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A few words about Tony Guttmann

Tony has published about 320 articles and is still going strong.

Tony completed the Annecy Lake Marathon in April, 2025, at age 80.

Tony has made important/central contributions to AMSI, MASCOS,
ANZAMP, MATRIX, ACEMS, and probably many more things I don’t
know about. In recognition of this the prize for the best student talk at
the ANZAMP meeting is called the Guttmann Prize.

Tony has won many awards, some are

Fellow, Australian Academy of Science

Fellow Australian Academy of Technological Sciences and
Engineering

Member of the Order of Australia (AM) for significant service to the
mathematical sciences, and to education

See: https://www.eoas.info/biogs/P007187b.htm

https://www.eoas.info/biogs/P007187b.htm


A few words about Tony Guttmann

Tony is a natural community builder who has made the mathematics
and mathematical physics communities stronger.

Tony does things right: creative/fun/interesting/important research,
builds communities, helps younger scientists, and enjoys life.

To Tony, thank you for being an inspiration, and for your help and
guidance over the years since I started as a research fellow in MASCOS,
139 Barry St, back in 2004.

Happy birthday Tony!



This work has been done in collaboration with Neal Madras.

From Neal: Happy birthday, Tony!



Self-avoiding walk model

A walk on a lattice, step to neighbouring site provided it has not
already been visited.

Captures excluded volume effect of real polymers.

Models polymers in good solvent limit.

Exactly captures universal properties such as critical exponents.

Generalisations allow study of a wide range of polymer systems, e.g.
the collapse transition, or polymer melts.



SAW of 1 billion
monomers on the
square lattice.



SAW of 5000 monomers
on the simple cubic lat-
tice.



Why endless walks?

for spin models we have a natural

choice between boundary conditions
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length scale : distance to boundary



Why endless walks?

for periodic boundary conditions (PBC)
we have translation invariance
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Why endless walks?

We can consider system with PBC

as being infinite with no boundary.

(Although the box size L is still a

natural length scate . )



Why endless walks?

How about walks ?

They are easy to define on an infinite

lattice or R
,
so are translationally invariant.

But , interior of walk
is different from ends

for a self-avoiding walk (SAW) :

ent



Why endless walks?

Idea : PBC with respect to chain (not space)

underst



Endless walks

Consider walks which are concatenated with themselves ad infinitum,
where infinite walk satisfies same rule as reduced walk.

E.g. endless self-avoiding walks (SAWs) remain self-avoiding when
concatenated with themselves.

Motivation:

Eliminate end-effects, improve convergence to infinite chain.

Possibility for other nice properties.
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endless SAW SAW that is not endless



Examples

endless SAW SAW that is not endless



Endless SAWs

Assume that en = Aen
γe−1µn (1 + o(1)).

Same µ as SAWs (proved).

γe = 1 (hand-waving, numerical evidence; Neal Madras: argument
that γe ≥ 1 provided that critical exponent exists for bridges).

Universal amplitude Ae , dependent on dimension but not lattice
(hand-waving, numerical evidence from enumerations).

Enumeration data from 2013: Ae = 1.57075(10) for d = 2, and
Ae = 1.183(3) for d = 3.



Transfer matrix

Suppose model has a finite state space, and hence a finite transfer
matrix.

Then, endless walks are the subset of walks which end in the same
state as they started.

Number of endless walks of length n

en =
∑
x

⟨x |T n|x⟩ = TrT n = λn
1 + · · ·+ λn

k ,

i.e. sum of exponentials with unit amplitude.

Generically, generating function

E (z) =
∑
n≥1

enz
n =

λ1z

1− λ1z
+ · · ·+ λkz

1− λkz
.



Directed walks on a cylinder

not endless endless

Directed walks which take north and east steps on a cylinder of height 4.

Endless condition restricts vertical steps at the start and end.
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Directed walks on a cylinder

For a cylinder of height 2.

SAW (Fibonacci numbers):

C (z) =
1 + z

1− z − z2
= 1 + 2z + 3z2 + 5z3 + 8z4 + 13z5 + · · ·

Endless SAW (Lucas numbers):

E (z) =
z + 2z2

1− z − z2
= z + 3z2 + 4z3 + 7z4 + 11z5 + · · ·

en =

(
1

2
+

√
5

2

)n

+

(
1

2
−
√
5

2

)n



Partially directed walks

not endless endless

C (z) =
1 + z

1− 2z − z2

E (z) =
3z − 2z2 − 3z3

1− 3z + z2 + z3

en = 1 + (1−
√
2)n + (1 +

√
2)n



Partially directed walks

not endless endless

C (z) =
1 + z

1− 2z − z2

E (z) =
3z − 2z2 − 3z3

1− 3z + z2 + z3

en = 1 + (1−
√
2)n + (1 +

√
2)n



How to study eSAWs?

