On braided Hopf structures on exterior algebras

Vladimir Mangazeev

RSP, Australian National University

in collaboration with Rinat Kashaev, Geneva University

Guttmann 2025 - 80 and (still) counting, 1 July 2025

Outline

Introduction

Exterior algebras with deformed Braided Hopf Structures

MOY calculus

Matrix coefficients of the braiding of $\Lambda_p(V)$

A one-parametric deformation of Nichols algebra

Discussion

Introduction

Consider a braided \mathbb{F} -vector space $(V, \tau), \tau \in Aut(V \otimes V)$ satisfies the Yang-Baxter equation

$$\tau'\tau''\tau' = \tau''\tau'\tau'', \quad \tau' := \tau \otimes \mathrm{id}_V, \ \tau'' := \mathrm{id}_V \otimes \tau.$$

The tensor algebra $T(V) = \bigoplus_{n=0}^{\infty} V^{\otimes n}$ is canonically a braided Hopf algebra with an invertible antipode with all the elements of V being primitive

$$\Delta u = u \otimes 1 + 1 \otimes u, \quad \forall u \in V$$

The Nichols algebra associated with (V, τ) is the quotient braided Hopf algebra

$$\mathfrak{B}(V) = T(V)/\mathfrak{J}_V$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where \mathfrak{J}_V is the maximal Hopf ideal generated by primitive elements of degree ≥ 2 , where elements of degree *n* are those of $T^n(V) := V^{\otimes n}$.

We are interested in the cases when the Nichols algebra is finite-dimensional.

A braided Hopf algebra H is endowed with five structural morphisms:

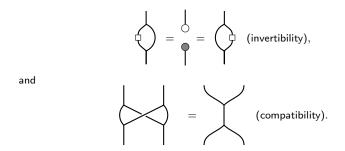
$$\nabla \colon H \otimes H \to H, \quad \eta \colon I \to H, \quad \Delta \colon H \to H \otimes H, \quad \epsilon \colon H \to I, \quad S \colon H \to H$$

called, respectively, the product, unit, coproduct, counit and antipode.

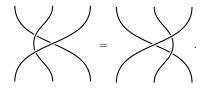
$$\nabla = \bigwedge \text{ (product)}, \quad \Delta = \bigvee \text{ (coproduct)}, \quad \beta_{H,H} = \bigvee \text{ (braiding)}$$
$$\eta = \bigwedge \text{ (unit)}, \quad \epsilon = \P \text{ (counit)}, \quad S = \frac{1}{\Pi} \text{ (antipode)}.$$

Axioms of a braided Hopf algebra:

・ロト・(型ト・(型ト・(型ト))

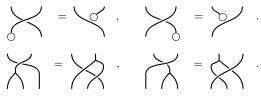


The Yang-Baxter equation for the braiding

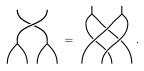


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

All morphisms are braided linear maps and the following relations hold (and many others):



'Fusion relation'



The braiding $\beta_{H,H}$ can be expressed entirely in terms of the structural maps, via the formula

$$\beta_{H,H} = (\nabla \otimes \nabla)(S \otimes (\Delta \nabla) \otimes S)(\Delta \otimes \Delta),$$

or in graphical form:

The following relation between the braiding and the antipode holds:

$$S\nabla = \nabla \beta_{H,H}(S \otimes S),$$

or in graphical form

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Exterior algebras with deformed Braided Hopf Structures

Let (V, τ) be a braided vector space. The tensor algebra T(V) is a braided Hopf algebra in which all the elements of V are primitive. The braiding

$$\hat{\tau} := \beta_{T(V), T(V)} \colon T(V) \otimes T(V) \to T(V) \otimes T(V)$$

is induced from τ in the sense that $\hat{\tau}|_{V\otimes V} = \tau$, and it satisfies the compatibility conditions with the unit $\eta \colon \mathbb{F} \to T(V)$

$$\hat{\tau}(\eta \otimes \mathsf{id}) = \mathsf{id} \otimes \eta, \quad \hat{\tau}(\mathsf{id} \otimes \eta) = \eta \otimes \mathsf{id}$$
 .

An immediate consequence of the fusion formula is the *preservation of degree* along the strands of the induced braiding $\hat{\tau}$, in the sense that

$$\forall m, n \in \mathbb{Z}_{\geq 0} \colon \hat{\tau}(T^m(V) \otimes T^n(V)) = T^n(V) \otimes T^m(V)$$

Let V be a $\mathbb F\text{-vector space, and let }\mathbb B$ be a linearly ordered basis of V. Define the Heaviside theta symbol

$$heta_{\mathsf{a},\mathsf{b}} \in \{0,1\}, \quad \mathsf{a},\mathsf{b} \in \mathbb{B},$$

by setting $\theta_{a,b} = 1$ if a > b and $\theta_{a,b} = 0$ otherwise.

