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The Enumeration Problem

Convex Hulls of Dyck Paths

Enumeration of paths with respect to area below path and area between
path and its convex hull (“water capacity”)

Half-length n = 6, height h = 3, water capacity w = 3, and area a = 20
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Water Capacity of Dyck Paths

A. Blecher, C. Brennan, A. Knopfmacher, Adv. Appl. Math. 112 101945 (2020)

o Idea: view water cells as Dyck paths
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Water Capacity of Dyck Paths

A. Blecher, C. Brennan, A. Knopfmacher, Adv. Appl. Math. 112 101945 (2020)

o Idea: view water cells as Dyck paths
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@ The generating function for the capacity of Dyck paths of
half-length n is given by

(1 + u)? u = S Tl
e (1—u_(1+u)zl—u’+2(1_U)Z(1—u’)2>

r=1 r=1

where z = u/(1 + u)? is the half-length generating variable
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Water Capacity of Dyck Paths

A. Blecher, C. Brennan, A. Knopfmacher, Adv. Appl. Math. 112 101945 (2020)

@ The exact capacity of Dyck paths of half-length n is given by

n+1 n+1
2n+2 r 2n+1 n
Zdo(r)(,,_ i 1)—4§<fdo(f> - d1<f))n+r+1(n_ r+ 1)‘4

with the sum-of-divisors function ds(r) = >_,, d°
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Water Capacity of Dyck Paths

A. Blecher, C. Brennan, A. Knopfmacher, Adv. Appl. Math. 112 101945 (2020)

@ The exact capacity of Dyck paths of half-length n is given by

n+1 n+1
2n+2 r 2n+1
) - N A— —q4n
(2 ) - ()
with the sum-of-divisors function ds(r) = >_,, d

@ The average water capacity of Dyck paths of half-length n, as
n— oo is

75/2 5/2
(—3\F> 32 — +(—732\f+3778 )\/ﬁ—2+0(n‘1/2)
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Motivation

@ There is non-trivial asymptotics n3/2

average area growth

, in line with the expected

@ The existing computation leads to the first moment of the water
capacity, with unit area weights

@ The competition between the two areas in a weighted model will be
intriguing and novel

@ In principle, the tools to do the two-variable area computation exist
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Motivation

@ There is non-trivial asymptotics n3/2

average area growth

, in line with the expected

@ The existing computation leads to the first moment of the water
capacity, with unit area weights

@ The competition between the two areas in a weighted model will be
intriguing and novel

@ In principle, the tools to do the two-variable area computation exist

Let's do it!
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The Ingredients

A. L. Owczarek, T. Prellberg, Australas. J. Combinat. 54 13 (2012)

The generating function for height-restricted Dyck paths

Dn(x,q) = Z dh,n,ax"q°
n,d

for the number of paths d, , 4 with height bounded by h, half-length n
and number of diamonds d below the path (so that area a =2d + n) is
given by

_ Qn(gx,q)

Dh(x,q) = (xq)

where

Qu(x,q) = i(—X)’"qm(’"‘” [/ i m} q

m
m=0

Summary
[e]
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The Concatenation Argument

o Take triangle x"yhg""
@ At height k, insert inverted Dyck path of height at most k:

Di(q*xp/q,p*/q°)

@ Two insertions at heights kK < h and one insertion at peak height h:

h-1 2
2
Gh(x,p,q) = x"y"q" | ] Du(a®xp/q,p°/a*)| Dun(a*"xp/q,p?/q")
k=1

@ Sum over all heights:

G(x,y,p,q) =1+ > y"Gu(x,p,q)
h=1
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The Generating Function

The generating function for Dyck paths with half-length n, height h,

water capacity w, and area a below the path,

Gy, P @)= > Cnnwax"y"p*q

n,h,w,a
is given by
bR H Qk( *3p%x, P/ G°)
o0 yq Q(q 2k=3 p?/q?)?
G(x,y:p.q Z 7
Qn(q?h—3p3 x7p2/q )@n+1(q*" 1 px, P2/ q?)

with the polynomials

oo

Z mm(m 1)|:/_m:|
m 1q

m=0

Summary
[e]
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A p <+ g near-symmetry

After some gentle massaging and using [ | g = g k(n=k) [:Jq we find

2
= b h hz[ P Qk(PQk‘3qP2x,q2/p2)} Qu(P*"2ap’x,4°/p%)
G(X:%P:CI): Xy q . >

k=0 [szo Qu(p*—3¢gx, q?/ pZ)] Qnr1(p*h—1qx, g%/p?)

but also

2
o | i . hz[ o Qk(p“*3qq2x,q2/p2)] Qu(pP*"2aa’x,4°/p%)
xX,Y,q,P) = Xy p 2
o [szo Qi(p?*—3¢gx, q2/p2)] Qnr1(p?h—1ax, g%/ p?)




Introduction The Generating Function Symmetries and Special Cases Convex Hull General Case Summary
0000 [e]e]e} [ Ie) [e]e]e} [e]e]e} [e]

A p <+ g near-symmetry

After some gentle massaging and using [ | g = g k(n=k) [:Jq we find

2
= b h hz[ P Qk(PQk‘3qP2x,q2/p2)} Qu(P*"2ap’x,4°/p%)
G(x,y,p.q) =Y _x"y"q

k=0 [HZ:O Qu(p*3qx, q?/ pZ)] i Qn1(p?~1gx, g%/ p?)
but also
G(x.y.q.p) = ixhyh o [ o Qu(P™ Pad’x, 4/ /32)12 Qu(p*"*qq°x,4°/p?)
. [HZZO Qk(p**—3gx, q2/p2)] Qn1(p?"—1gx, g2/ p?)

