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Results Proof

Central limit theorem

I Let X1, X2, . . . , Xn be iid uniform spins in {−1, 1}

I Mn :=
∑n

i=1Xi satisfies central limit theorem (de Moivre 1738):

Mn√
n

d−−−−→
n→∞

Z

where Z ∼ N (0, 1)

I How fast does this converge?
I Berry-Esseen theorem (1941)

sup
x∈R

∣∣∣P(n−1/2Mn ≤ x)− P(Z ≤ x)
∣∣∣ ≤ n−1/2

I But what if X1, X2, . . . , Xn are dependent?
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Results Proof

Curie-Weiss model - limit theorems
I Random spin configuration X ∈ {−1, 1}n with distribution:

P(X = σ) =
1

Z
exp

β
n

∑
1≤i<j≤n

σiσj



=
1

Z
exp

(
β

n
M2

n

)

I Mn :=
∑n

i=1Xi

Theorem (Simon-Griffiths (1973) & Ellis-Newman (1978))
If 0 ≤ β < 1 then

Mn

n1/2
d−−−−→

n→∞
exp

(
− (1− β)

2
x2
)

dx

If β = 1 then
Mn

n3/4
d−−−−→

n→∞
exp

(
− 1

12
x4
)

dx
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Results Proof

Curie-Weiss model - rates of convergence

Theorem (Eichelsbacher-Löwe (2010))
If 0 ≤ β < 1 then and Z ∼ exp(−x2/2)dx then

sup
x∈R

∣∣∣P(√1− β n−1/2Mn ≤ x
)
− P(Z ≤ x)

∣∣∣ ≤ C n−1/2

Theorem (Eichelsbacher-Löwe (2010) & Chatterjee-Shao (2011))
If β = 1 then and Y ∼ exp(−x4/12)dx then

sup
x∈R

∣∣∣P(n−3/4Mn ≤ x
)
− P(Y ≤ x)

∣∣∣ ≤ C n−1/2
I Proofs use nonnormal extension of “Stein’s method”
I Proofs inherently univariate
I What about higher-dimensional spin models?
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Theorem (Eichelsbacher-Löwe (2010) & Chatterjee-Shao (2011))
If β = 1 then and Y ∼ exp(−x4/12)dx then

sup
x∈R

∣∣∣P(n−3/4Mn ≤ x
)
− P(Y ≤ x)

∣∣∣ ≤ C n−1/2
I Proofs use nonnormal extension of “Stein’s method”

I Proofs inherently univariate
I What about higher-dimensional spin models?



Results Proof

Curie-Weiss model - rates of convergence

Theorem (Eichelsbacher-Löwe (2010))
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Theorem (Eichelsbacher-Löwe (2010) & Chatterjee-Shao (2011))
If β = 1 then and Y ∼ exp(−x4/12)dx then

sup
x∈R

∣∣∣P(n−3/4Mn ≤ x
)
− P(Y ≤ x)

∣∣∣ ≤ C n−1/2
I Proofs use nonnormal extension of “Stein’s method”
I Proofs inherently univariate
I What about higher-dimensional spin models?



Results Proof

Mean-field O(N) model
I Let SN−1 := {x ∈ RN : |x| = 1}
I Random spin configuration X ∈ (SN−1)n with distribution:

P(X = σ) =
1

Z
exp

β
n

∑
1≤i<j≤n

σi · σj

 =
1

Z
exp

(
β

n
Mn · Mn

)

Theorem (Kirkpatrick-Meckes (2013) & Kirkpatrick-Nawaz (2016))
Let 0 ≤ β < N . IfWn :=

√
N − β n−1/2Mn and Z ∼ N (0, IN ) then

sup
h∈H
|Eh(Wn)− Eh(Z)| ≤ C n−1/2

I H is a class of test functions h : RN → R
I Proof via multivariate normal extension of Stein’s method due to

Chatterjee-Meckes (2008)
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Results Proof

Critical mean-field O(N) model

I Let d denote the Wasserstein metric on probability measures

d(X,Y ) := inf
(X,Y )

E|X − Y |

= sup
h∈Lip(1)

|Eh(X)− Eh(Y )|

I Lip(1) is class of all h : RN → R with |h(x)− h(y)| ≤ |x− y|

Theorem (G.-Perez-Zhou (2025+))
Consider the mean-field O(N) model with N ≥ 1. If β = N then

d(n−3/4Mn, Y ) ≤ C n−1/2

where

Y ∼ exp

(
− N2

4(N + 2)
|x|4
)
dx

I Proof via an extension of multivariate nonnormal Stein’s method
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Results Proof

Stein’s method (Barbour’s generator version)
I Markov process in RN satisfying

dXx
t = −∇V (Xx

t )dt+
√

2 dBt, Xx
0 = x

I Invariant measure µ ∝ e−V (x)dx
I Semigroup Pt ϕ(x) := Eϕ(Xx

t )

I Generator A = lim
t→0

d

dt
Pt

∣∣∣
t=0

= ∆− 〈∇V,∇〉
I If Z ∼ µ then EAϕ(Z) = 0
I Motivates Stein’s equation:

Af(w) = h(w)− Eh(Z) (∗)
I For given h ∈ Lip(1) solve (∗) for fh then

d(W,Z) = sup
h∈Lip(1)

|EA fh(W )|

I Stein equation (∗) solved in terms of Pt

fh(x) = −
∫ ∞
0

[Pth(x)− µ(h)]dt

I Bounding derivatives of Pth gives bounds on Afh
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Results Proof

Theorem (Fang-Shao-Xu (2019))
Let µ ∝ e−V (x)dx with V ∈ C4(RN ;R) strictly convex (+ tech. conds).

Let (W,W ′)
d
= (W ′,W ), let δ := W ′ −W , fix α and set

R1 := αE[δ|W ] +∇V (W )

R2 := αE[δδT |W ]− 2I

Then there exists C > 0 such that

d(L(W ), µ) ≤ C
(
αE|δ|3 max(| log δ|, 1) + E|R1|+ E|R2|

)

I For critical O(N) model, V (x) = |x|4 is not strictly convex
I We weaken the assumption on V , so it is convex outside a ball
I Covers critical mean-field O(N) model

I Let W ′ be one-step update of W via single-spin Glauber process
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I We weaken the assumption on V , so it is convex outside a ball
I Covers critical mean-field O(N) model

I Let W ′ be one-step update of W via single-spin Glauber process
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Some details

I Fang-Shao-Xu bound derivatives of Pth(x) via Malliavin calculus

I We use the Bismut-Elworthy-Li formula to differentiate Pth(x)

I This then requires bounding spatial derivatives of Xx
t
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Happy Birthday Tony!