For any scalar $p \neq 0$, we define a linear map $\tau \colon V \otimes V \to V \otimes V$ by

$$\tau(a \otimes b) = \begin{cases} -a \otimes a & \text{if } a = b; \\ -(1-p)a \otimes b - b \otimes a & \text{if } a > b; \\ -pb \otimes a & \text{if } a < b, \end{cases}$$

for all $a, b \in \mathbb{B}$. Since τ is invertible and satisfies the quantum Yang–Baxter equation over V, it qualifies as an R-matrix. Accordingly, (V, τ) forms a braided \mathbb{F} -vector space.

When dim(V) = N, the braiding τ corresponds to the R-matrix of the quantum group $U_q(\mathfrak{sl}_N)$ evaluated at the N-dimensional fundamental representation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The R-matrix τ defined above, has the eigenvalue -1 with the corresponding eigenspaces spanned by

$$\{ a \otimes b + b \otimes a \mid a < b \} \cup \{ a \otimes a \mid a \in \mathbb{B} \}$$

Any primitive element of degree two of the tensor algebra T(V) is an eigenvector of τ corresponding to the eigenvalue -1:

$$\Delta w = w \otimes 1 + 1 \otimes w \quad \Rightarrow \quad \tau w = -w, \quad w \in T^2(V) \simeq V \otimes V.$$

This follows from the formula for the coproduct of T(V) in degree two:

$$\forall u, v \in V \colon \Delta(uv) = uv \otimes 1 + 1 \otimes uv + u \otimes v + \tau(u \otimes v).$$

The exterior algebra $\bigwedge V$ is a braided Hopf algebra where all the elements of V are primitive and the braiding is induced by τ

$$\bigwedge V \simeq T(V)/\mathfrak{J}_2 = \mathbb{F}\langle \mathbb{B} \mid \{ ba = -ab \mid a, b \in \mathbb{B} \} \cup \{ a^2 \mid a \in \mathbb{B} \}
angle.$$

We denote by $\Lambda_p(V)$ the exterior algebra endowed with this braided Hopf algebra structure, and by $\hat{\tau}$ its associated braiding. For any $k \in \mathbb{Z}_{\geq 0}$, we write $\Lambda_p^k(V)$ for the subspace of $\Lambda_p(V)$ consisting of all the elements of degree k:

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Set-theoretic bases in exterior algebras

We consider a linearly ordered basis $\mathbb{B} \subset V$ and identify with \mathbb{B} the set of integers $\{1, \ldots, |\mathbb{B}|\}$, which is equipped with the natural order.

Example: N = 3Basis of V is given by $\{f_{\{1\}}, f_{\{2\}}, f_{\{3\}}\}$ and

$$\Lambda_{\mathcal{P}}(V) \equiv \{f_{\emptyset}, f_{\{1\}}, f_{\{2\}}, f_{\{3\}}, f_{\{1,2\}}, f_{\{1,3\}}, f_{\{2,3\}}, f_{\{1,2,3\}}\}.$$

This is an 8-dim space and, for any N, dim(V) = N, dim $(\Lambda_p(V)) = 2^N$. For a set E, we denote the set of all *subsets* of E by

$$\mathcal{P}_{\mathrm{fin}}(E) := \{A \mid A \subseteq E, \ |A| < \infty\}.$$

The set of all *k*-element subsets of *E* is denoted by

$$\binom{E}{k} := \{A \subseteq E \mid |A| = k\}.$$

For any two finite subsets A, B of a linearly ordered set, define the Heaviside theta-symbol

$$\theta_{A,B} = \sum_{a \in A} \sum_{b \in B} \theta_{a,b}.$$

We will also write $f_{E,F,\ldots,G}$ instead of $f_E \otimes f_F \otimes \cdots \otimes f_G$.

Theorem

Let \mathbb{B} be a linearly ordered basis of a vector space V, where $p \in \mathbb{F}_{\neq 0}$ a nonzero scalar, and let $\{f_E \mid E \in \mathcal{P}_{\mathrm{fin}}(\mathbb{B})\}$ be the (canonical) basis of $\bigwedge V$ given by words in the alphabet \mathbb{B} with strictly increasing order. Then, the braided Hopf algebra $\Lambda_p(V)$ has the following structure maps:

the product

$$\nabla(f_E \otimes f_F) =: f_E f_F = \delta_{|E \cap F|,0} (-1)^{\theta_{E,F}} f_{E \cup F}, \quad \forall E, F \in \mathcal{P}_{\text{fin}}(\mathbb{B});$$

the coproduct

$$\Delta f_E = \sum_{A \subseteq E} (-p)^{\theta_{A, E \setminus A}} f_A \otimes f_{E \setminus A}, \quad \forall E \in \mathcal{P}_{\mathrm{fin}}(\mathbb{B});$$

the antipode

$$Sf_E = \gamma_{|E|}f_E, \quad \forall E \in \mathcal{P}_{\operatorname{fin}}(\mathbb{B}),$$

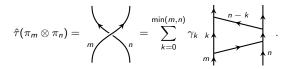
where the integers $\theta_{E,F} \in \mathbb{Z}_{\geq 0}$ are defined above, and the signed Gaussian exponential is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

$$\gamma_k := (-1)^k p^{k(k-1)/2}$$

Theorem

The action of the braiding $\hat{\tau}$ of $\Lambda_p(V)$ correspond to the MOY diagrammatic identity



A similar formula has been derived by Murakami, Ohtsuki, and Yamada (MOY) (1998) and Cautis, Kamnitzer, and Morrison (2014). Their proofs are much more involved because they did not use a Hopf algebra structure with antipode.

