The algorithm	Results	Conclusion
0000●	000000000	000000	000000	00
Phylogeny in	IFERENCE			

Introduction	Reconciliations	The algorithm	Results	Conclusion
0000●	000000000	000000	000000	00
Phylogeny in	NFERENCE			

These days, we look at differences between the genomes of the species.

Introduction	Reconciliations	The algorithm	Results	Conclusion
0000●	0000000000	000000	000000	00
Phylogeny II	NFERENCE			

These days, we look at differences between the genomes of the species.

Mouse	CTGCGATTACACCGGAGTCGACCTAG
Dog	CTGCTATTACCCGGGAGTAGACCTAG
Bat	ATTCAATGACATTGGGATTACCCTAG
Rat	ATTCCATGACATTCGCTAGCGTCTAG

Introduction	Reconciliations	The algorithm	Results	Conclusion
0000●	0000000000	000000	000000	00
Phylogeny II	NFERENCE			

These days, we look at differences between the genomes of the species.

Mouse	CTGCGATTACACCGGAGTCGACCTAG
Dog	CTGCTATTACCCGGGAGTAGACCTAG
Bat	ATTCAATGACATTGGGATTACCCTAG
Rat	ATTCCATGACATTCGCTAGCGTCTAG

Sequences which are more similar to each other are considered to have diverged more recently.

Introduction	Reconciliations	The algorithm	Results	Conclusion
0000●	0000000000	000000	000000	00
Phylogeny in	NFERENCE			

These days, we look at differences between the genomes of the species.

Mouse	CTGCGATTACACCGGAGTCGACCTAG
Dog	CTGCTATTACCCGGGAGTAGACCTAG
Bat	ATTCAATGACATTGGGATTACCCTAG
Rat	ATTCCATGACATTCGCTAGCGTCTAG

Sequences which are more similar to each other are considered to have diverged more recently.

Modern-day methods maximise the phylogeny likelihood according to stochastic models of sequence evolution.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	•000000000	000000	000000	00
GENES				

Genomes can be subdivided into thousands of smaller sequences with specific functions — genes.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	•000000000	000000	000000	00
Genes				

Genomes can be subdivided into thousands of smaller sequences with specific functions — genes.

Like species, genes evolve through time and we can depict evolutionary relationships between them.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	•000000000	000000	000000	00
Genes				

Genomes can be subdivided into thousands of smaller sequences with specific functions — genes.

Like species, genes evolve through time and we can depict evolutionary relationships between them.

We consider gene families, and construct their gene phylogenies, using methods similar to those for species trees.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	000000	00
GENE AND SPECIES PHYLOGENIES				

Gene and species trees can be very similar — when a species diverges into two (speciation), this will also create two new genes.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	000000	00
GENE AND SPE	CIES PHYLOGENIE	ES		

Gene and species trees can be very similar — when a species diverges into two (speciation), this will also create two new genes.

As such, gene phylogenies are often used in methods to construct or improve species phylogenies.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	○●○○○○○○○○	000000	000000	00
GENE AND SPE	CIES PHYLOGENIE	S		

Gene and species trees can be very similar — when a species diverges into two (speciation), this will also create two new genes.

As such, gene phylogenies are often used in methods to construct or improve species phylogenies.

But gene trees can differ significantly from their species tree!

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000		000000	000000	00
GENETIC EVOLUTIONARY EVENTS				

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000		000000	000000	00
GENETIC EVOLUTIONARY EVENTS				

- Duplications;
- •
- •
- •

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	000000	00
GENETIC EVOLUTIONARY EVENTS				

- Duplications;
- Losses;
- ٠
- •

- Duplications;
- Losses;
- Lateral genetic transfer;
- ٠

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000		000000	000000	00
GENETIC EVOLUTIONARY EVENTS				

- Duplications;
- Losses;
- Lateral genetic transfer;
- Incomplete lineage sorting (ILS).

