

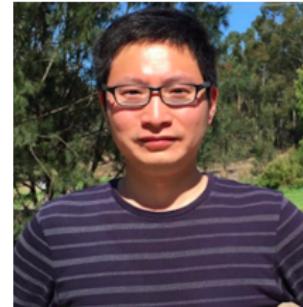
Convergence rate of critical mean-field $O(N)$ magnetization distribution

Timothy M. Garoni

School of Mathematics
Monash University
Australia

Joint work with:

Aram Perez



Eric Zhou

Central limit theorem

- ▶ Let X_1, X_2, \dots, X_n be iid uniform spins in $\{-1, 1\}$

Central limit theorem

- ▶ Let X_1, X_2, \dots, X_n be iid uniform spins in $\{-1, 1\}$
- ▶ $\mathcal{M}_n := \sum_{i=1}^n X_i$ satisfies central limit theorem (de Moivre 1738):

$$\frac{\mathcal{M}_n}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{d} Z$$

where $Z \sim \mathcal{N}(0, 1)$

Central limit theorem

- ▶ Let X_1, X_2, \dots, X_n be iid uniform spins in $\{-1, 1\}$
- ▶ $\mathcal{M}_n := \sum_{i=1}^n X_i$ satisfies central limit theorem (de Moivre 1738):

$$\frac{\mathcal{M}_n}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{d} Z$$

where $Z \sim \mathcal{N}(0, 1)$

- ▶ How **fast** does this converge?

Central limit theorem

- ▶ Let X_1, X_2, \dots, X_n be iid uniform spins in $\{-1, 1\}$
- ▶ $\mathcal{M}_n := \sum_{i=1}^n X_i$ satisfies central limit theorem (de Moivre 1738):

$$\frac{\mathcal{M}_n}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{d} Z$$

where $Z \sim \mathcal{N}(0, 1)$

- ▶ How **fast** does this converge?
- ▶ Berry-Esseen theorem (1941)

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}(n^{-1/2} \mathcal{M}_n \leq x) - \mathbb{P}(Z \leq x) \right| \leq n^{-1/2}$$

Central limit theorem

- ▶ Let X_1, X_2, \dots, X_n be iid uniform spins in $\{-1, 1\}$
- ▶ $\mathcal{M}_n := \sum_{i=1}^n X_i$ satisfies central limit theorem (de Moivre 1738):

$$\frac{\mathcal{M}_n}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{d} Z$$

where $Z \sim \mathcal{N}(0, 1)$

- ▶ How **fast** does this converge?
- ▶ Berry-Esseen theorem (1941)

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}(n^{-1/2} \mathcal{M}_n \leq x) - \mathbb{P}(Z \leq x) \right| \leq n^{-1/2}$$

- ▶ But what if X_1, X_2, \dots, X_n are **dependent**?

Curie-Weiss model - limit theorems

- ▶ Random spin configuration $X \in \{-1, 1\}^n$ with distribution:

$$\mathbb{P}(X = \sigma) = \frac{1}{Z} \exp \left(\frac{\beta}{n} \sum_{1 \leq i < j \leq n} \sigma_i \sigma_j \right)$$

Curie-Weiss model - limit theorems

- ▶ Random spin configuration $X \in \{-1, 1\}^n$ with distribution:

$$\mathbb{P}(X = \sigma) = \frac{1}{Z} \exp \left(\frac{\beta}{n} \sum_{1 \leq i < j \leq n} \sigma_i \sigma_j \right) = \frac{1}{Z} \exp \left(\frac{\beta}{n} \mathcal{M}_n^2 \right)$$

- ▶ $\mathcal{M}_n := \sum_{i=1}^n X_i$

Curie-Weiss model - limit theorems

- ▶ Random spin configuration $X \in \{-1, 1\}^n$ with distribution:

$$\mathbb{P}(X = \sigma) = \frac{1}{Z} \exp \left(\frac{\beta}{n} \sum_{1 \leq i < j \leq n} \sigma_i \sigma_j \right) = \frac{1}{Z} \exp \left(\frac{\beta}{n} \mathcal{M}_n^2 \right)$$

- ▶ $\mathcal{M}_n := \sum_{i=1}^n X_i$

Theorem (Simon-Griffiths (1973) & Ellis-Newman (1978))

