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Long before Nigerian Princes tried to shift their money abroad and
international lotteries were easy to win, an unknown PhD student in
Amsterdam received the following email from a person claiming to be a
famous Australian mathematical physicist.

2 September 1992
Dear Mr Warnaar,

Congratulations on winning ANZIAM’s T.M. Cherry Prize. | have
been tasked by the Australian Mathematical Society with trans-
ferring the prize money into your account. Please send me the
following at your earliest convenience: bank account name, ac-
count number and, most importantly, your password.

Yours sincerely,
Prof. A.J. Guttmann





















A modern rendition of Tony's #1 paper on MathSciNet

Let A = (A1,...,A,) be a partition and a = (a1, ..., @s) a composition
such that [A\| ;=X\ +---+ X, =a1+ -+ as =:|a|]. Then a
semistandard Young tableau of shape A and content « is a filling of the
Young diagram of A such that rows are weakly increasing from left to
right, columns are strictly increasing from top to bottom, and exactly «;
boxes contain the number /. For example,

2[3]4]6]
4]4]6
5/6

is a semistandard Young tableau of shape (4,3,2) and content

(0,1,1,3,1,3).

The weight xT of a semistandard Young tableau T is the monomial
T ay o 1o

o .. s
X =X Xs°,

so that the weight of the tableau in the example is xpx3x3x5x3.



There is a correspondence between semistandard Young tableaux and
configurations of vicious walkers.

Fix a positive integer n (possibly n = c0) and let T be a semistandard
Young tableaux of shape X such that n > \].

If T consists of k columns (i.e., A\; = k), draw k paths in the xy-plane
traversed by vicious walkers, such that walker i starts at A; = (1 —1/,i—1)
and finishes at E; = (A} — i+ 1,n— X+ i — 1). Here walker i takes )
unit steps to the right and n — A/ unit steps up, where the numbers in
the ith column of T encode at which steps the walker goes right.
For example, if n = 6,
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b. A tableau

a. A star

Figure 3. (a) A typical star configuration and (b) associated tableau.



The weight of a path A= (a,b) - E =(a+r,b+s) of length r +s
taken by a vicious walker is a monomial x; x;, - - - x;, where i, ..., i, are
the labels of the horizontal steps. The generating function of
configurations of single-walker paths from
A=(a,b) > E=(a+r,b+5s)is

er(Xty ey Xp) = H Xy oo Xi,

1< <ip<-<i<n
where e, is the rth elementary symmetric function.

The weight of a configuration of vicious walkers is the product of the
individual weights. This makes the map between Young tableaux and
configurations of vicious walkers weight-preserving. By the
Lindstrom—Gessel-Viennot lemma, the generating function of k walkers
suchthat Ai=(1—i,i—1) = E =W\ —i+1,n— X +i—1) for
1< i< kis given by

15’?@ (exr—iri(x1, -5 xn))-



This implies the (dual) Jacobi—Trudy identity

sa(X1,. 0y Xn) = Z xT = 1<c{_e,t<k (e,\;_;+j(X17 e ,x,,)),
TESSYT(M,) SHIS

where sy is the Schur function.



This implies the (dual) Jacobi—Trudy identity
N T _
S,\(Xl,...,X,,) = Z X = 1£‘fi'tgk (e,\lg_,+j(x1,...,xn)),
TESSYT(A,")

where sy is the Schur function.

An important generalisation of the Schur function is the Hall-Littlewood
polynomial:

Pr(X1y. .y X t) = Z \IIT(t)xT

TESSYT(),")

where W(t) is a simple, combinatorially defined, polynomial of the form
(L= )" (1= ) (1 )™

such that, for T € SSYT(\, «),

1 ifsort(a) = A,
V(1) =
r(1) {0 otherwise.

Hence P»(0) = sy and P(1) = my, the monomial symmetric function.



Can we use vicious walkers to find a Jacobi—Trudi-like formula for the
P,\(t)?

Each configuration of vicious walkers now has a weight W1 (t)x, where
we know from before how to distribute x” among the individual walkers.
But what about Wr(t)?



Can we use vicious walkers to find a Jacobi—Trudi-like formula for the
P,\(t)?

Each configuration of vicious walkers now has a weight W1 (t)x, where
we know from before how to distribute x” among the individual walkers.
But what about Wr(t)?

Conjecture: Affine Jacobi—Trudi identity

We have
. j : k(%) +iyi
P(kr)(xl, ey Xy t) = det (t (2) b e,_;+j_ky,.(x1, . ,Xn)).
1<ijsk
Y1, YkEL
yit-+y=0

Note that for the rectangular partition (k"), all k vicious walkers take
exactly r steps to the right and n — r steps up.