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	000000	00
RECONCILIATI	ONS			

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	000000	00
RECONCILIATI	ONS			

The simplest case is the DL model: only duplications and losses are allowed.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	000000	00
RECONCILIATI	ONS			

The simplest case is the DL model: only duplications and losses are allowed.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	00
Reconciliati	ONS			

The simplest case is the DL model: only duplications and losses are allowed.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	00
PARSIMONY VS PROBABILISTIC METHODS				

There are two main paradigms for finding (the best) reconciliation:
Introduction	Reconciliations	The algorithm 000000	Results	Conclusion
00000	0000000000		000000	00
PARSIMONY VS PROBABILISTIC METHODS				

• Parsimony assigns a cost to each event and minimises the total cost.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	00
PARSIMONY VS PROBABILISTIC METHOD				

• Parsimony assigns a cost to each event and minimises the total cost.

This is fast, but less realistic.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	000000	00
PARSIMONY VS	PROBABILISTIC N	IETHODS		

• Parsimony assigns a cost to each event and minimises the total cost.

This is fast, but less realistic.

• Probabilistic methods search for the maximum-likelihood reconciliation under a probabilistic model of gene evolution within species.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	000000	00
PARSIMONY VS	PROBABILISTIC N	IETHODS		

• Parsimony assigns a cost to each event and minimises the total cost.

This is fast, but less realistic.

• Probabilistic methods search for the maximum-likelihood reconciliation under a probabilistic model of gene evolution within species.

This is more realistic, but slower.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	00
Parsimony				

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	00
PARSIMONY				

Including other events makes the problem harder, but sometimes still solvable.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	00
Parsimony				

Including other events makes the problem harder, but sometimes still solvable.

For example, the DTL model (DL with transfers) can be solved in polynomial time with dynamic programming.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	00
Parsimony				

Including other events makes the problem harder, but sometimes still solvable.

For example, the DTL model (DL with transfers) can be solved in polynomial time with dynamic programming.

However, more complicated models can be (NP-)hard to optimise.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000		000000	000000	00
SEGMENTAL I	DUPLICATIONS			

Traditionally, gene trees are reconciled to species trees independently.

.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000		000000	000000	00
Segmentai	L DUPLICATIONS			

Traditionally, gene trees are reconciled to species trees independently.

However, they are not independent: when genes are adjacent to each other on the chromosome, segmental duplications can occur which affect many genes at once.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000		000000	000000	00
Segmental	DUPLICATIONS			

Traditionally, gene trees are reconciled to species trees independently.

However, they are not independent: when genes are adjacent to each other on the chromosome, segmental duplications can occur which affect many genes at once.

This can go up to whole genome duplications.

Introduction Reconciliations The algorithm Results Conclusion

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000		000000	000000	00
Segmental D	UPLICATIONS			

Problem (Most parsimonious reconciliation, MPR)

Given gene trees G*, a species tree* S*, duplication cost* δ *, and loss cost* λ *, find the reconciliation* α *that minimises*

 $c_{SD}(\alpha) := \delta \cdot d_{SD}(\alpha) + \lambda \cdot l(\alpha).$

Problem (Most parsimonious reconciliation, MPR)

Given gene trees G, a species tree S, duplication cost δ , and loss cost λ , find the reconciliation α that minimises

 $c_{SD}(\alpha) := \delta \cdot d_{SD}(\alpha) + \lambda \cdot l(\alpha).$

Dondi *et al.* (2019) studied this problem and gave an algorithm that was exponential in the number of genes, with a base of $\lfloor \frac{\delta}{\lambda} \rfloor$.

Problem (Most parsimonious reconciliation, MPR)

Given gene trees G, a species tree S, duplication cost δ , and loss cost λ , find the reconciliation α that minimises

 $\overline{c_{SD}(\alpha)} := \delta \cdot d_{SD}(\alpha) + \lambda \cdot l(\alpha).$

Dondi *et al.* (2019) studied this problem and gave an algorithm that was exponential in the number of genes, with a base of $\lfloor \frac{\delta}{\lambda} \rfloor$.

