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INTRODUCTION



SELF-AVOIDING WALKS

A self-avoiding walk (SAW)  is a sequence of lattice vertices  such that  for
, and  are adjacent on the lattice for each . We say  has size .

Since the lattice is vertex-transitive, if one SAW is a translation of another we consider them to be the
same. Equivalently assume .

For a given lattice take  to be the number of SAWs of size . Then e.g. on the square lattice
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SELF-AVOIDING POLYGONS

A self-avoiding polygon (SAP)  is a sequence of lattice vertices  such that  for
, and  are adjacent on the lattice, and so too are . The size of  is .

Equivalently a SAP is a SAW which ends adjacent to its initial vertex.

For our purposes two SAPs are the same if they are translates of one another. So there are  SAWs (of
length ) corresponding to each SAP of size . Let  be the number of size-  SAPs. Then e.g. on the
square lattice

(On the triangular and fcc lattices SAPs can have odd size.)

π ( , , … , )π1 π1 πn ≠πi πj
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( = (1, 0, 2, 0, 7, 0, 28, 0, 124, …)pn)n≥4



THETAS AND TADPOLES

SAPS have all vertices of degree 2 while SAWs have two vertices of degree 1. Here we introduce vertices of
degree 3: thetas (two vertices of degree 3) and tadpoles (one degree 1 and one degree 3).

Again counted up to translation. On the square lattice

(θn)n≥7

(φn)n≥5

= (2, 0, 12, 6, 62, 60, 338, 430, 1966, …)

= (8, 24, 84, 244, 740, 2072, 6004, …)



LATTICES

On the square and cubic lattices, the three "arms" of a theta must have the same parity  strong parity
effects. Not a problem on the triangular or fcc lattices.

→



MOTIVATION



POLYMER MODELS

Conception for SAWs is usually credited to Paul Flory ( ). He was interested in a
theoretical model for long linear polymer chains in solution. In particular he wanted a model which
accounted for the excluded volume principle: the idea that two monomers in a chain cannot occupy the
same space.

poly(2-vinylpyridine) square lattice SAW of length  

SAWs (or SAPs, trees, etc., depending on the model) turn out to be a good model for polymers in a good
solvent (at least for long ones).

J. Chem Phys. 1949

(Y. Roiter & S. Minko, J. Amer. Chem. Soc. 2005) 2
25 (N. Clisby 201?)

https://doi.org/10.1063/1.1747243
https://doi.org/10.1021%2Fja0558239
https://clisby.net/projects/saw_videos/


KNOTS

Headphone cables, shoelaces, necklaces, and even polymer molecules can get tangled up in knots and
links.

H.L. Frisch and E. Wasserman ( ) and M. Delbruck ( )
conjectured that random simple closed curves in  will be knotted with high probability. More
precisely, the probability of being unknotted decays exponentially with the length of the curve.

( )

The FWD conjecture was first proved by D.W. Sumners and S.G. Whittington ( )
for SAPs on the cubic lattice. Their method used pattern theorems.

Subsequently proved for a number of other models (on and off the lattice).

J. Amer. Chem. Soc. 1961 Proc. Symp. Appl. Math. 1962
R
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S.A. Wasserman et al, Science 1985

J. Phys. A: Math. Gen. 1988

https://doi.org/10.1021/ja01479a015
https://doi.org/10.1090/psapm/014
https://doi.org/10.1126/science.2990045
https://doi.org/10.1088/0305-4470/21/7/030


THE SIZE OF KNOTS

Knots are very likely because small "knotted parts" can be inserted into a polygon and force it to be
knotted. But in turn the "knotted part" of a typical large knotted polygon is relatively small.

Different ways to estimate the "size" of the knotted part. Marcone et al ( ) use two different
methods:

Both methods lead to an estimate of the knotted part of an -edge prime knot occupying  edges
on average.

