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Central limit theorem

» Let X1, X5,..., X, beiid uniform spins in {—1,1}
» M, =Y " X, satisfies central limit theorem (de Moivre 1738):
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where Z ~ N(0,1)
How fast does this converge?
Berry-Esseen theorem (1941)
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sup [P(n Y2 M, < z) —P(Z < z)| <n /2
zE€R
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But what if X1, Xo, ..., X, are dependent?
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Curie-Weiss model - rates of convergence

» Proofs use nonnormal extension of “Stein’s method”
» Proofs inherently univariate
» What about higher-dimensional spin models?
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Mean-field O(N) model
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» Random spin configuration X € (S¥~1)" with distribution:
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Mean-field O(N) model

» LetSVli={z e RN : |z| =1}
» Random spin configuration X € (S¥~1)" with distribution:

x =0 jon (2 5 an) = o (S0 a0

1<i<j<n

Theorem (Kirkpatrick-Meckes (2013) & Kirkpatrick-Nawaz (2016))
Let0< B < N.IfW, :==+/N —Bn~'2 M,, and Z ~ N(0, I) then

sup [ER(W,) —Eh(Z)| < Cn~Y/?
heH

» 7 is a class of test functions » : RV — R

» Proof via multivariate normal extension of Stein’s method due to
Chatterjee-Meckes (2008)
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Critical mean-field O(N) model
» Let d denote the Wasserstein metric on probability measures

d(X,)Y):= inf E|X-Y|= sup |[EA(X)—-Eh(Y)|
(X,Y) heLip(1)

» Lip(1) is class of all b : RY — R with |h(x) — h(y)| < |z — y|

» Proof via an extension of multivariate nonnormal Stein’s method



Results Proof
00000 ®00

Stein’s method (Barbour’s generator version)
» Markov process in R satisfying
dX§ = -VV(XP)dt+v2dB,, X==



Results Proof
00000 ®00

Stein’s method (Barbour’s generator version)
» Markov process in R satisfying
dX§ = -VV(XP)dt+v2dB,, X==

» Invariant measure u o« e~V ®)dz



Results Proof
00000 ®00

Stein’s method (Barbour’s generator version)
» Markov process in R satisfying
dX§ = -VV(XP)dt+v2dB,, X==

» Invariant measure u o« e~V ®)dz
» Semigroup P, o(z) := E p(X})



Results Proof
00000 ®00

Stein’s method (Barbour’s generator version)
» Markov process in R satisfying
dX§ = -VV(XP)dt+v2dB,, X==

» Invariant measure u o« e~V ®)dz
» Semigroup P, o(z) := E p(X})

d
» Generator A = hm —P, =A—(VV,V)
odt "li=o



Results Proof
00000 ®00

Stein’s method (Barbour’s generator version)
» Markov process in RY satisfying
dX§ = -VV(XP)dt+v2dB,, X==
Invariant measure p o e~V (@) dg
Semigroup P; p(z) := Eo(X})
Generator A = hm d —P, =A—(VV,V)

odt “li=0
If Z ~ pthen IEA<p( )=0

vy

v

v



Results Proof
00000 @00

Stein’s method (Barbour’s generator version)
» Markov process in RY satisfying
dX§ = -VV(XP)dt+v2dB,, X==
Invariant measure p o e~V (@) dg
Semigroup P; p(z) := Eo(X})
Generator A = hm d —P, =A—(VV,V)

odt “li=0
If Z ~ pthen IEA<p( )=0

Motivates Stein’s equation:

Af(w) = h(w) — Eh(Z) (+)

vy

v

vy



Proof
®00

Stein’s method (Barbour’s generator version)
» Markov process in RY satisfying
dX§ = -VV(XP)dt+v2dB,, X==
Invariant measure p o e~V (@) dg
Semigroup P; p(z) := Eo(X})
Generator A = hm d —P, =A—(VV,V)

odt “li=0
If Z ~ pthen IEA<p( )=0

Motivates Stein’s equation:
Af(w) = h(w) — Eh(Z) ()
For given h € Lip(1) solve (x) for f;, then

dW,Z)= sup [EAfr(W)]
heLip(1)

vy

v

vy

v



Results Proof
00000 @00

Stein’s method (Barbour’s generator version)
» Markov process in RY satisfying
dX§ = -VV(XP)dt+v2dB,, X==
Invariant measure p o e~V (@) dg
Semigroup P; p(z) := Eo(X})
Generator A = hm d —P, =A—(VV,V)

odt “li=0
If Z ~ pthen IE.A<p( )=0

Motivates Stein’s equation:
Af(w) = h(w) — Eh(Z) ()
For given h € Lip(1) solve (x) for f;, then

dW.2)= sup [EA (W)
heLip(1)
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Stein equation (x) solved in terms of P,

falz) = — / " (Poh() — p(h)dt
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Stein’s method (Barbour’s generator version)
» Markov process in R satisfying
dX§ = -VV(XP)dt+v2dB,, X==
» Invariant measure u o« e~V ®)dz
» Semigroup P, o(z) := E p(X})
» Generator A = hm d —P, =A—(VV,V)

odt “lt=0
> IwauthenEAq)( )=0

» Motivates Stein’s equation:
Af(w) = h(w) — Eh(Z) ()
» For given h € Lip(1) solve (x) for f3 then

dW.2)= sup [EA (W)
heLip(1)

» Stein equation (x) solved in terms of P,

falz) = — / " (Poh() — p(h)dt

» Bounding derivatives of P.h gives bounds on Af},
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» For critical O(N) model, V(z) = |z|* is not strictly convex
» We weaken the assumption on V, so it is convex outside a ball

» Covers critical mean-field O(N') model
> Let W’ be one-step update of W via single-spin Glauber process
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Some details

» Fang-Shao-Xu bound derivatives of P;h(x) via Malliavin calculus
» We use the Bismut-Elworthy-Li formula to differentiate P;h(x)
» This then requires bounding spatial derivatives of X7
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