They also showed that this problem is NP-hard.

Problem (Most parsimonious reconciliation, MPR)

Given gene trees G, a species tree S, duplication cost δ , and loss cost λ , find the reconciliation α that minimises

 $\overline{c_{SD}(\alpha)} := \delta \cdot d_{SD}(\alpha) + \lambda \cdot l(\alpha).$

Dondi *et al.* (2019) studied this problem and gave an algorithm that was exponential in the number of genes, with a base of $\lfloor \frac{\delta}{\lambda} \rfloor$.

They also showed that this problem is NP-hard. ©

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	●00000	000000	00
The Boltzma	NN DISTRIBUTION			

For a reconciliation α with cost $c_{SD}(\alpha)$, we set its probability to be:

 $P(\alpha) \propto e^{-c_{SD}(\alpha)/kT},$

where k is Boltzmann's constant and T is a temperature parameter.

For a reconciliation α with cost $c_{SD}(\alpha)$, we set its probability to be:

 $P(\alpha) \propto e^{-c_{SD}(\alpha)/kT},$

where k is Boltzmann's constant and T is a temperature parameter.

This is the well-known Boltzmann distribution from statistical mechanics.

For a reconciliation α with cost $c_{SD}(\alpha)$, we set its probability to be:

 $P(\alpha) \propto e^{-c_{SD}(\alpha)/kT},$

where k is Boltzmann's constant and T is a temperature parameter.

This is the well-known Boltzmann distribution from statistical mechanics.

There are known to be a lot of reconciliations for given gene and species trees, so calculating the normalising constant is hard.

By changing the temperature, we can access different parts of the reconciliation space.

By changing the temperature, we can access different parts of the reconciliation space.

When the temperature is high, reconciliations occur with (near-)uniform probability.

By changing the temperature, we can access different parts of the reconciliation space.

When the temperature is high, reconciliations occur with (near-)uniform probability.

When the temperature is low, cheaper reconciliations are much more probable and we almost always get (near-)optimal reconciliations.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	00
SAMPLING FRC	M THE BOLTZMAN	IN DISTRIBUTION		

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	00000	000000	00
SAMPLING FRO	m the Boltzman	IN DISTRIBUTION		

The new position of the node is resampled from its conditional distribution based on the rest of the reconciliation.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	00000	000000	00
SAMPLING FRO	M THE BOLTZMAN	IN DISTRIBUTION		

The new position of the node is resampled from its conditional distribution based on the rest of the reconciliation.

This only depends on the relative costs of the reconciliations (and not on the normalising factor!).

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	00000	000000	00
SAMPLING FRO	m the Boltzman	IN DISTRIBUTION		

The new position of the node is resampled from its conditional distribution based on the rest of the reconciliation.

This only depends on the relative costs of the reconciliations (and not on the normalising factor!).

Thus each move can be performed very quickly — O(1) time!

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	○○○●○○	000000	00
GIBBS SAMPLIN	NG			

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000		000000	00
GIBBS SAMPLIN	IC			

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	00
GIBBS SAMPLIN	IG			

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	○○○○●○	000000	00
SIMULATED AN	INEALING			

To produce an optimal reconciliation, we start at a high temperature to access all parts of the reconciliation space.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	○○○○●○	000000	OO
SIMULATED A	NNEALING			

To produce an optimal reconciliation, we start at a high temperature to access all parts of the reconciliation space.

Then we slowly lower the temperature to (near-)zero.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	○○○○●○	000000	OO
SIMULATED A	NNEALING			

To produce an optimal reconciliation, we start at a high temperature to access all parts of the reconciliation space.

Then we slowly lower the temperature to (near-)zero.