J. Phys. A 2005

n ≈ n0.75

https://iopscience.iop.org/article/10.1088/0305-4470/38/1/L03


KNOTS VS. THETAS

Question: How do the different parts of a typical theta scale in size? Most likely two arms are small and
one big:



R-LOOPS

During DNA transcription, single-stranded RNA can fuse with double-stranded RNA to form R-loops:

The presence of R-loops can affect repair, eg. in human cells.

Jonoska et al, Using Mathematics to Understand Biological Complexity 2021

Carrasco-Salas et al, Nucleic Acids Res. 2019

https://doi.org/10.1007/978-3-030-57129-0_3
https://doi.org/10.1093/nar/gkz341


R-LOOPS

Topologically the DNA:RNA hybrid is a graph with two vertices of degree 3 or 4:

Different parts are single- or double-stranded so may have different stiffness etc.



KNOTTED THETA-GRAPHS

Thetas can also have non-trivial topology -- open questions about minimum number of edges required,
etc.

Buck & O'Donnol 2018

https://arxiv.org/abs/1710.05237


MONTE CARLO METHODS



BFACF ALGORITHM

The BFACF algorithm (Berg & Foester , Aragão de Carvalho, Caracciolo & Fröhlich  and ) is a
method for sampling SAWs and SAPs which preserves topology.

For 2D SAPs it is ergodic while in 3D the ergodicity classes are the knot types. For SAWs the ergodicity
classes are walks between two fixed endpoints.

Also works on the triangular lattice.

1981 1983 1983

https://doi.org/10.1016/0370-2693(81)90545-1
https://doi.org/10.1051/jphys:01983004403032300
https://doi.org/10.1016/0550-3213(83)90213-4


BFACF ALGORITHM

For the fcc and bcc lattices, Janse van Rensburg and Rechnitzer ( ) found a set of moves which also
give the knot types as the ergodicity classes.

2011

https://doi.org/10.1088/1751-8113/44/16/165001


BFACF FOR BRANCHED STRUCTURES

The above BFACF moves can shift vertices of degree 2 and leave vertices of degree 1 fixed.

To accommodate vertices of degree 3, Sokai (2018) found a new set of moves on the square/cubic lattices
which can realise any ambient isotopic transformation:

Note that the degree 3 vertices can move around.



BFACF FOR BRANCHED STRUCTURES

Simpler on the triangular lattice:

Same moves on the fcc lattice since the faces are still triangles.



WANG-LANDAU METHOD

We combine the BFACF moves with the Wang-Landau method ( ) to estimate the number  of
configurations of size .

Start with  and arrays  and  both all .

1. For a given configuration , pick a random edge and a random adjacent plaquette. If there is a
valid BFACF move (changing  to ), accept with Metropolis probability

else stay in state . Here  is the probability that a randomly chosen move on state  will
change it to state .

2. Now in state  (either  or ), increment  by  and  by 1.
3. If  is sufficiently flat, decrease  (e.g. ), reset  and start again. Otherwise

continue with the current value of .
4. When  reaches some small threshold, terminate.

If  is the size of the smallest configuration, set  and then for each  set

Then .
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m g = G(m) n

A(n) = exp(G(n) − g) ⋅ .am

A(n) ≈ an

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.056101




WANG-LANDAU METHOD

Easily generalises to measure more than just size -- e.g. we will estimate , the number of thetas of
size  with shortest arm of size .

Many other variations -- e.g. change how  decreases, or tune  and then use those values to estimate
some other quantity.

θn,k

n k

f G



RESULTS: 2D



TEST CASE: THE NUMBER OF POLYGONS

The number  of SAPs on the lattice is  where ( )

and  is the connective constant of the lattice ( , ):

pn ∼ const.ngμn Guttmann 2009

g = {
−5/2

−2.76279

d = 2

d = 3

μ Jensen 2004 Clisby 2022

μtri

μfcc

= 4.150797226(26)

= 10.03705785(14)

file://www.springer.com/gp/book/9781402099267
https://doi.org/10.1088/1742-5468/2004/10/p10008
https://iopscience.iop.org/article/10.1088/1751-8121/aca189


TEST CASE: THE NUMBER OF POLYGONS

Estimating the exponent  for the triangular lattice (10 independent runs, ):g N = 500



THE NUMBER OF THETAS

Expect  for the same .