According to Gessel and Krattenthaler (Cylindric partitions, 1997),

det (e_- i—kyi (X1, ..., X% )
E 1<ij<k r—i+j y,( s ’ n)

Yiseen YK€

Vit +ye=0
is the generating function of configurations of k vicious walkers
(P1,...,Px) where P; starts at A; = (1 — i,/ — 1) and ends at
Ei=(r—i+1,n—r+i—1), such that (Py,..., Pk, Pj)is also a
configuration of vicious walkers. Here Pj is P; translated by (—k, k):




Hence

K K
g det (e,_,-+j_ky,.(x1,...,xn)) = e (x5, ..., xp)
1<i <k
Y1y YKEL
Vit Fy=0

as it should.



In his work on vicious walkers, Tony also considered walkers in the
presence of one or two walls.

Let n be fixed, and let 7 be a symplectic tableau with entries at most 22 + 1. The weight
27 of the symplectic tableau T is defined by

o l-lxlur,,m |-, =] (“.10)
1=

where 7; denotes the entry in cell (i, j) of 7. Note that entries 2n + 1 do not contribute to

the weight. Given this terminology, the (even) symplectic character sp, (v, x5, ..., x1)is
also given by (see [42, theorem 4.2], [48, theorem 2.3]),
s =Y el @11
T

where the sum s over all symplect
symplectic character sp, (x}

s ) =Y et @.12)

ableaux T of shape A with entries < 2, whereas the odd
x3, o given by (see [42, theorem 4.2]),

W

<o+l
7)1, [39, proposition 3.2],

where the sum is over all symplectic tableaux 7" of shape % with ent
The formula for symplectic characters needed here s (see [10,
(48, theorem 4.5(1)))
Mmim M Em—i— 42
py(L, 1 -
R Il mA2—i—j

1<i<jgm St

=11 m-t @.13)

<

1< 2346
3< 446
5< 56




Fix an integer n and let A = (A1,...,\,) be a partition such that r < n,
and o = (aq,...,az,) a composition such that |A| = |a|. Then a
semistandard Young tableau of shape A and content « is said to be
symplectic if all the entries in row /i are at least 2/ — 1.

2[3]4]6]
4]4]6
5/6

is a symplectic tableau of shape (4, 3,2) and content (0,1,1,3,1,3) for
n=23.

The weight x of a symplectic tableau T is the monomial

T _ a1—op, az—oy Q2p—1—02n
X =X X5 ce Xp ,
so that the weight of the tableau in the example is x; 'x; *x3 2.



As you can read in Tony's beautiful paper, there is a bijection between
the set of symplectic Young tableaux of shape A such that A} < k and
configurations of k vicious walkers with starting points A; = (1 —i,i — 1)
and end points E; = (A, — i+ 1,2n — X, + i — 1) such that no path
crosses the wall y = x — 1. Here walker i takes A} unit steps to the right
and 2n — M} unit steps up, where the numbers in the ith column of T
encode at which steps the walker goes right.
For example, if n = 3,
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This implies a Jacobi—Trudy identity for symplectic Schur functions

SPan A (X155 Xn) 1= Z xT

TeSympYT(A,-)

= det (e O X E) —ev (L xE )
1<7, <k Al I+J(17 7n) )\(-IJ(]_? an)



This implies a Jacobi—Trudy identity for symplectic Schur functions

. T

SPan A (X155 Xn) 1= Z X
TeSympYT(A,-)

_ + + + +

= 1gd,',ejt<k (e/\;,,-ﬂ-(xl ey Xp ) — e)\/{,,-,j(xl R ))
The symplectic Schur function also has a Hall-Littlewood generalisation,
denoted as Pf\j”(xl, ..., Xn; t). Can we use vicious walkers in the presence
of a wall to find a Jacobi—Trudi-like formula for these?



This implies a Jacobi—Trudy identity for symplectic Schur functions
SPan A (X155 Xn) 1= Z xT

TeSympYT(A,-)

= det (e O X E) —ev (L xE )
1<, <k Al I+J(17 7n) )\/.11(17 an)

The symplectic Schur function also has a Hall-Littlewood generalisation,
denoted as Pf\j"(xl, ..., Xn; t). Can we use vicious walkers in the presence
of a wall to find a Jacobi—Trudi-like formula for these?