If $0 \leq \beta < 1$ then

$$\frac{\mathcal{M}_n}{n^{1/2}} \xrightarrow[n \rightarrow \infty]{\text{d}} \exp \left(-\frac{(1-\beta)}{2} x^2 \right) dx$$

Curie-Weiss model - limit theorems

- Random spin configuration $X \in \{-1, 1\}^n$ with distribution:

$$\mathbb{P}(X = \sigma) = \frac{1}{Z} \exp \left(\frac{\beta}{n} \sum_{1 \leq i < j \leq n} \sigma_i \sigma_j \right) = \frac{1}{Z} \exp \left(\frac{\beta}{n} \mathcal{M}_n^2 \right)$$

- $\mathcal{M}_n := \sum_{i=1}^n X_i$

Theorem (Simon-Griffiths (1973) & Ellis-Newman (1978))

If $0 \leq \beta < 1$ then

$$\frac{\mathcal{M}_n}{n^{1/2}} \xrightarrow[n \rightarrow \infty]{\text{d}} \exp \left(-\frac{(1-\beta)}{2} x^2 \right) dx$$

If $\beta = 1$ then

$$\frac{\mathcal{M}_n}{n^{3/4}} \xrightarrow[n \rightarrow \infty]{\text{d}} \exp \left(-\frac{1}{12} x^4 \right) dx$$

Curie-Weiss model - rates of convergence

Theorem (Eichelsbacher-Löwe (2010))

If $0 \leq \beta < 1$ then and $Z \sim \exp(-x^2/2)dx$ then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P} \left(\sqrt{1 - \beta} n^{-1/2} \mathcal{M}_n \leq x \right) - \mathbb{P}(Z \leq x) \right| \leq C n^{-1/2}$$

Curie-Weiss model - rates of convergence

Theorem (Eichelsbacher-Löwe (2010))

If $0 \leq \beta < 1$ then and $Z \sim \exp(-x^2/2)dx$ then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P} \left(\sqrt{1 - \beta} n^{-1/2} \mathcal{M}_n \leq x \right) - \mathbb{P}(Z \leq x) \right| \leq C n^{-1/2}$$

Theorem (Eichelsbacher-Löwe (2010) & Chatterjee-Shao (2011))

If $\beta = 1$ then and $Y \sim \exp(-x^4/12)dx$ then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P} \left(n^{-3/4} \mathcal{M}_n \leq x \right) - \mathbb{P}(Y \leq x) \right| \leq C n^{-1/2}$$

Curie-Weiss model - rates of convergence

Theorem (Eichelsbacher-Löwe (2010))

If $0 \leq \beta < 1$ then and $Z \sim \exp(-x^2/2)dx$ then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P} \left(\sqrt{1 - \beta} n^{-1/2} \mathcal{M}_n \leq x \right) - \mathbb{P}(Z \leq x) \right| \leq C n^{-1/2}$$

Theorem (Eichelsbacher-Löwe (2010) & Chatterjee-Shao (2011))

If $\beta = 1$ then and $Y \sim \exp(-x^4/12)dx$ then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P} \left(n^{-3/4} \mathcal{M}_n \leq x \right) - \mathbb{P}(Y \leq x) \right| \leq C n^{-1/2}$$

- ▶ Proofs use nonnormal extension of “Stein’s method”

Curie-Weiss model - rates of convergence

Theorem (Eichelsbacher-Löwe (2010))

If $0 \leq \beta < 1$ then and $Z \sim \exp(-x^2/2)dx$ then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P} \left(\sqrt{1 - \beta} n^{-1/2} \mathcal{M}_n \leq x \right) - \mathbb{P}(Z \leq x) \right| \leq C n^{-1/2}$$

Theorem (Eichelsbacher-Löwe (2010) & Chatterjee-Shao (2011))

If $\beta = 1$ then and $Y \sim \exp(-x^4/12)dx$ then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P} \left(n^{-3/4} \mathcal{M}_n \leq x \right) - \mathbb{P}(Y \leq x) \right| \leq C n^{-1/2}$$

- ▶ Proofs use nonnormal extension of “Stein’s method”
- ▶ Proofs inherently univariate

Curie-Weiss model - rates of convergence

Theorem (Eichelsbacher-Löwe (2010))

If $0 \leq \beta < 1$ then and $Z \sim \exp(-x^2/2)dx$ then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P} \left(\sqrt{1 - \beta} n^{-1/2} \mathcal{M}_n \leq x \right) - \mathbb{P}(Z \leq x) \right| \leq C n^{-1/2}$$

Theorem (Eichelsbacher-Löwe (2010) & Chatterjee-Shao (2011))

If $\beta = 1$ then and $Y \sim \exp(-x^4/12)dx$ then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P} \left(n^{-3/4} \mathcal{M}_n \leq x \right) - \mathbb{P}(Y \leq x) \right| \leq C n^{-1/2}$$

- ▶ Proofs use nonnormal extension of “Stein’s method”
- ▶ Proofs inherently univariate
- ▶ What about higher-dimensional spin models?