This will produce an optimal reconciliation with probability approaching 1.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	○○○○○●	000000	00
THE ALGORITH	IM			

1: Set α to be the LCA mapping from \mathcal{G} to S

2: **for**
$$t = 1, ..., t_{\max}$$
 do
3: $T \leftarrow T_0 \left(1 - \frac{t-1}{t_{\max}}\right)$
4: **for** each internal vertex u of \mathcal{G} in a fixed order **do**
5: set M_u to the set of all possible images of u
6: **for** each image m in M_u **do**
7: set α_m to be α with the image of u set to m
8: calculate $c_{SD}(\alpha_m)$
9: **end for**

- 10: resample $\alpha(u)$ from $m \in M_u$ with probability $\propto e^{-c_{SD}(\alpha_m)/kT}$
- 11: end for
- 12: end for

13: return α

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	•00000	00
SIMULATIONS				

We simulate 50 gene trees over 20 species.
Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	•00000	00
SIMULATIONS				

Species trees are generated by a pure birth process with birth rate 1.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	•00000	00
SIMULATIONS				

Species trees are generated by a pure birth process with birth rate 1.

Gene trees start with a single copy, then:

• Each lineage duplicates with rate *r*_{*B*};

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	•00000	00
SIMULATIONS				

Species trees are generated by a pure birth process with birth rate 1.

Gene trees start with a single copy, then:

- Each lineage duplicates with rate *r*_{*B*};
- A duplication is segmental with probability 0.5 for each contemporary lineage;

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	•00000	OO
SIMULATIONS				

Species trees are generated by a pure birth process with birth rate 1.

Gene trees start with a single copy, then:

- Each lineage duplicates with rate *r*_{*B*};
- A duplication is segmental with probability 0.5 for each contemporary lineage;
- At each speciation, one lineage is lost with probability 0.5.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	•00000	OO
SIMULATIONS				

Species trees are generated by a pure birth process with birth rate 1.

Gene trees start with a single copy, then:

- Each lineage duplicates with rate *r*_{*B*};
- A duplication is segmental with probability 0.5 for each contemporary lineage;
- At each speciation, one lineage is lost with probability 0.5.

We infer reconciliations with $\delta = 10$, $\lambda = 1$ (a challenging scenario) and compare our algorithm to MultRec (Dondi *et al.* 2019).

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	00000	00
SIMULATIC	ON RESULTS			

(a) Relative cost of segdup vs MultRec

(b) Frequencies of segdup vs MultRec

(a) Relative cost of segdup vs MultRec

(b) Frequencies of segdup vs MultRec

segdup consistently finds a better reconciliation on average than MultRec, for 10^5 iterations. For 10^4 iterations, it is slightly worse for high duplication rate.

(a) Relative cost of segdup vs MultRec

(b) Frequencies of segdup vs MultRec

<code>segdup</code> and MultRec often find the same (optimal) reconciliation. When they disagree, <code>segdup</code> usually does better for 10^5 iterations.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	00●000	OO
SIMULATION	J RESULTS			

(b) Relative cost of segdup vs true reconciliation

10⁴ iterations
10⁵ iterations

segdup is slower than MultRec for low duplication rate, but this changes as the duplication rate increases.

segdup always finds a slightly better reconciliation than the true scenario.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000●00	00
GUIGÓ et al. TI	REES			

We re-analysed a real dataset of 53 gene trees over a species tree of 16 eukaryotes (Guigó *et al.* 1996).

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	00
GUIGÓ et al. TR	REES			

We re-analysed a real dataset of 53 gene trees over a species tree of 16 eukaryotes (Guigó *et al.* 1996).

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	00
GUIGÓ et al. TR	REES			

We re-analysed a real dataset of 53 gene trees over a species tree of 16 eukaryotes (Guigó *et al.* 1996).

Previous analysis for $\delta = 50$, $\lambda = 1$ found 5 segmental duplications (black circles), including one above the Tetrapoda clade (marked *T*).

