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Introduction

Consider a braided F-vector space (V , τ), τ ∈ Aut(V ⊗ V ) satisfies the Yang–Baxter
equation

τ ′τ ′′τ ′ = τ ′′τ ′τ ′′, τ ′ := τ ⊗ idV , τ ′′ := idV ⊗τ.

The tensor algebra T (V ) =
⊕∞

n=0 V
⊗n is canonically a braided Hopf algebra with an

invertible antipode with all the elements of V being primitive

∆u = u ⊗ 1 + 1⊗ u, ∀u ∈ V

The Nichols algebra associated with (V , τ) is the quotient braided Hopf algebra

B(V ) = T (V )/JV

where JV is the maximal Hopf ideal generated by primitive elements of degree ≥ 2,
where elements of degree n are those of T n(V ) := V⊗n.

We are interested in the cases when the Nichols algebra is finite-dimensional.



A braided Hopf algebra H is endowed with five structural morphisms:

∇ : H ⊗ H → H, η : I → H, ∆: H → H ⊗ H, ϵ : H → I , S : H → H

called, respectively, the product, unit, coproduct, counit and antipode.

∇ = (product), ∆ = (coproduct), βH,H = (braiding)

η = (unit), ϵ = (counit), S = (antipode).

Axioms of a braided Hopf algebra:

= (associativity), = = (unitality),

= (coassociativity), = = (counitality),



= = (invertibility),

and

= (compatibility).

The Yang–Baxter equation for the braiding

= .



All morphisms are braided linear maps and the following relations hold (and many
others):

= , = .

= , = .

‘Fusion relation’

= .



The braiding βH,H can be expressed entirely in terms of the structural maps, via the
formula

βH,H = (∇⊗∇)(S ⊗ (∆∇)⊗ S)(∆⊗∆),

or in graphical form:

βH,H = = .

The following relation between the braiding and the antipode holds:

S∇ = ∇βH,H(S ⊗ S),

or in graphical form

= .



Exterior algebras with deformed Braided Hopf Structures

Let (V , τ) be a braided vector space. The tensor algebra T (V ) is a braided Hopf
algebra in which all the elements of V are primitive. The braiding

τ̂ := βT (V ),T (V ) : T (V )⊗ T (V ) → T (V )⊗ T (V )

is induced from τ in the sense that τ̂ |V⊗V = τ , and it satisfies the compatibility
conditions with the unit η : F → T (V )

τ̂(η ⊗ id) = id⊗η, τ̂(id⊗η) = η ⊗ id .

An immediate consequence of the fusion formula is the preservation of degree along
the strands of the induced braiding τ̂ , in the sense that

∀m, n ∈ Z≥0 : τ̂(T
m(V )⊗ T n(V )) = T n(V )⊗ Tm(V ).



Let V be a F-vector space, and let B be a linearly ordered basis of V . Define the
Heaviside theta symbol

θa,b ∈ {0, 1}, a, b ∈ B,

by setting θa,b = 1 if a > b and θa,b = 0 otherwise.

For any scalar p ̸= 0, we define a linear map τ : V ⊗ V → V ⊗ V by

τ(a⊗ b) =


−a⊗ a if a = b;

−(1− p)a⊗ b − b ⊗ a if a > b;

−pb ⊗ a if a < b,

for all a, b ∈ B. Since τ is invertible and satisfies the quantum Yang–Baxter equation
over V , it qualifies as an R-matrix. Accordingly, (V , τ) forms a braided F-vector
space.

When dim(V ) = N, the braiding τ corresponds to the R-matrix of the quantum group
Uq(slN) evaluated at the N-dimensional fundamental representation.



The R-matrix τ defined above, has the eigenvalue −1 with the corresponding
eigenspaces spanned by

{a⊗ b + b ⊗ a | a < b} ∪ {a⊗ a | a ∈ B}

Any primitive element of degree two of the tensor algebra T (V ) is an eigenvector of τ
corresponding to the eigenvalue −1:

∆w = w ⊗ 1 + 1⊗ w ⇒ τw = −w , w ∈ T 2(V ) ≃ V ⊗ V .

This follows from the formula for the coproduct of T (V ) in degree two:

∀u, v ∈ V : ∆(uv) = uv ⊗ 1 + 1⊗ uv + u ⊗ v + τ(u ⊗ v).

The exterior algebra
∧

V is a braided Hopf algebra where all the elements of V are
primitive and the braiding is induced by τ∧

V ≃ T (V )/J2 = F⟨B | {ba = −ab | a, b ∈ B} ∪ {a2 | a ∈ B}⟩.

We denote by Λp(V ) the exterior algebra endowed with this braided Hopf algebra
structure, and by τ̂ its associated braiding. For any k ∈ Z≥0, we write Λk

p(V ) for the
subspace of Λp(V ) consisting of all the elements of degree k:



Set-theoretic bases in exterior algebras

We consider a linearly ordered basis B ⊂ V and identify with B the set of integers
{1, . . . , |B|}, which is equipped with the natural order.

Example: N = 3
Basis of V is given by {f{1}, f{2}, f{3}} and

Λp(V ) ≡ {f∅, f{1}, f{2}, f{3}, f{1,2}, f{1,3}, f{2,3}, f{1,2,3}}.

This is an 8-dim space and, for any N, dim(V ) = N, dim(Λp(V )) = 2N .

