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INTRODUCTION.

L-convex polyominoes are defined by the property that any two
cells may be joined by an L-shaped path.

L-convex polyominoes and 201-avoiding ascent sequences Tony Guttmann



MIN2Col

GENERATING FUNCTIONS.

The perimeter generating function is straightforward:

[xn]P(x) =
(2 +

√
2)n+1 − (2 −

√
2)n+1

4
√

2
∼ 1 +

√
2

4
(2 +

√
2)n.

But the area g.f. is only known as a functional equation
(Castiglione et al. 2007):

A(q) = 1+
∑
k≥0

qk+1fk(q)
(1 − q)2(1 − q2)2 · · · (1 − qk)2(1 − qk+1)

= 1+q+· · · ,

(1)
where

fk(q) = 2fk−1(q)− (1 − qk)2fk−2,

with initial conditions f0(q) = 1, and f1(q) = 1 + 2q − q2.
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ASYMPTOTICS.

The asymptotics were completely unknown.

Together with Vaclav Kotesovec we used this functional equation
to, eventually, generate 2000 series coefficients.

We used these coefficients to obtain the asymptotics:

[qn]A(q) ∼ 13
√

2
768 · n3/2 exp(π

√
13n/6).
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A typical L-convex polyomino can be considered as a stack
polyomino placed atop an upside-down stack polyomino.
Stack polyominoes counted by area have generating function

S(q) =
∑

snqn =
∑
n≥1

qn

(q)n−1(q)n
,

where (q)n ≡
∏n

k=1(1 − qk), and

sn ∼
exp(2π

√
n/3)

8 · 33/4 · n5/4 , (Auluck 1951).

Putting two objects together, one expects similar asymptotics:

qn ∼ exp(aπnβ)
cnδ

. (2)

We expect exponents β and δ to be simple rationals, and a and c
to be products of integers and small fractional powers.
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Let’s look first at the ratio of successive coefficients, rn = qn/qn−1.
For a power-law singularity, the ratios will approach linearity when
plotted against 1/n, but for stretched exponentials like (2),
rn = 1 + aβπ

n1−β + O(1/n).

L-convex ratios plotted against
1/n.

L-convex ratios plotted against
1/
√

n.
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This suggests β = 1/2, just as for stack polyominoes. We can refine
this. We see that rn − 1 = aβπ · nβ−1 + O(1/n), so a log-log plot of
rn − 1 against n should be linear with gradient β − 1.

Log-log plot of rn − 1 against n. Gradient of log-log plot.
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So we have our first conjecture, β = 1/2.

From (2), define

λn ≡ log(qn)

π
√

n
∼ a − δ log(n)

π
√

n
− log c

π
√

n
,

we fit successive triples of coefficients λk−1, λk, λk+1, to the
linear equation λn = e1 + e2

log n
π
√

n + e3
1

π
√

n , with k increasing
until one runs out of known coefficients. Then e1 should give an
estimator of a, e2 should give an estimator of −δ and e3 should
give an estimator of − log(c).
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Plot of e1 against 1/
√

n. Plot of e2 against 1/
√

n.

From these, we estimate e1 ≈ 1.472, and e2 ≈ −1.5. Comparing to
the result for stack polyominoes, we expect e1 to be the square-root of
a rational number, and e2

1 = 2.1668, so we conjecture that
e1 =

√
13/6, and e2 = −1.5.
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So now we can conjecture that

qn ∼
exp(π

√
13n/6)

c · n3/2 .

We reached this stage based on only 100 terms. In order to both gain
more confidence in the conjectured form, and to calculate the
constant, we needed more terms, and eventually generated 2000
terms. To calculate the constant, define

cn ≡
exp(π

√
13n/6)

qn · n3/2 ,

and extrapolate the sequence cn using any standard method. We used
the Bulirsch-Stoer method, with parameter 1/2.
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Because we had so many terms available, we considered only the
terms Qn ≡ qn2 . Now we have for the conjectured asymptotic form

Qn = qn2 =∼
exp(nπ

√
13/6)

c · n3 .

We have 44 coefficients of the series Qn available. Extrapolating gave
c ≈ 0.023938510821419. In analogy with the stack polyomino result,
we expect this number to include a square root, cube root or
fourth-root of a small integer. Here we got lucky. Dividing c by

√
2,

gave a result that the Maple command identify reported as 13/768.
This implies c = 13

√
2/768 = 0.023938510821419577 · · · , agreeing

to all quoted digits. The occurrence of 13 in this fraction, as well as in
the exponent square-root, is reassuring, as is the factorisation of 768
as 3 · 28. Thus we conclude with the conjecture that the asymptotic
form of the coefficients of L-convex polyominoes is

ln ∼
3 · 28 · exp(π

√
13n/6)

13
√

2 · n3/2
.
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ASCENT SEQUENCES

An ascent sequence of length n is a sequence of non-negative integers
a1, a2, . . . , an, s.t.

a1 = 0,

for each i > 2,

0 ≤ ai ≤ 1 + asc(a1, a2, . . . , ai−1),

where asc counts the number of ascents in the sequence to ai−1.
An ascent at position j occurs if aj < aj+1.

There are 5 ascent sequences of length 3: (0, 0, 0), (0, 0, 1),
(0, 1, 0), (0, 1, 1), and (0, 1, 2).

They are enumerated by the Fishburn numbers, and encode
various combinatorial structures (like certain posets or
permutations avoiding patterns).
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PATTERN-AVOIDING ASCENT SEQUENCES.

Asking how many ascent sequences avoid a given pattern is
related to set partition problems and stack-sorting problems.

Example: The ascent sequence (0, 1, 0, 2, 3, 1) has three
occurrences of the pattern 001, namely 002, 003, and 001. It
avoids the sequence 201.