Mean-field $O(N)$ model

- ▶ Let $\mathbb{S}^{N-1} := \{x \in \mathbb{R}^N : |x| = 1\}$
- ▶ Random spin configuration $X \in (\mathbb{S}^{N-1})^n$ with distribution:

$$\mathbb{P}(X = \sigma) = \frac{1}{Z} \exp \left(\frac{\beta}{n} \sum_{1 \leq i < j \leq n} \sigma_i \cdot \sigma_j \right) = \frac{1}{Z} \exp \left(\frac{\beta}{n} \mathcal{M}_n \cdot \mathcal{M}_n \right)$$

Mean-field $O(N)$ model

- ▶ Let $\mathbb{S}^{N-1} := \{x \in \mathbb{R}^N : |x| = 1\}$
- ▶ Random spin configuration $X \in (\mathbb{S}^{N-1})^n$ with distribution:

$$\mathbb{P}(X = \sigma) = \frac{1}{Z} \exp \left(\frac{\beta}{n} \sum_{1 \leq i < j \leq n} \sigma_i \cdot \sigma_j \right) = \frac{1}{Z} \exp \left(\frac{\beta}{n} \mathcal{M}_n \cdot \mathcal{M}_n \right)$$

Theorem (Kirkpatrick-Meckes (2013) & Kirkpatrick-Nawaz (2016))

Let $0 \leq \beta < N$. If $\mathcal{W}_n := \sqrt{N - \beta} n^{-1/2} \mathcal{M}_n$ and $Z \sim \mathcal{N}(0, I_N)$ then

$$\sup_{h \in \mathcal{H}} |\mathbb{E} h(\mathcal{W}_n) - \mathbb{E} h(Z)| \leq C n^{-1/2}$$

Mean-field $O(N)$ model

- ▶ Let $\mathbb{S}^{N-1} := \{x \in \mathbb{R}^N : |x| = 1\}$
- ▶ Random spin configuration $X \in (\mathbb{S}^{N-1})^n$ with distribution:

$$\mathbb{P}(X = \sigma) = \frac{1}{Z} \exp \left(\frac{\beta}{n} \sum_{1 \leq i < j \leq n} \sigma_i \cdot \sigma_j \right) = \frac{1}{Z} \exp \left(\frac{\beta}{n} \mathcal{M}_n \cdot \mathcal{M}_n \right)$$

Theorem (Kirkpatrick-Meckes (2013) & Kirkpatrick-Nawaz (2016))

Let $0 \leq \beta < N$. If $\mathcal{W}_n := \sqrt{N - \beta} n^{-1/2} \mathcal{M}_n$ and $Z \sim \mathcal{N}(0, I_N)$ then

$$\sup_{h \in \mathcal{H}} |\mathbb{E} h(\mathcal{W}_n) - \mathbb{E} h(Z)| \leq C n^{-1/2}$$

- ▶ \mathcal{H} is a class of test functions $h : \mathbb{R}^N \rightarrow \mathbb{R}$

Mean-field $O(N)$ model

- ▶ Let $\mathbb{S}^{N-1} := \{x \in \mathbb{R}^N : |x| = 1\}$
- ▶ Random spin configuration $X \in (\mathbb{S}^{N-1})^n$ with distribution:

$$\mathbb{P}(X = \sigma) = \frac{1}{Z} \exp \left(\frac{\beta}{n} \sum_{1 \leq i < j \leq n} \sigma_i \cdot \sigma_j \right) = \frac{1}{Z} \exp \left(\frac{\beta}{n} \mathcal{M}_n \cdot \mathcal{M}_n \right)$$

Theorem (Kirkpatrick-Meckes (2013) & Kirkpatrick-Nawaz (2016))