Conjecture: Symplectic affine Jacobi—Trudi identity

For k a nonnegative integer, let K := 2k + 2. Then

@ oA Z LRy —jyi + +
P(k';)(Xl,...,Xn,t) = 1<ci'ejt<k (t2 'e,,_,-+j_Ky,.(X1 9o00gi )
Vi VK€L T

LKy Ly + +
— t2 y’—Hy’en_,'_j_Ky,.(Xl see ey X ) .




From Tony et al.:

2. THE NUMBER OF VICIOUS WALKER CONFIGURATIONS WITH
ARBITRARY FIXED STARTING AND END POINTS

The Lindstrdm-Gessel-Viennot determinant’”'® in the case of the
presence of two walls yields the following result. It appears already in
ref. 14, Eq. (13), in an equivalent form.

Theorem 1. Let 0<a,<a,<--- <a,<h, all g’s of the same
parity, and 0<e,; <e, < --- <e, <h, all ¢;’s of the same parity, such that
a;+e;=m(mod 2), i=1,2,..., p. The number of vicious walkers with p
branches of length m, the ith branch running from 4;=(0,a;) to
E, =(m,e;), i=1,2,..., p, which do not go below the x-axis nor above the
line y = A, is given by

ks m m
_ . 2.1
liitsp<k=z_w(<@+k(h+2)> (W+k(h+2)+1)>> @



What is it all good for?



What is it all good for?

Theorem: Littlewood identity (Rains & W, 2021)

For k a nonnegative integer,

P((,j(ﬁ,)(xl,...,x,,;t): Z Pox(x1, ...y Xp; £).
AC (k")

Combined with the conjecture this implies
Z P2)\ X1,.. s Xny )
AC (k)

_ E —Ky,- —Jyi A== +
B 1<diejt<k (t2 en—kyi—iti (X1 s+ 5 %)
Vi YK€ S

1K 2+, + +
— t2"i Jye,,_Ky,._,'_j(Xl sy X ) .



Specialising x; = g’ /2 for 1 < i < n and using
— _ _ 1,2 1,2 2n

enir(qn 1/27qn 3/27.”’q1/2 n) _ q2r >N |:n :| ,

q

yields

> qMPn(l,q...9" N e)
AC(k")

= Y det [ eiiinghlioy 2n
g LSSk n—Kyi—i+j q

Y1y YK€

_ téKyl'2+jYiqé(K}/f+i+j)2|: 2n ) :| >
n—Kyi—i—J),

In the large-n limit, the right-hand side may be written in product form
by the Cf(l) Macdonald identity.



Let 0(z; p) = (z; p)o(q/2; P)oo be a Jacobi theta function.

g, t-Rogers—Ramanujan identity (W, 2025)

For k a nonnegative integer,

Z qlMPQ)\(]-a q, q2a S t)
A1>\<k

(tq2k+2 . tq2k+2)k

k
— ! o) H 0(q2i; tq2k+2) H e(qui’ qi+j; tq2k+2).

“ Nk
(4: 9)5 i=1 1<i<j<k

For k =1 and t = g this is the first Rogers—Ramanujan identity




More generally, for t = g2~ we may use the theta function identity

(P p)éo . 2. j—i i)
o 1Lo@ie) 11 0(@.aip)
=1

1<i<j<k

(P P)% 9(q'+k,p) H e(qj—i7qi+j—1;p)

(q 9)% i=1 1<i<j<n

2k+2n+1

forp=gq to obtain:

A( ) Rogers—Ramanujan identity (Griffin, Ono, W, 2016)

For k, n positive integers, let p = ™21 Then

> dMPa(1,9.¢% ... ¢

A
A<k

oo H /+k H G(qj_i, qi+j—1; p).

1<i<j<n




Conjecturally, the GOW theorem is the generating function of partitions
in which parts can take n distinct colours such that the frequencies of
parts of a given colour satisfy some simple restrictions.

For simplicity, let n = 3 with colours red, blue and green ordered as
red > blue > green.

An example of a partition for n =3 is A = (5,3,3,2,2,2,1) or

f:% e o o o o
f3 = e o o

f3 e o o
f—2 { o o

=1 o o

fi:]_ [ ]



An n-coloured partition is an Ag‘;) partition for the standard module
L(kA,) if for any path on the associated frequency array the sum of the
entries along the path does not exceed k.

Two examples of paths on the frequency array for n = 3 are shown below:



|
| will conclude with some homework for W

o Check that the partition A = (5,3,3,2,2,2,1) is not an A
partition associated with L(6A3).

6 0 1 0 0 0
0 1 0 0 0

0 0 0 1 0 0
0 2 0 0 0

0 1 1 0 0 0
0 0 0 0 0

o Count all Agi) partitions associated with L(6A3) of size n, where
1 < n < 1000.