Model is at least as difficult to solve as SAW.

So, we use numerical approaches:

Enumeration (hard to see how to use transfer matrix method
efficiently)

Monte Carlo sampling

The best Monte Carlo algorithm for SAW is the pivot algorithm.



Pivot algorithm

Procedure:

Choose a pivot site at random.

Then rotate or reflect one of the two parts of the walk.

Retain new walk if it is self-avoiding, otherwise restore original walk.

Large change in observables such as size with each successful pivot.

Ergodic, samples SAWs uniformly at random.

Binary tree data structure provides a very efficient implementation.



Pivot algorithm

Example pivot move



Pivot algorithm

Example pivot move



Pivot algorithm for eSAWs

Procedure:

Choose arbitrary start point for eSAW.

Choose arbitrary pivot site.

Rotate or reflect from the pivot site to the end, while leaving other
piece unchanged.

Test if resulting endless walk is self-avoiding.

Note: there are effectively two pivot sites for the eSAW pivot move.
This reduces the probability of it being successful.

Possible to prove that it is ergodic.

Here follows an example pivot move.

































Bridges

N-step walk of N steps has N + 1 sites: 0, 1, . . ., N .

Bridges are SAWs which satisfy y(0) < y(i) ≤ y(N).

There is a “break edge” at the start of the walk. (Can draw a line or
plane through it and cut no other edges.)

Bridges can be concatenated and are guaranteed to remain self-avoiding.

In particular, a bridge can be concatenated with itself.

Thus bridges are a subset of eSAWs.

An irreducible bridge is a bridge with exactly one break edge.



Bridges

Bridge Irreducible bridge



Bridges

Let’s go one step further: what if we consider endless SAWs with break
edges, but no longer care if the first edge is a break edge?

These are “endless bridges”.

Endless bridges are also a subset of eSAWs.



















Bridges

Let B(z) be the generating function of bridges. (Set b0 = 1.)

Let I (z) be the generating function of irreducible bridges.

Each irreducible bridge of n steps has n associated endless irreducible
bridges.

ein = n in

EI (z) =
∞∑
n=1

einz
n =

∞∑
n=1

n inz
n

=
∞∑
n=1

inz(z
n)′

= z

(
∞∑
n=1

inz
n

)′

= zI ′(z)



Bridges

Every bridge is either empty, or an irreducible bridge followed by a
bridge.

B(z) = 1 + I (z)B(z)

B(z) =
1

1− I (z)

I (z) = 1− 1

B(z)



Endless bridge

Marked bridge



Endless bridge

−→

Marked bridge



Endless bridge
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Endless bridge

−→

Marked bridge



Endless bridge

←→

Marked bridge



Endless bridge

←→

Marked bridge

EB(z)



Endless bridge

←→

Marked bridge

EB(z) zI ′(z) B(z)



Bridges

The start point of any endless bridge must occur within an irreducible
bridge, and the remainder of the endless bridge is either empty or an
arbitrary bridge.

EB(z) = zI ′(z)B(z) = z(1− B(z)−1)′B(z)

=
zB ′(z)

B(z)



Bridges

There is strong theoretical and numerical evidence that

bn ∼ Abn
γbµn

B(z) ∼ Ab

Γ(γb)
(1− z/zc)

−γb

B ′(z) ∼ γb
zc

Ab

Γ(γb)
(1− z/zc)

−γb−1

where γb is the bridge exponent and has value 9/16 for d = 2, and
0.19835(3) for d = 3, and zc = 1/µ.

Therefore

EB(z) =
zB ′(z)

B(z)
∼ γbz/zc

1− z/zc

ebn = γbµ
n(1 + o(1))



Endless bridges are a positive fraction of eSAWs

We have

en = Aeµ
n(1 + o(1))

ebn = γbµ
n(1 + o(1))

=⇒ ebn
en

=
γb
Ae

(1 + o(1))

and so a positive fraction of eSAWs are in fact endless bridges!

eSAWs are, in some sense, a natural generalisation of bridges.



A technical aside

Bridges will drift in the positive y -direction, but they will also have
break edges if they drift in the negative y -direction.

We do not care about the drift direction!