Let $0 \leq \beta < N$. If $\mathcal{W}_n := \sqrt{N - \beta} n^{-1/2} \mathcal{M}_n$ and $Z \sim \mathcal{N}(0, I_N)$ then

$$\sup_{h \in \mathcal{H}} |\mathbb{E} h(\mathcal{W}_n) - \mathbb{E} h(Z)| \leq C n^{-1/2}$$

- ▶ \mathcal{H} is a class of test functions $h : \mathbb{R}^N \rightarrow \mathbb{R}$
- ▶ Proof via multivariate normal extension of Stein's method due to Chatterjee-Meckes (2008)

Critical mean-field $O(N)$ model

- ▶ Let d denote the **Wasserstein** metric on probability measures

$$d(X, Y) := \inf_{(X, Y)} \mathbb{E}|X - Y|$$

Critical mean-field $O(N)$ model

- ▶ Let d denote the **Wasserstein** metric on probability measures

$$d(X, Y) := \inf_{(X, Y)} \mathbb{E}|X - Y| = \sup_{h \in \text{Lip}(1)} |\mathbb{E} h(X) - \mathbb{E} h(Y)|$$

- ▶ $\text{Lip}(1)$ is class of all $h : \mathbb{R}^N \rightarrow \mathbb{R}$ with $|h(x) - h(y)| \leq |x - y|$

Critical mean-field $O(N)$ model

- Let d denote the **Wasserstein** metric on probability measures

$$d(X, Y) := \inf_{(X, Y)} \mathbb{E}|X - Y| = \sup_{h \in \text{Lip}(1)} |\mathbb{E} h(X) - \mathbb{E} h(Y)|$$

- $\text{Lip}(1)$ is class of all $h : \mathbb{R}^N \rightarrow \mathbb{R}$ with $|h(x) - h(y)| \leq |x - y|$

Theorem (G.-Perez-Zhou (2025+))

Consider the mean-field $O(N)$ model with $N \geq 1$. If $\beta = N$ then

$$d(n^{-3/4} \mathcal{M}_n, Y) \leq C n^{-1/2}$$

where

$$Y \sim \exp \left(-\frac{N^2}{4(N+2)} |x|^4 \right) \mathbf{d}x$$

Critical mean-field $O(N)$ model

- Let d denote the **Wasserstein** metric on probability measures

$$d(X, Y) := \inf_{(X, Y)} \mathbb{E}|X - Y| = \sup_{h \in \text{Lip}(1)} |\mathbb{E} h(X) - \mathbb{E} h(Y)|$$

- $\text{Lip}(1)$ is class of all $h : \mathbb{R}^N \rightarrow \mathbb{R}$ with $|h(x) - h(y)| \leq |x - y|$

Theorem (G.-Perez-Zhou (2025+))

Consider the mean-field $O(N)$ model with $N \geq 1$. If $\beta = N$ then

$$d(n^{-3/4} \mathcal{M}_n, Y) \leq C n^{-1/2}$$

where

$$Y \sim \exp \left(-\frac{N^2}{4(N+2)} |x|^4 \right) \mathbf{d}x$$

- Proof via an extension of multivariate nonnormal Stein's method

Stein's method (Barbour's generator version)

- ▶ Markov process in \mathbb{R}^N satisfying

$$dX_t^x = -\nabla V(X_t^x)dt + \sqrt{2} dB_t, \quad X_0^x = x$$

Stein's method (Barbour's generator version)

- ▶ Markov process in \mathbb{R}^N satisfying

$$dX_t^x = -\nabla V(X_t^x)dt + \sqrt{2} dB_t, \quad X_0^x = x$$

- ▶ Invariant measure $\mu \propto e^{-V(x)}dx$

Stein's method (Barbour's generator version)

- ▶ Markov process in \mathbb{R}^N satisfying

$$dX_t^x = -\nabla V(X_t^x)dt + \sqrt{2} dB_t, \quad X_0^x = x$$

- ▶ Invariant measure $\mu \propto e^{-V(x)}dx$
- ▶ Semigroup $P_t \varphi(x) := \mathbb{E} \varphi(X_t^x)$

Stein's method (Barbour's generator version)

