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It all began with an unexpected email. . .

Long before Nigerian Princes tried to shift their money abroad and
international lotteries were easy to win, an unknown PhD student in
Amsterdam received the following email from a person claiming to be a
famous Australian mathematical physicist.

2 September 1992
Dear Mr Warnaar,

Congratulations on winning ANZIAM’s T.M. Cherry Prize. I have
been tasked by the Australian Mathematical Society with trans-
ferring the prize money into your account. Please send me the
following at your earliest convenience: bank account name, ac-
count number and, most importantly, your password.

Yours sincerely,
Prof. A.J. Guttmann
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A modern rendition of Tony’s #1 paper on MathSciNet

Let λ = (λ1, . . . , λr ) be a partition and α = (α1, . . . , αs) a composition
such that |λ| := λ1 + · · ·+ λr = α1 + · · ·+ αs =: |α|. Then a
semistandard Young tableau of shape λ and content α is a filling of the
Young diagram of λ such that rows are weakly increasing from left to
right, columns are strictly increasing from top to bottom, and exactly αi

boxes contain the number i . For example,

2 3 4 6

4 4 6

5 6

is a semistandard Young tableau of shape (4, 3, 2) and content
(0, 1, 1, 3, 1, 3).

The weight xT of a semistandard Young tableau T is the monomial

xT = xα1
1 xα2

2 · · · x
αs
s ,

so that the weight of the tableau in the example is x2x3x
3
4 x5x

3
6 .



There is a correspondence between semistandard Young tableaux and
configurations of vicious walkers.

Fix a positive integer n (possibly n =∞) and let T be a semistandard
Young tableaux of shape λ such that n ⩾ λ′

1.

If T consists of k columns (i.e., λ1 = k), draw k paths in the xy -plane
traversed by vicious walkers, such that walker i starts at Ai = (1− i , i −1)
and finishes at Ei = (λ′

i − i + 1, n − λ′
i + i − 1). Here walker i takes λ′

i

unit steps to the right and n − λ′
i unit steps up, where the numbers in

the ith column of T encode at which steps the walker goes right.
For example, if n = 6,

2 3 4 6

4 4 6

5 6

←→

A1

A2

A3

A4

E1

E2

E3

E4

2

4 5

3 4

6

4

6

6





The weight of a path A = (a, b)→ E = (a+ r , b + s) of length r + s
taken by a vicious walker is a monomial xi1xi2 · · · xir , where i1, . . . , ir are
the labels of the horizontal steps. The generating function of
configurations of single-walker paths from
A = (a, b)→ E = (a+ r , b + s) is

er (x1, . . . , xn) =
∏

1⩽i1<i2<···<ir⩽n

xi1 . . . xir ,

where er is the rth elementary symmetric function.

The weight of a configuration of vicious walkers is the product of the
individual weights. This makes the map between Young tableaux and
configurations of vicious walkers weight-preserving. By the
Lindström–Gessel–Viennot lemma, the generating function of k walkers
such that Ai = (1− i , i − 1)→ Ei = (λ′

i − i + 1, n − λ′
i + i − 1) for

1 ⩽ i ⩽ k is given by

det
1⩽i,j⩽k

(
eλ′

i−i+j(x1, . . . , xn)
)
.



This implies the (dual) Jacobi–Trudy identity

sλ(x1, . . . , xn) :=
∑

T∈SSYT(λ,·)

xT = det
1⩽i,j⩽k

(
eλ′

i−i+j(x1, . . . , xn)
)
,

where sλ is the Schur function.

An important generalisation of the Schur function is the Hall–Littlewood
polynomial:

Pλ(x1, . . . , xn; t) =
∑

T∈SSYT(λ,·)

ΨT (t) x
T

where ΨT (t) is a simple, combinatorially defined, polynomial of the form

(1− t)n1(1− t2)n2 · · · (1− tλ
′
1)

nλ′
1

such that, for T ∈ SSYT(λ, α),

ΨT (1) =

{
1 if sort(α) = λ,

0 otherwise.

Hence Pλ(0) = sλ and Pλ(1) = mλ, the monomial symmetric function.
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Can we use vicious walkers to find a Jacobi–Trudi-like formula for the
Pλ(t)?

Each configuration of vicious walkers now has a weight ΨT (t)x
T , where

we know from before how to distribute xT among the individual walkers.
But what about ΨT (t)?