Estimating the exponent  for the triangular lattice (10 independent runs, ):

   places to position a small loop within a big polygon.

∼ const.θn nhμn μ

h N = 500

h ≈ g + 1 ↔ O(n)



THE NUMBER OF THETAS

Expect θn ∼ const.nhμn for the same μ.

Estimating the exponent h for the triangular lattice (10 independent runs, N = 500):

h ≈ g + 1 ↔  O(n) places to position a small loop within a big polygon.

WL flattening over length and shortest arm:



THE NUMBER OF THETAS

Expect θn ∼ const.nhμn for the same μ.

Estimating the exponent h for the triangular lattice (10 independent runs, N = 500):

h ≈ g + 1 ↔  O(n) places to position a small loop within a big polygon.

WL flattening over length and middle arm:



THE NUMBER OF THETAS

Estimating the exponent  for the square lattice (10 independent runs, ):

   places to position a small loop within a big polygon.

h N = 500

h ≈ g + 1 ↔ O(n)



THE NUMBER OF THETAS

Estimating the exponent h for the square lattice (10 independent runs, N = 500):

h ≈ g + 1 ↔  O(n) places to position a small loop within a big polygon.

WL flattening over length and shortest arm:



THE NUMBER OF THETAS

Estimating the exponent h for the square lattice (10 independent runs, N = 500):

h ≈ g + 1 ↔  O(n) places to position a small loop within a big polygon.

WL flattening over length and middle arm:



MEAN LENGTH OF SHORTEST THETA ARM

If  is the length of the shortest arm then expect (?)  for some . Estimating  for
the triangular lattice (10 independent runs, ):
σ(θ) ⟨σ ∼ const.⟩n ns s s

N = 500



MEAN LENGTH OF SHORTEST THETA ARM

Estimating  for the square lattice (10 independent runs, ):s N = 500



MEAN LENGTH OF SECOND-SHORTEST THETA ARM

Can also look at , the second-shortest (second-longest) arm. Triangular lattice (10 independent
runs, ):

Likely the same exponent as for shortest arm.

τ(θ)
N = 500



MEAN LENGTH OF SECOND-SHORTEST THETA ARM

Square lattice (10 independent runs, ):

Likely the same exponent as for shortest arm.

N = 500



RATIO OF SECOND-SHORTEST TO SHORTEST ARM

Can also look at the ratio of the two. Expect it to approach a (lattice-independent?) constant. Triangular
lattice (10 independent runs, ):N = 500



RATIO OF SECOND-SHORTEST TO SHORTEST ARM

Square lattice (10 independent runs, ):N = 500



DISTRIBUTION OF 

Distribution of the length of the shortest arm for triangular lattice (mean value indicated in green)

σ



DISTRIBUTION OF Σ

Distribution of the length of the shortest arm for triangular lattice (mean value indicated in green)

n = 100:



DISTRIBUTION OF Σ

Distribution of the length of the shortest arm for triangular lattice (mean value indicated in green)

n = 200:



DISTRIBUTION OF Σ

Distribution of the length of the shortest arm for triangular lattice (mean value indicated in green)

n = 300:



DISTRIBUTION OF Σ

Distribution of the length of the shortest arm for triangular lattice (mean value indicated in green)

n = 400:



DISTRIBUTION OF Σ

Distribution of the length of the shortest arm for triangular lattice (mean value indicated in green)

n = 500:



RESULTS: 3D



THE NUMBER OF THETAS

Estimating the exponent  for the fcc lattice (10 independent runs, ):

Recall that   again .

Note that these thetas are unknotted so should really use  but don't have an estimate for that.

h N = 400

g ≈ −2.76279 → h ≈ g + 1

μ0



THE NUMBER OF THETAS

Estimating the exponent h for the fcc lattice (10 independent runs, N = 400):

Recall that g ≈ − 2.76279 →  again h ≈ g + 1.

Note that these thetas are unknotted so should really use μ0 but don't have an estimate for that.