- ▶ Markov process in \mathbb{R}^N satisfying

$$dX_t^x = -\nabla V(X_t^x)dt + \sqrt{2}dB_t, \quad X_0^x = x$$

- ▶ Invariant measure $\mu \propto e^{-V(x)}dx$
- ▶ Semigroup $P_t \varphi(x) := \mathbb{E} \varphi(X_t^x)$
- ▶ Generator $\mathcal{A} = \lim_{t \rightarrow 0} \frac{d}{dt} P_t \Big|_{t=0} = \Delta - \langle \nabla V, \nabla \rangle$

Stein's method (Barbour's generator version)

- ▶ Markov process in \mathbb{R}^N satisfying

$$dX_t^x = -\nabla V(X_t^x)dt + \sqrt{2} dB_t, \quad X_0^x = x$$

- ▶ Invariant measure $\mu \propto e^{-V(x)}dx$
- ▶ Semigroup $P_t \varphi(x) := \mathbb{E} \varphi(X_t^x)$
- ▶ Generator $\mathcal{A} = \lim_{t \rightarrow 0} \frac{d}{dt} P_t \Big|_{t=0} = \Delta - \langle \nabla V, \nabla \rangle$
- ▶ If $Z \sim \mu$ then $\mathbb{E} \mathcal{A} \varphi(Z) = 0$

Stein's method (Barbour's generator version)

- ▶ Markov process in \mathbb{R}^N satisfying

$$dX_t^x = -\nabla V(X_t^x)dt + \sqrt{2} dB_t, \quad X_0^x = x$$

- ▶ Invariant measure $\mu \propto e^{-V(x)}dx$
- ▶ Semigroup $P_t \varphi(x) := \mathbb{E} \varphi(X_t^x)$
- ▶ Generator $\mathcal{A} = \lim_{t \rightarrow 0} \frac{d}{dt} P_t \Big|_{t=0} = \Delta - \langle \nabla V, \nabla \rangle$
- ▶ If $Z \sim \mu$ then $\mathbb{E} \mathcal{A} \varphi(Z) = 0$
- ▶ Motivates **Stein's equation**:

$$\mathcal{A}f(w) = h(w) - \mathbb{E}h(Z) \quad (*)$$

Stein's method (Barbour's generator version)

- ▶ Markov process in \mathbb{R}^N satisfying

$$dX_t^x = -\nabla V(X_t^x)dt + \sqrt{2}dB_t, \quad X_0^x = x$$

- ▶ Invariant measure $\mu \propto e^{-V(x)}dx$
- ▶ Semigroup $P_t \varphi(x) := \mathbb{E} \varphi(X_t^x)$
- ▶ Generator $\mathcal{A} = \lim_{t \rightarrow 0} \frac{d}{dt} P_t \Big|_{t=0} = \Delta - \langle \nabla V, \nabla \rangle$
- ▶ If $Z \sim \mu$ then $\mathbb{E} \mathcal{A} \varphi(Z) = 0$
- ▶ Motivates **Stein's equation**:

$$\mathcal{A}f(w) = h(w) - \mathbb{E}h(Z) \tag{*}$$

- ▶ For given $h \in \text{Lip}(1)$ solve (*) for f_h then

$$d(W, Z) = \sup_{h \in \text{Lip}(1)} |\mathbb{E} \mathcal{A} f_h(W)|$$

Stein's method (Barbour's generator version)

- ▶ Markov process in \mathbb{R}^N satisfying

$$dX_t^x = -\nabla V(X_t^x)dt + \sqrt{2}dB_t, \quad X_0^x = x$$

- ▶ Invariant measure $\mu \propto e^{-V(x)}dx$
- ▶ Semigroup $P_t \varphi(x) := \mathbb{E} \varphi(X_t^x)$
- ▶ Generator $\mathcal{A} = \lim_{t \rightarrow 0} \frac{d}{dt} P_t \Big|_{t=0} = \Delta - \langle \nabla V, \nabla \rangle$
- ▶ If $Z \sim \mu$ then $\mathbb{E} \mathcal{A} \varphi(Z) = 0$
- ▶ Motivates **Stein's equation**:

$$\mathcal{A}f(w) = h(w) - \mathbb{E}h(Z) \tag{*}$$

- ▶ For given $h \in \text{Lip}(1)$ solve (*) for f_h then

$$d(W, Z) = \sup_{h \in \text{Lip}(1)} |\mathbb{E} \mathcal{A} f_h(W)|$$

- ▶ Stein equation (*) solved in terms of P_t

$$f_h(x) = - \int_0^\infty [P_t h(x) - \mu(h)] dt$$

Stein's method (Barbour's generator version)