Conjecture: Affine Jacobi–Trudi identity

We have

P(k r )(x1, . . . , xn; t) =
∑

y1,...,yk∈Z
y1+···+yk=0

det
1⩽i,j⩽k

(
tk(

yi
2)+iyi er−i+j−kyi (x1, . . . , xn)

)
.

Note that for the rectangular partition (k r ), all k vicious walkers take
exactly r steps to the right and n − r steps up.
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According to Gessel and Krattenthaler (Cylindric partitions, 1997),∑
y1,...,yk∈Z
y1+···+yk=0

det
1⩽i,j⩽k

(
er−i+j−kyi (x1, . . . , xn)

)
.

is the generating function of configurations of k vicious walkers
(P1, . . . ,Pk) where Pi starts at Ai = (1− i , i − 1) and ends at
Ei = (r − i + 1, n − r + i − 1), such that (P1, . . . ,Pk ,P

′
1) is also a

configuration of vicious walkers. Here P ′
1 is P1 translated by (−k, k):

A1

A2

A3

A4

A′
1 E1

E2

E3

E4

E ′
1

2

4 52

4 52

4 52

4 5



Hence ∑
y1,...,yk∈Z
y1+···+yk=0

det
1⩽i,j⩽k

(
er−i+j−kyi (x1, . . . , xn)

)
= er

(
xk1 , . . . , x

k
n )

= m(k r )(x1, . . . , xn)

as it should.



In his work on vicious walkers, Tony also considered walkers in the
presence of one or two walls.



Fix an integer n and let λ = (λ1, . . . , λr ) be a partition such that r ⩽ n,
and α = (α1, . . . , α2n) a composition such that |λ| = |α|. Then a
semistandard Young tableau of shape λ and content α is said to be
symplectic if all the entries in row i are at least 2i − 1.

2 3 4 6

4 4 6

5 6

is a symplectic tableau of shape (4, 3, 2) and content (0, 1, 1, 3, 1, 3) for
n = 3.

The weight xT of a symplectic tableau T is the monomial

xT = xα1−α2
1 xα3−α4

2 · · · xα2n−1−α2n
n ,

so that the weight of the tableau in the example is x−1
1 x−2

2 x−2
3 .



As you can read in Tony’s beautiful paper, there is a bijection between
the set of symplectic Young tableaux of shape λ such that λ′

1 ⩽ k and
configurations of k vicious walkers with starting points Ai = (1− i , i − 1)
and end points Ei = (λ′

i − i + 1, 2n − λ′
i + i − 1) such that no path

crosses the wall y = x − 1. Here walker i takes λ′
i unit steps to the right

and 2n − λ′
i unit steps up, where the numbers in the ith column of T

encode at which steps the walker goes right.
For example, if n = 3,

2 3 4 6

4 4 6

5 6

←→

A1

A2

A3

A4

E1

E2

E3

E4

2

4 5

3 4

6

4

6

6



This implies a Jacobi–Trudy identity for symplectic Schur functions

sp2n,λ(x1, . . . , xn) :=
∑

T∈SympYT(λ,·)

xT

= det
1⩽i,j⩽k

(
eλ′

i−i+j

(
x±1 , . . . , x±n

)
− eλ′

i−i−j

(
x±1 , . . . , x±n

))
.

The symplectic Schur function also has a Hall–Littlewood generalisation,
denoted as PCn

λ (x1, . . . , xn; t). Can we use vicious walkers in the presence
of a wall to find a Jacobi–Trudi-like formula for these?

Conjecture: Symplectic affine Jacobi–Trudi identity

For k a nonnegative integer, let K := 2k + 2. Then

PCn

(kn)(x1, . . . , xn; t) =
∑

y1,...,yk∈Z
det

1⩽i,j⩽k

(
t

1
2Ky

2
i −jyi en−i+j−Kyi

(
x±1 , . . . , x±n

)
− t

1
2Ky

2
i +jyi en−i−j−Kyi

(
x±1 , . . . , x±n

))
.
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From Tony et al.:



What is it all good for?

Theorem: Littlewood identity (Rains & W, 2021)

For k a nonnegative integer,

PCn

(kn)(x1, . . . , xn; t) = (x1 · · · xn)−k
∑

λ⊆(kn)

P2λ(x1, . . . , xn; t).