Matrix elements are given by complicated combinatorial sums. Explicit calculations for N = 2, 3, 4 show that there are many cancelations. The goal is to produce a much nicer formula with factorised matrix elements.

Matrix coefficients of the braiding

For any finite subsets E and F of \mathbb{B} , and any G and H such that

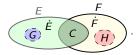
$$G \subseteq E \setminus F, \quad H \subseteq F \setminus E,$$

we define

$$C := E \cap F, \quad \dot{E} := (E \setminus F) \setminus G, \quad \dot{F} := (F \setminus E) \setminus H$$

and

$$E' := (E \setminus G) \cup H, \quad F' := (F \setminus H) \cup G.$$



The braiding of $\Lambda_p(V)$ can be decomposed into a sum

$$\hat{\tau} = \sum_{k \in \mathbb{Z}_{\geq 0}} \tau_k, \quad \tau_k f_{E,F} = (-1)^{|E||F|} \sum s_{E,G;F,H} f_{F',E'}, \quad f_{E,F} \in \Lambda_P(V)^{\otimes 2}.$$

where the summation runs over the subsets $G \in {\binom{F \setminus F}{k}}$ and $H \in {\binom{F \setminus F}{k}}$. The conditions on G and H imply the equalities

$$|E'| = |E|, |F'| = |F|$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Matrix coefficients of the braiding

Theorem

For $G \in {\binom{E \setminus F}{k}}$, $H \in {\binom{F \setminus E}{k}}$, we have the following formula for the coefficient $s_{E,G;F,H}$

$$s_{E,G;F,H} = \beta_{E,G;F,H}$$

which does not vanish for generic p if and only if

$$heta_{A,H} > heta_{A,G}, \quad \forall A \in {G \choose 1}.$$

Coefficients $\beta_{E,G;F,H}$ are given by

$$\beta_{E,G;F,H} = (-1)^{\theta_{F,E}+\theta_{F',E'}} p^{\theta_{G\sqcup C,E}+\theta_{F,E'}} \alpha_{G,H},$$
$$\alpha_{G,H} := \prod_{A \in \binom{G}{1}} (p^{\theta_{A,H}-\theta_{A,G}} - 1),$$

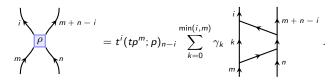
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where the product is over the subsets A of degree 1.

A two-parametric *R*-matrix from the Nichols algebra

Theorem

There is a two-parametric solution of the YBE $\rho(p, t)$, $t \in \mathbb{F}$ which corresponds the MOY diagrammatic equation



We define the matrix coefficients of ρ as follows:

$$\rho f_{E,F} = (-1)^{|E||F|} \sum r_{E,G;F,H} f_{F',E'}$$

where the summation runs over $G \subseteq E \setminus F$ and $H \subseteq F \setminus E$ such that $|H| \ge |G|$ and

$$E' := (E \setminus G) \sqcup H, \quad F' := (F \setminus H) \sqcup G.$$

We have the following formula for the coefficients of the matrix ρ :

$$r_{E,G;F,H} = t^{|F'|}(tp^{|E|};p)_{|H|-|G|}\beta_{E,G;F,H},$$

where $\beta_{E,G;F,H}$ is given on the previous slide.

Discussion

Conjecture

Let dim(V) = N. Then the invariant of long knots J_{ρ} associated with the R-matrix $\rho(p, t)$ is of the form

 $J_{\rho} = \mathrm{LG}^{(N)}(p, t) \operatorname{id}_{\Lambda_{\rho}(V)}$

where $LG^{(N)}(p, t)$ is the Links–Gould invariant (1993) associated with a 2^{N} -dimensional representation of the super quantum group $U_{q}(\mathfrak{gl}(N|1))$.

The calculations for a few examples of knots for the values N = 2, 3, 4 and a comparison with the results of De Wit (2001) are consistent with the Conjecture.

Future directions include:

- extend our computation of the *R*-matrix to derive the associated knot invariants in specific examples, without fixing the dimension *N*, and study their behaviour as functions of *N*;
- motivated by the V_n invariants, exploring deeper ties with the representation theory of $U_q(\mathfrak{gl}(N|1))$ and constructing coloured versions of the Links–Gould invariants.

These developments promise to deepen the algebraic and topological applications of Nichols algebras.