- ▶ Markov process in \mathbb{R}^N satisfying

$$dX_t^x = -\nabla V(X_t^x)dt + \sqrt{2}dB_t, \quad X_0^x = x$$

- ▶ Invariant measure $\mu \propto e^{-V(x)}dx$
- ▶ Semigroup $P_t \varphi(x) := \mathbb{E} \varphi(X_t^x)$
- ▶ Generator $\mathcal{A} = \lim_{t \rightarrow 0} \frac{d}{dt} P_t \Big|_{t=0} = \Delta - \langle \nabla V, \nabla \rangle$
- ▶ If $Z \sim \mu$ then $\mathbb{E} \mathcal{A} \varphi(Z) = 0$
- ▶ Motivates **Stein's equation**:

$$\mathcal{A}f(w) = h(w) - \mathbb{E}h(Z) \tag{*}$$

- ▶ For given $h \in \text{Lip}(1)$ solve (*) for f_h then

$$d(W, Z) = \sup_{h \in \text{Lip}(1)} |\mathbb{E} \mathcal{A} f_h(W)|$$

- ▶ Stein equation (*) solved in terms of P_t

$$f_h(x) = - \int_0^\infty [P_t h(x) - \mu(h)]dt$$

- ▶ Bounding derivatives of $P_t h$ gives bounds on $\mathcal{A}f_h$

Theorem (Fang-Shao-Xu (2019))

Let $\mu \propto e^{-V(x)}dx$ with $V \in \mathcal{C}^4(\mathbb{R}^N; \mathbb{R})$ **strictly convex** (+ tech. conds).

Theorem (Fang-Shao-Xu (2019))

Let $\mu \propto e^{-V(x)}dx$ with $V \in \mathcal{C}^4(\mathbb{R}^N; \mathbb{R})$ **strictly convex** (+ tech. conds).

Let $(W, W') \stackrel{d}{=} (W', W)$, let $\delta := W' - W$, fix α and set

$$R_1 := \alpha \mathbb{E}[\delta|W] + \nabla V(W)$$

$$R_2 := \alpha \mathbb{E}[\delta\delta^T|W] - 2I$$

Theorem (Fang-Shao-Xu (2019))

Let $\mu \propto e^{-V(x)}dx$ with $V \in \mathcal{C}^4(\mathbb{R}^N; \mathbb{R})$ **strictly convex** (+ tech. conds).

Let $(W, W') \stackrel{d}{=} (W', W)$, let $\delta := W' - W$, fix α and set

$$R_1 := \alpha \mathbb{E}[\delta|W] + \nabla V(W)$$

$$R_2 := \alpha \mathbb{E}[\delta\delta^T|W] - 2I$$

Then there exists $C > 0$ such that

$$d(\mathcal{L}(W), \mu) \leq C (\alpha \mathbb{E}|\delta|^3 \max(|\log \delta|, 1) + \mathbb{E}|R_1| + \mathbb{E}|R_2|)$$

Theorem (Fang-Shao-Xu (2019))

Let $\mu \propto e^{-V(x)}dx$ with $V \in \mathcal{C}^4(\mathbb{R}^N; \mathbb{R})$ **strictly convex** (+ tech. conds).

Let $(W, W') \stackrel{d}{=} (W', W)$, let $\delta := W' - W$, fix α and set

$$R_1 := \alpha \mathbb{E}[\delta|W] + \nabla V(W)$$

$$R_2 := \alpha \mathbb{E}[\delta\delta^T|W] - 2I$$

Then there exists $C > 0$ such that

$$d(\mathcal{L}(W), \mu) \leq C (\alpha \mathbb{E}|\delta|^3 \max(|\log \delta|, 1) + \mathbb{E}|R_1| + \mathbb{E}|R_2|)$$

- ▶ For critical $O(N)$ model, $V(x) = |x|^4$ is not strictly convex

Theorem (Fang-Shao-Xu (2019))

Let $\mu \propto e^{-V(x)}dx$ with $V \in \mathcal{C}^4(\mathbb{R}^N; \mathbb{R})$ **strictly convex** (+ tech. conds).