Combined with the conjecture this implies

(x1 · · · xn)−k
∑

λ⊆(kn)

P2λ(x1, . . . , xn; t)

=
∑

y1,...,yk∈Z
det

1⩽i,j⩽k

(
t

1
2Ky

2
i −jyi en−Kyi−i+j

(
x±1 , . . . , x±n

)
− t

1
2Ky

2
i +jyi en−Kyi−i−j

(
x±1 , . . . , x±n

))
.
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Specialising xi = qi−1/2 for 1 ⩽ i ⩽ n and using

en−r

(
qn−1/2, qn−3/2, . . . , q1/2−n

)
= q

1
2 r

2− 1
2 n

2

[
2n

n − r

]
q

,

yields∑
λ⊆(kn)

q|λ|P2λ

(
1, q, . . . , qn−1; t

)
=

∑
y1,...,yk∈Z

det
1⩽i,j⩽k

(
t

1
2Ky

2
i −jyiq

1
2 (Kyi+i−j)2

[
2n

n − Kyi − i + j

]
q

− t
1
2Ky

2
i +jyiq

1
2 (Kyi+i+j)2

[
2n

n − Kyi − i − j

]
q

)
.

In the large-n limit, the right-hand side may be written in product form

by the C
(1)
k Macdonald identity.



Let θ(z ; p) = (z ; p)∞(q/z ; p)∞ be a Jacobi theta function.

q, t-Rogers–Ramanujan identity (W, 2025)

For k a nonnegative integer,∑
λ

λ1⩽k

q|λ|P2λ

(
1, q, q2, . . . ; t

)

=
(tq2k+2; tq2k+2)k∞

(q; q)k∞

k∏
i=1

θ
(
q2i ; tq2k+2

) ∏
1⩽i<j⩽k

θ
(
qj−i , qi+j ; tq2k+2

)
.

For k = 1 and t = q this is the first Rogers–Ramanujan identity

∞∑
n=0

qn
2

(q; q)n
=

(q2, q3, q5; q5)∞
(q; q)∞

.



More generally, for t = q2n−1 we may use the theta function identity

(p; p)k∞
(q; q)k∞

k∏
i=1

θ
(
q2i ; p

) ∏
1⩽i<j⩽k

θ
(
qj−i , qi+j ; p

)
=

(p; p)n∞
(q; q)n∞

n∏
i=1

θ
(
qi+k ; p

) ∏
1⩽i<j⩽n

θ
(
qj−i , qi+j−1; p

)
for p = q2k+2n+1 to obtain:

A
(2)
2n Rogers–Ramanujan identity (Griffin, Ono, W, 2016)

For k, n positive integers, let p = q2k+2n+1. Then∑
λ

λ1⩽k

q|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)

=
(p; p)n∞
(q; q)n∞

n∏
i=1

θ
(
qi+k ; p

) ∏
1⩽i<j⩽n

θ
(
qj−i , qi+j−1; p

)
.



Conjecturally, the GOW theorem is the generating function of partitions
in which parts can take n distinct colours such that the frequencies of
parts of a given colour satisfy some simple restrictions.

For simplicity, let n = 3 with colours red, blue and green ordered as
red > blue > green.

An example of a partition for n = 3 is λ = (5, 3, 3, 2, 2, 2, 1) or

{
f5 = 1

f3 = 1

f3 = 1

f2 = 2

f2 = 1

f1 = 1



An n-coloured partition is an A
(2)
2n partition for the standard module

L(kΛn) if for any path on the associated frequency array the sum of the
entries along the path does not exceed k .

Two examples of paths on the frequency array for n = 3 are shown below:

k

0

0
0

0

0

f1

f1

f1

f2

f2

f2

f3

f3

f3

f4

f4

f4

f5

f5

f5

f6

f6

f6

f7

f7

f7

f8

f8

f8

f9

f9

f9

. . .

. . .

. . .



I will conclude with some homework for .

Check that the partition λ = (5, 3, 3, 2, 2, 2, 1) is not an A
(2)
2n

partition associated with L(6Λ3).

6

0

0
0

0

0

1

0

0

0

2

1

1

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

. . .

. . .

. . .

Count all A
(2)
2n partitions associated with L(6Λ3) of size n, where

1 ⩽ n ⩽ 1000.