The denominators are polynomials in p, g, x independent of y and
symmetric under exchange of p and g

The locus of singularities x.(p, g) is symmetric under exchange of p and q|
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Special Cases

Known scenarios:

@ p=1, g = 1: standard Dyck path enumeration, Calatan generating
function

@ p =1, general q: Dyck paths enumerated by area, g-Airy
N. Haug, T. Prellberg, J. Math. Phys. 56 043301 (2015)
1 2/3
x(q)~ 7 +C(1=q)"", g—1

@ g =1, general p: new, by symmetry related to the previous
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Special Cases

Known scenarios:

@ p=1, g = 1: standard Dyck path enumeration, Calatan generating
function

@ p =1, general q: Dyck paths enumerated by area, g-Airy
N. Haug, T. Prellberg, J. Math. Phys. 56 043301 (2015)

1
(@)~ 7+ C1-q)?*, q—1
@ g =1, general p: new, by symmetry related to the previous
New scenarios:

@ p = q: Dyck paths enumerated by convex hull area

@ p # q: Dyck paths enumerated by area and water capacity
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Convex Hull Enumeration (p = q)

The generating function
shyh W2 ﬁ Qk(q2kx7 1)2
o XY 0 (g7 2x, 1)2
G — )
(x,¥,9,9) = Z Qh( zhx, 1)Qh+1( 2hx,1)

simplifies to

)
<)

o1 L)

k= on(

-Q l\)‘
k§

g

G(x,y,q,9) = IZ ™ 5

where Ui(t) are the Chebyshev polynomials of the second kind

2\[)Uh+1(
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Singularities

@ We find simple poles at

. 1
xla) = 4q%k cos(m/(k + 2))?
@ The poles xx(q) and xx+1(q) coalesce at (g, xx) given by
_ cos(/(k +2)) __cos(m/(k+3))*
W= cos(m/(k +3))’ k= 4cos(/(k + 2))2k+2

o xx(q) is closest singularity to the origin between x; and xx11
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Singularities

@ We find simple poles at

. 1
xla) = 4q%k cos(m/(k + 2))?
@ The poles xx(q) and xx+1(q) coalesce at (g, xx) given by
_ cos(/(k +2)) __cos(m/(k+3))*
W= cos(m/(k +3))’ k= 4cos(/(k + 2))2k+2

o xx(q) is closest singularity to the origin between x; and xx11

e Asymptotically, for k large,
qx ~1—72/k3 ) xx ~1/4+ 372 /(4k?) so that

1 3723

(o)~ 3+ 3

(1_q)2/37 q—>1

Summary
[e]



We find a sequence of first-order phase transitions accumulating at
(g,x) = (1,1/4)

The red line is
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General Case

The scenario of a sequence of phase transitions extends to p # g

Each surface can be computed and the intersection lines determined, e.g.

1
X1 = — Xp = p2+q2:1

pq’ pa(p® +q%)



What are these phase transition lines?
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The “Physics”

What are these phase transition lines?

G(x,y,p,q) =1+ > y"Gu(x,p,q)
h=1

We note
@ Singularity xx(p, g) only appears in Gp, for h > k

General Case
oeo

@ Equivalently, need configurations with height h > k for this

singularity to appear

Summary
[e]
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The “Physics”

What are these phase transition lines?

G(x,y,p,q) =1+ > y"Gu(x,p,q)
h=1

We note
@ Singularity xx(p, g) only appears in Gp, for h > k

General Case
oeo

@ Equivalently, need configurations with height h > k for this

singularity to appear

Some further analysis gives

@ Phase corresponding to xx(p, q) is dominated by configurations with

height h

Summary
[e]
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Water or Mustard?

It’s 8 degrees and raining, but Aleks Owczarek has braved the elements
and driven eight kilometres to Leo’s supermarket in Kew from his
home in Northcote.

He emerges with two jars of mustard. Not just any mustard, but Marcel
Recorbet-branded goodies, imported from the French Alps.

A must for mustard: Aleks Owczarek drove from Northcote to shop at Leo’s in
Kew, which will close next year. 10 ARMAO

The Age, June 26 2025
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Water or Mustard?

It’s 8 degrees and raining, but Aleks Owczarek has braved the elements
and driven eight kilometres to Leo’s supermarket in Kew from his
home in Northcote.

He emerges with two jars of mustard. Not just any mustard, but Marcel
Recorbet-branded goodies, imported from the French Alps.

Mustard on Sandwiches

A must for mustard: Aleks Owczarek drove from Northcote to shop at Leo’s in
Kew, which will close next year. 10 ARMAO

The Age, June 26 2025



@ Solvable model with two competing areas

@ Degeneracy due to “poor entropy” of filled water cells leads to
first-order transitions
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Summary

@ Solvable model with two competing areas

@ Degeneracy due to “poor entropy” of filled water cells leads to
first-order transitions

@ | started playing with these lattice models in 1991 as Tony's postdoc

Thank you, Tony!
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