WL flattening over length and shortest arm:



THE NUMBER OF THETAS

Estimating the exponent h for the fcc lattice (10 independent runs, N = 400):

Recall that g ≈ − 2.76279 →  again h ≈ g + 1.

Note that these thetas are unknotted so should really use μ0 but don't have an estimate for that.

WL flattening over length and middle arm:



THE NUMBER OF THETAS

Estimating the exponent  for the cubic lattice (10 independent runs, ):

Again .

Note that these thetas are unknotted so should really use  but don't have an estimate for that.

h N = 400

h ≈ g + 1

μ0



THE NUMBER OF THETAS

Estimating the exponent h for the cubic lattice (10 independent runs, N = 400):

Again h ≈ g + 1.

Note that these thetas are unknotted so should really use μ0 but don't have an estimate for that.

WL flattening over length and shortest arm:



THE NUMBER OF THETAS

Estimating the exponent h for the cubic lattice (10 independent runs, N = 400):

Again h ≈ g + 1.

Note that these thetas are unknotted so should really use μ0 but don't have an estimate for that.

WL flattening over length and middle arm:



MEAN LENGTH OF SHORTEST THETA ARM

If  is the length of the shortest arm then expect (?)  for some . Estimating  for
the FCC lattice (10 independent runs, ):
σ(θ) ⟨σ ∼ const.⟩n ns s s

N = 400



MEAN LENGTH OF SHORTEST THETA ARM

Estimating  for the cubic lattice (10 independent runs, ):s N = 400



MEAN LENGTH OF SECOND-SHORTEST THETA ARM

Can also look at , the second-shortest (second-longest) arm. FCC lattice (10 independent runs,
):

Likely the same exponent as for shortest arm.

τ(θ)
N = 400



MEAN LENGTH OF SECOND-SHORTEST THETA ARM

Cubic lattice (10 independent runs, ):

Likely the same exponent as for shortest arm.

N = 400



RATIO OF SECOND-SHORTEST TO SHORTEST ARM

Can also look at the ratio of the two. Expect it to approach a (lattice-independent?) constant. FCC lattice
(10 independent runs, ):N = 400



RATIO OF SECOND-SHORTEST TO SHORTEST ARM

Cubic lattice (10 independent runs, ):N = 400



DISTRIBUTION OF 

Distribution of the length of the shortest arm for FCC lattice (mean value indicated in green)

This contrasts with observed knot size distributions (linear chains) which seem to have a peak at fixed
length and then power-law decay ( ).

σ

Tubiana et al 2013

https://doi.org/10.1021/ma4002963


DISTRIBUTION OF Σ

Distribution of the length of the shortest arm for FCC lattice (mean value indicated in green)

This contrasts with observed knot size distributions (linear chains) which seem to have a peak at fixed
length and then power-law decay ( ).

n = 100:

Tubiana et al 2013

https://doi.org/10.1021/ma4002963


DISTRIBUTION OF Σ

Distribution of the length of the shortest arm for FCC lattice (mean value indicated in green)

This contrasts with observed knot size distributions (linear chains) which seem to have a peak at fixed
length and then power-law decay ( ).

n = 200:

Tubiana et al 2013

https://doi.org/10.1021/ma4002963


DISTRIBUTION OF Σ

Distribution of the length of the shortest arm for FCC lattice (mean value indicated in green)

This contrasts with observed knot size distributions (linear chains) which seem to have a peak at fixed
length and then power-law decay ( ).

n = 300:

Tubiana et al 2013

https://doi.org/10.1021/ma4002963


DISTRIBUTION OF Σ

Distribution of the length of the shortest arm for FCC lattice (mean value indicated in green)

This contrasts with observed knot size distributions (linear chains) which seem to have a peak at fixed
length and then power-law decay ( ).

n = 400:

Tubiana et al 2013

https://doi.org/10.1021/ma4002963


FUTURE WORK

Other shapes? (e.g. tadpoles, combs)
How do knots affect things?
Minimum sizes of prime theta knots
Introduce weights to model R-loops



Thanks for listening!