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	000000	00
Guigó <i>et al.</i> tr	REES			

segdup finds either the MPR (468 losses) or a near-optimal reconciliation with 469 losses.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	○○○○●○	00
Guigó <i>et al.</i> tr	REES			

segdup finds either the MPR (468 losses) or a near-optimal reconciliation with 469 losses.

In the second reconciliation, the duplication at the Tetrapoda clade is one branch higher.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	000000	00
Guigó <i>et al.</i> tr	REES			

segdup finds either the MPR (468 losses) or a near-optimal reconciliation with 469 losses.

In the second reconciliation, the duplication at the Tetrapoda clade is one branch higher.

These two solutions are close in terms of cost, but are not easy to obtain from each other.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	00000●	00
GUIGÓ et al. TR	EES			

To explore this further, we study the relative occurences of these duplications for varying temperatures.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	00000●	00
GUIGÓ et al.	TREES			

To explore this further, we study the relative occurences of these duplications for varying temperatures.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	00000●	00
GUIGÓ et al.	TREES			

To explore this further, we study the relative occurences of these duplications for varying temperatures.

Both these duplications are feasible, but the Boltzmann distribution favours the higher duplication.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	●O
SUMMARY AND	D FUTURE WORK			

• We have developed an algorithm to solve the MPR problem for segmental duplications.

-

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	000000	•O
SUMMARY ANI	O FUTURE WORK			

- We have developed an algorithm to solve the MPR problem for segmental duplications.
- This algorithm outperforms the current methods in simulations.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	•O
SUMMARY ANI	D FUTURE WORK			

- We have developed an algorithm to solve the MPR problem for segmental duplications.
- This algorithm outperforms the current methods in simulations.
- By imposing a Boltzmann distribution, we can study the space of reconciliations instead of a single MPR.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	000000	●O
SUMMARY ANI	O FUTURE WORK			

- We have developed an algorithm to solve the MPR problem for segmental duplications.
- This algorithm outperforms the current methods in simulations.
- By imposing a Boltzmann distribution, we can study the space of reconciliations instead of a single MPR.
- This algorithm combines the speed of a probabilistic algorithm with the accuracy of a parsimonious method.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	•O
SUMMARY ANI	D FUTURE WORK			

- We have developed an algorithm to solve the MPR problem for segmental duplications.
- This algorithm outperforms the current methods in simulations.
- By imposing a Boltzmann distribution, we can study the space of reconciliations instead of a single MPR.
- This algorithm combines the speed of a probabilistic algorithm with the accuracy of a parsimonious method provides a new way to attack NP-hard reconciliation problems.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	0000000000	000000	000000	•O
SUMMARY ANI	D FUTURE WORK			

- We have developed an algorithm to solve the MPR problem for segmental duplications.
- This algorithm outperforms the current methods in simulations.
- By imposing a Boltzmann distribution, we can study the space of reconciliations instead of a single MPR.
- This algorithm combines the speed of a probabilistic algorithm with the accuracy of a parsimonious method provides a new way to attack NP-hard reconciliation problems.
- This could be applied to many problems where gene (subtree) dependence prevents standard dynamic programming approaches.

Introduction	Reconciliations	The algorithm	Results	Conclusion
00000	000000000	000000	000000	O●
References				

- R. Dondi, M. Lafond, and C. Scornavacca. Reconciling multiple genes trees via segmental duplications and losses. *Alg. Mol. Biol.* 14, 1–19, 2019.
- M. Goodman *et al.*. Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. *Syst. Zool.* 28, 1979.
- R. Guigó, I. Muchnik, and T. F. Smith. Reconstruction of ancient molecular phylogeny. *Mol. Phyl. Evol.* 6(2), 189–213, 1996.
- C. Chauve, Y. Ponty, and J. P. P. Zanetti. Evolution of genes neighborhood within reconciled phylogenies: an ensemble approach. *BMC Bioinform.* 16(19), 1–9, 2015.