Let $(W, W') \stackrel{d}{=} (W', W)$, let $\delta := W' - W$, fix α and set

$$R_1 := \alpha \mathbb{E}[\delta|W] + \nabla V(W)$$

$$R_2 := \alpha \mathbb{E}[\delta\delta^T|W] - 2I$$

Then there exists $C > 0$ such that

$$d(\mathcal{L}(W), \mu) \leq C \left(\alpha \mathbb{E}|\delta|^3 \max(|\log \delta|, 1) + \mathbb{E}|R_1| + \mathbb{E}|R_2| \right)$$

- ▶ For critical $O(N)$ model, $V(x) = |x|^4$ is not strictly convex
- ▶ We weaken the assumption on V , so it is convex outside a ball

Theorem (G.-Zhou-Perez (2025+))

Let $\mu \propto e^{-V(x)}dx$ with $V \in \mathcal{C}^4(\mathbb{R}^N; \mathbb{R})$ **eventually convex** (+ tech.)

Let $(W, W') \stackrel{d}{=} (W', W)$, let $\delta := W' - W$, fix α and set

$$R_1 := \alpha \mathbb{E}[\delta|W] + \nabla V(W)$$

$$R_2 := \alpha \mathbb{E}[\delta\delta^T|W] - 2I$$

Then there exists $C > 0$ such that

$$d(\mathcal{L}(W), \mu) \leq C \left(\alpha \mathbb{E}|\delta|^3 \max(|\log \delta|, 1) + \mathbb{E}|R_1| + \mathbb{E}|R_2| \right)$$

- ▶ For critical $O(N)$ model, $V(x) = |x|^4$ is not strictly convex
- ▶ We weaken the assumption on V , so it is convex outside a ball

Theorem (G.-Zhou-Perez (2025+))

Let $\mu \propto e^{-V(x)}dx$ with $V \in \mathcal{C}^4(\mathbb{R}^N; \mathbb{R})$ **eventually convex** (+ tech.)

Let $(W, W') \stackrel{d}{=} (W', W)$, let $\delta := W' - W$, fix α and set

$$R_1 := \alpha \mathbb{E}[\delta|W] + \nabla V(W)$$

$$R_2 := \alpha \mathbb{E}[\delta\delta^T|W] - 2I$$

Then there exists $C > 0$ such that

$$d(\mathcal{L}(W), \mu) \leq C (\alpha \mathbb{E}|\delta|^3 \max(|\log \delta|, 1) + \mathbb{E}|R_1| + \mathbb{E}|R_2|)$$

- ▶ For critical $O(N)$ model, $V(x) = |x|^4$ is not strictly convex
- ▶ We weaken the assumption on V , so it is convex outside a ball
- ▶ Covers critical mean-field $O(N)$ model

Theorem (G.-Zhou-Perez (2025+))

Let $\mu \propto e^{-V(x)}dx$ with $V \in \mathcal{C}^4(\mathbb{R}^N; \mathbb{R})$ **eventually convex** (+ tech.)

Let $(W, W') \stackrel{d}{=} (W', W)$, let $\delta := W' - W$, fix α and set

$$R_1 := \alpha \mathbb{E}[\delta|W] + \nabla V(W)$$

$$R_2 := \alpha \mathbb{E}[\delta\delta^T|W] - 2I$$

Then there exists $C > 0$ such that

$$d(\mathcal{L}(W), \mu) \leq C (\alpha \mathbb{E}|\delta|^3 \max(|\log \delta|, 1) + \mathbb{E}|R_1| + \mathbb{E}|R_2|)$$

- ▶ For critical $O(N)$ model, $V(x) = |x|^4$ is not strictly convex
- ▶ We weaken the assumption on V , so it is convex outside a ball
- ▶ Covers critical mean-field $O(N)$ model
 - ▶ Let W' be one-step update of W via single-spin Glauber process

Some details

- ▶ Fang-Shao-Xu bound derivatives of $P_t h(x)$ via Malliavin calculus

Some details

- ▶ Fang-Shao-Xu bound derivatives of $P_t h(x)$ via Malliavin calculus
- ▶ We use the Bismut-Elworthy-Li formula to differentiate $P_t h(x)$

Some details

- ▶ Fang-Shao-Xu bound derivatives of $P_t h(x)$ via Malliavin calculus
- ▶ We use the Bismut-Elworthy-Li formula to differentiate $P_t h(x)$
 - ▶ This then requires bounding spatial derivatives of X_t^x

Results
ooooo

Proof
ooo

Happy Birthday Tony!