For a set E , we denote the set of all subsets of E by

Pfin(E) := {A | A ⊆ E , |A| < ∞}.

The set of all k-element subsets of E is denoted by

(E
k

)
:= {A ⊆ E | |A| = k}.

For any two finite subsets A,B of a linearly ordered set, define the Heaviside
theta-symbol

θA,B =
∑
a∈A

∑
b∈B

θa,b.



We will also write fE ,F ,...,G instead of fE ⊗ fF ⊗ · · · ⊗ fG .

Theorem
Let B be a linearly ordered basis of a vector space V , where p ∈ F̸=0 a nonzero scalar,
and let {fE | E ∈ Pfin(B)} be the (canonical) basis of

∧
V given by words in the

alphabet B with strictly increasing order. Then, the braided Hopf algebra Λp(V ) has
the following structure maps:
the product

∇(fE ⊗ fF ) =: fE fF = δ|E∩F |,0(−1)θE,F fE∪F , ∀E ,F ∈ Pfin(B);

the coproduct

∆fE =
∑
A⊆E

(−p)θA,E\A fA ⊗ fE\A, ∀E ∈ Pfin(B);

the antipode
SfE = γ|E |fE , ∀E ∈ Pfin(B),

where the integers θE ,F ∈ Z≥0 are defined above, and the signed Gaussian exponential
is

γk := (−1)kpk(k−1)/2.



Theorem
The action of the braiding τ̂ of Λp(V ) correspond to the MOY diagrammatic identity

τ̂(πm ⊗ πn) =
nm

=

min(m,n)∑
k=0

γk

n − k

m

k

n

.

A similar formula has been derived by Murakami, Ohtsuki, and Yamada (MOY)
(1998) and Cautis, Kamnitzer, and Morrison (2014). Their proofs are much more
involved because they did not use a Hopf algebra structure with antipode.

Matrix elements are given by complicated combinatorial sums. Explicit calculations for
N = 2, 3, 4 show that there are many cancelations. The goal is to produce a much
nicer formula with factorised matrix elements.



Matrix coefficients of the braiding
For any finite subsets E and F of B, and any G and H such that

G ⊆ E \ F , H ⊆ F \ E ,

we define
C := E ∩ F , Ė := (E \ F ) \ G , Ḟ := (F \ E) \ H

and
E ′ := (E \ G) ∪ H, F ′ := (F \ H) ∪ G .

FE

G HC
Ė Ḟ

.

The braiding of Λp(V ) can be decomposed into a sum

τ̂ =
∑

k∈Z≥0

τk , τk fE ,F = (−1)|E ||F |
∑

sE ,G ;F ,H fF ′,E ′ , fE ,F ∈ Λp(V )⊗2.

where the summation runs over the subsets G ∈
(E\F

k

)
and H ∈

(F\E
k

)
. The

conditions on G and H imply the equalities

|E ′| = |E |, |F ′| = |F |



Matrix coefficients of the braiding

Theorem

For G ∈
(E\F

k

)
, H ∈

(F\E
k

)
, we have the following formula for the coefficient sE ,G ;F ,H

sE ,G ;F ,H = βE ,G ;F ,H ,

which does not vanish for generic p if and only if

θA,H > θA,G , ∀A ∈
(G
1

)
.

Coefficients βE ,G ;F ,H are given by

βE ,G ;F ,H = (−1)θF,E+θF ′,E′ p
θG⊔C,E+θ

Ḟ,E′αG ,H ,

αG ,H :=
∏

A∈
(
G
1

)(pθA,H−θA,G − 1),

where the product is over the subsets A of degree 1.



A two-parametric R-matrix from the Nichols algebra

Theorem
There is a two-parametric solution of the YBE ρ(p, t), t ∈ F which corresponds the
MOY diagrammatic equation

ρ

i m + n − i

m n

= t i (tpm; p)n−i

min(i,m)∑
k=0

γk

m

k

i

n

m + n − i

.

We define the matrix coefficients of ρ as follows:

ρfE ,F = (−1)|E ||F |
∑

rE ,G ;F ,H fF ′,E ′

where the summation runs over G ⊆ E \ F and H ⊆ F \ E such that |H| ≥ |G | and

E ′ := (E \ G) ⊔ H, F ′ := (F \ H) ⊔ G .

We have the following formula for the coefficients of the matrix ρ :

rE ,G ;F ,H = t|F
′|(tp|E |; p)|H|−|G |βE ,G ;F ,H ,

where βE ,G ;F ,H is given on the previous slide.



Discussion

Conjecture

Let dim(V ) = N. Then the invariant of long knots Jρ associated with the R-matrix
ρ(p, t) is of the form

Jρ = LG(N)(p, t) idΛp(V )

where LG(N)(p, t) is the Links–Gould invariant (1993) associated with a
2N -dimensional representation of the super quantum group Uq(gl(N|1)).

The calculations for a few examples of knots for the values N = 2, 3, 4 and a
comparison with the results of De Wit (2001) are consistent with the Conjecture.

Future directions include:

▶ extend our computation of the R-matrix to derive the associated knot invariants
in specific examples, without fixing the dimension N, and study their behaviour
as functions of N;

▶ motivated by the Vn invariants, exploring deeper ties with the representation
theory of Uq(gl(N|1)) and constructing coloured versions of the Links–Gould
invariants.

These developments promise to deepen the algebraic and topological applications of
Nichols algebras.
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