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The Enumeration Problem

Convex Hulls of Dyck Paths

Enumeration of paths with respect to area below path and area between
path and its convex hull (“water capacity”)

Half-length n = 6, height h = 3, water capacity w = 3, and area a = 20
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Water Capacity of Dyck Paths

A. Blecher, C. Brennan, A. Knopfmacher, Adv. Appl. Math. 112 101945 (2020)

Idea: view water cells as Dyck paths

The generating function for the capacity of Dyck paths of
half-length n is given by
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where z = u/(1 + u)2 is the half-length generating variable



Introduction The Generating Function Symmetries and Special Cases Convex Hull General Case Summary

Water Capacity of Dyck Paths

A. Blecher, C. Brennan, A. Knopfmacher, Adv. Appl. Math. 112 101945 (2020)

Idea: view water cells as Dyck paths

The generating function for the capacity of Dyck paths of
half-length n is given by

− (1 + u)2

(1− u)u

(
u

1− u
− (1 + u)

∞∑
r=1

ur

1− ur
+ 2(1− u)

∞∑
r=1

ru2r

(1− ur )2

)

where z = u/(1 + u)2 is the half-length generating variable



Introduction The Generating Function Symmetries and Special Cases Convex Hull General Case Summary

Water Capacity of Dyck Paths

A. Blecher, C. Brennan, A. Knopfmacher, Adv. Appl. Math. 112 101945 (2020)

The exact capacity of Dyck paths of half-length n is given by
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Motivation

There is non-trivial asymptotics n3/2, in line with the expected
average area growth

The existing computation leads to the first moment of the water
capacity, with unit area weights

The competition between the two areas in a weighted model will be
intriguing and novel

In principle, the tools to do the two-variable area computation exist

Let’s do it!
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The Ingredients

A. L. Owczarek, T. Prellberg, Australas. J. Combinat. 54 13 (2012)

The generating function for height-restricted Dyck paths

Dh(x , q) =
∑
n,d

dh,n,dx
nqd

for the number of paths dh,n,d with height bounded by h, half-length n
and number of diamonds d below the path (so that area a = 2d + n) is
given by

Dh(x , q) =
Qh(qx , q)
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The Concatenation Argument

Take triangle xhyhqh
2

At height k , insert inverted Dyck path of height at most k:

Dk(q
2kxp/q, p2/q2)

Two insertions at heights k < h and one insertion at peak height h:

Gh(x , p, q) = xhyhqh
2

[
h−1∏
k=1

Dk(q
2kxp/q, p2/q2)

]2
Dh(q

2hxp/q, p2/q2)

Sum over all heights:

G (x , y , p, q) = 1 +
∞∑
h=1

yhGh(x , p, q)
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The Generating Function

The generating function for Dyck paths with half-length n, height h,
water capacity w , and area a below the path,

G (x , y , p, q) =
∑

n,h,w ,a

cn,h,w ,ax
nyhpwqa

is given by
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∞∑
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A p ↔ q near-symmetry

After some gentle massaging and using
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q
we find
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The denominators are polynomials in p, q, x independent of y and
symmetric under exchange of p and q

The locus of singularities xc(p, q) is symmetric under exchange of p and q
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Special Cases

Known scenarios:

p = 1, q = 1: standard Dyck path enumeration, Calatan generating
function

p = 1, general q: Dyck paths enumerated by area, q-Airy
N. Haug, T. Prellberg, J. Math. Phys. 56 043301 (2015)

xc(q) ∼
1

4
+ C (1− q)2/3 , q → 1

q = 1, general p: new, by symmetry related to the previous

New scenarios:

p = q: Dyck paths enumerated by convex hull area

p ̸= q: Dyck paths enumerated by area and water capacity
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Convex Hull Enumeration (p = q)

The generating function

G (x , y , q, q) =
∞∑
h=0

xhyhqh
2

h∏
k=1

Qk(q
2kx , 1)2
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simplifies to
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where Uk(t) are the Chebyshev polynomials of the second kind
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Singularities

We find simple poles at

xk(q) =
1

4q2k cos(π/(k + 2))2

The poles xk(q) and xk+1(q) coalesce at (qk , xk) given by

qk =
cos(π/(k + 2))

cos(π/(k + 3))
, xk =

cos(π/(k + 3))2k

4 cos(π/(k + 2))2k+2

xk(q) is closest singularity to the origin between xk and xk+1

Asymptotically, for k large,
qk ∼ 1− π2/k3 , xk ∼ 1/4 + 3π2/(4k2) so that

xc(q) ∼
1

4
+

3π2/3

4
(1− q)2/3 , q → 1
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Singularity Structure

We find a sequence of first-order phase transitions accumulating at
(q, x) = (1, 1/4)

The red line is

x =
1

4
+

3π2/3

4
(1− q)2/3
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General Case

The scenario of a sequence of phase transitions extends to p ̸= q

Each surface can be computed and the intersection lines determined, e.g.

x1 =
1

pq
, x2 =

1

pq(p2 + q2)
: p2 + q2 = 1
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The “Physics”

What are these phase transition lines?

G (x , y , p, q) = 1 +
∞∑
h=1

yhGh(x , p, q)

We note

Singularity xk(p, q) only appears in Gh for h ≥ k

Equivalently, need configurations with height h ≥ k for this
singularity to appear

Some further analysis gives

Phase corresponding to xk(p, q) is dominated by configurations with
height h
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Water or Mustard?

The Age, June 26 2025

Water Capacity of Dyck Paths
Mustard on Sandwiches
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Summary

Solvable model with two competing areas

Degeneracy due to “poor entropy” of filled water cells leads to
first-order transitions

I started playing with these lattice models in 1991 as Tony’s postdoc

Thank you, Tony!
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