For patterns 001, 010, 011, and 012 the number of ascent
sequences avoiding these patterns is just 2n−1.

For patterns 101 and 021the number is given by the nth Catalan
number.
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AVOIDING THE PATTERN 201.

The number of pattern-avoiding ascent sequences in this case
was known for a.s. of size ≤ 27. (OEIS A202062).

Using the gfun package of Maple, we immediately found the
recurrence

(2n2 + n)un + (6n2 + 45n + 60)un+1 − (34n2 + 263n + 480)un+2

+ (44n2 + 421n + 984)un+3 + (−20n2 − 235n − 684)un+4

+ (2n2 + 31n + 120)un+5 = 0,

with u0 = 1, u1 = 1, u2 = 2, u3 = 5, u4 = 15. (3)
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We converted this to a third-order homogeneous ODE, using the gfun
command diffeqtohomdiffeq, giving

P3(x)f
′′′
(x) + P2(x)f

′′
(x) + P1(x)f

′
(x) + P0(x)f (x) = 0,

where
P3(x) = −2x2(x3 + 5x2 − 8x + 1)(4x4 − 30x3 + 48x2 − 36x + 15)(x − 1)2,

P2(x) = −3x(x − 1)(12x8 − 30x7 − 652x6 + 2734x5 − 4767x4 + 4758x3

− 2843x2 + 870x − 85),

P1(x) = −24x9 + 30x8 + 2754x7 − 13278x6 + 28884x5 − 38106x4

+ 32436x3 − 16620x2 + 4350x − 420,

P0(x) = 30(3x − 2)(3x5 − 10x4 + 19x3 − 28x2 + 24x − 7).

The smallest root of the cubic factor in P3(x) is x = 0.1370633395 . . .
and is the radius of convergence of the solution, and of course the
reciprocal of the growth constant µ = 7.295896946 . . . . Explicitly,

µ =
14
3

cos

(
arccos( 13

14)

3

)
+

8
3
.
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Use the Maple package DEtools. Convert the ODE to differential
operator form using de2diffop, then factor into the direct sum of two
differential operators using DFactorLCLM. One of these operators is
first order and one is second order. The solution of the first order ODE
is given by dsolve, and is the rational function

y1(x) =
x4 + 26x3 − 45x2 + 18x + 1

12(x − 1)x3 . (4)

To solve the second-order ODE, we obtain a series solution, the first
term of which is O(x−3). So multiply by x3 to obtain a regular power
series, then use the gfun command seriestoalgeq to discover the cubic,

4(x − 1)3y2(x)3−

3(x − 1)(x2 − x + 1)(x6 − 235x5 + 1430x4 − 1695x3 + 270x2 + 229x + 1)y2(x)

+ x12 + 510x11 − 14631x10 + 80090x9 − 218058x8 + 316290x7 − 253239x6

+ 131562x5 − 70998x4 + 37950x3 − 8955x2 − 522x + 1 = 0. (5)

Use Maple’s solve command. Choose the appropriate solution.
L-convex polyominoes and 201-avoiding ascent sequences Tony Guttmann
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Let

P1 = x12 + 510x11 − 14631x10 + 80090x9 − 218058x8 + 316290x7 − 253239x6

+ 131562x5 − 70998x4 + 37950x3 − 8955x2 − 522x + 1 − 24
√

3x(x − 1)(x3 + 5x2 − 8x + 1)7,

P2 = (x2 − x + 1)(x − 1)4(x6 − 235x5 + 1430x4 − 1695x3 + 270x2 + 229x + 1), and

P3 = (35/6i + 31/3), P4 = (−35/6i + 31/3),

then

y2(x) =
−32/3

[
P4

(
−P1 · (x − 1)6

)2/3
+ P2 · P3

]
12(−P1 · (x − 1)6)1/3(x − 1)3

. (6)

The solution to the original ODE is then

y(x) =
y2(x)
12x3 − y1(x) = 1 + x + 2x2 + 5x3 + 15x4 + · · · .
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THE AMPLITUDE

We next obtained the first 5000 terms in only a few minutes by
expanding this solution. We know that the coefficients behave
asymptotically as

u(n) ∼ C
µn

n9/2 . (7)

Equivalently, the generating function behaves as

U(x) =
∑

u(n)xn = A(1 − µ · x)7/2,

where C = A/Γ(−7/2) = 105A/(16
√
π). We estimate C by

assuming a pure power law, so that

u(n) · n9/2

µn = C(1 +
∑
k≥1

ak/nk).

We calculated the first twenty coefficients of this expansion, which
gave C = 13.4299960869 · · · with 74-digit accuracy.
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This time, identify didn’t help.
In favourable cases such constants are a product of rational
numbers and square roots of small integers, sometimes with
integer or half-integer powers of π.
These powers of π usually arise from the conversion factor in
going from the g.f. amplitude A to the coefficient amplitude C.
We might expect the amplitude A to be simpler than C.

And, to eliminate square-roots, we will try and identify A2.

We seek the minimal polynomial with root A2, using the
command MinimalPolynomial.
In fact, one only requires 20 digit accuracy in the estimate of A2

to find the minimal polynomial, A6 − 1369A4 + 17839A2 + 1,
which gives

C =
35
16

(
4107
π

− 84
π

√
9289 cos

(
π

3
+

1
3
arccos

[
255709

√
9289

24653006

]))1/2

.
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CONCLUSION

We have shown how experimental mathematics can be used to
conjecture exact asymptotics, in the case of L-convex
polyominoes, and to conjecture an exact solution, in the case of
201-avoiding ascent sequences.

We hope that the methods will be more widely applied, as there
are many outstanding combinatorial problems that lend
themselves to such an approach.
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