It means that

Pr(break edge) =
2ebn
en

=
2γb
Ae

(1 + o(1))



Detecting break edges efficiently

We need an efficient algorithm for detecting break edges, to determine if
an eSAW is an endless bridge.

For the pivot algorithm, we have an efficient binary tree data structure
that tracks “bounding box” information about the walk at different
length scales.



SAW-tree representation of a walk.



Detecting break edges efficiently

We can use the bounding boxes by exploiting the following facts:

Subwalks span their bounding boxes in all directions.

If the projections of bounding boxes overlap, then necessarily there
must be at least two spanning paths in the overlap and there cannot
be a break edge.

If bounding boxes are non-overlapping then there must be a break
edge between them.

The algorithm proceeds by successively excluding regions as having
break edges.

A break edge is detected when we have non-overlapping bounding boxes
with an edge between them.
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Detecting break edges efficiently

The break edge detection algorithm appears to take average case time
O(logN) to determine that there are no break edges, or to detect a
single break edge.

It can also be adapted to count break edges instead.



Bridge data

We have sampled both SAWs (via pivot) and eSAWs (via modified
pivot).

Sampling SAWs is more efficient, even though only a small proportion of
them are eSAWs.

(We need a better version of the pivot algorithm for eSAWs!)

Computer experiment for N from 200 to 100 million.



Analysis

We try to extract as much information from our data as possible by
fitting as many correction-to-scaling terms as possible.

As a consequence, we cannot fit/model our first unfitted correction!

Hence, even if we are being careful, there will always be untested
assumptions, both for Monte Carlo and series data.
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Here’s some wisdom from Tony that I always keep in mind, referring to
estimates derived from series analysis, in Asymptotic Analysis of
Power-Series Expansions:

. . . error bounds are generally referred to as (subjective) confidence
limits, and as such frequently measure the enthusiasm of the author
rather than the quality of the data.
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Estimate of amplitude from biased fit.

We get 0.716197(3) vs predicted value of 0.71619724 . . .



eSAW amplitude

For SAWs in d = 2, 3 we have

cn = Anγ−1µn(1 + o(1)),

where A and µ are lattice dependent, and γ = 43/32 for d = 2 and
γ = 1.156953(1) for d = 3.

All eSAWs are SAWs, and so we can sample SAWs and estimate the
probability that a SAW is an eSAW.

Pr(SAW is eSAW) =
eN
cN

=
Aeµ

N(1 + o(1))

ANγ−1µN(1 + o(1))
=

Ae

ANγ−1
(1 + o(1))

We can use this relation to estimate γ and Ae .



eSAW amplitude data

First we will plot

A(N)
e = Pr(SAW is eSAW)ANγ−1

where we expect that

Ae = Pr(SAW is eSAW)ANγ−1
(
1 +

a

N
+ · · ·

)
Computer experiment for N from 200 to 100 million.
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eSAW amplitude data

Next, we will assume that our scaling form is correct, and estimate Ae .

We can bias our fits by using the known value of γ to obtain an
accurate estimate of Ae .

We fit the leading 1/N correction, and our largest neglected term is
O(N−3/2).

We plot our estimates against N−3/2.
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eSAW estimates

Our best estimate is Ae = 1.570803(6). (Estimate from enumeration
data Ae = 1.57075(10).)

Note: π/2 = 1.570796326 · · · .
We also obtain γ = 1.3437492(25), compared with exact value of
43/32 = 1.34375, and predictions from enumerations of 1.343745(5)
due to Jensen.

For d = 3 we obtain Ae = 1.18337(5). (Estimate from enumeration
data Ae = 1.183(3).)

We also obtain γ = 1.1569505(25); previous Monte Carlo estimates are
a little more accurate and give 1.156953(1).



Probability that eSAWs can be split or concatenated

We know that
e2N
e2N
≈ Aeµ

2N

A2
eµ

2N
=

1

Ae

We can sample eSAWs via the eSAW pivot algorithm.

We find the probability that an eSAW can be split into two eSAWs, and
the probability that two eSAWs can be concatenated to form an eSAW.

Theory due to Duplantier allows these two exponents to be determined.

Exponents must be the same, as ratio of probabilities is the constant
given above.

Pr(split) ∼ C1N
y , Pr(join) ∼ C2N

y , y =
√
31
8
− 15

16
= −0.24152945 . . ..

Verified by computer experiment: y = −0.2415305(20).



Conclusion and future work

Joint work with Neal Madras.

A positive fraction of eSAWs are endless bridges.

eSAWs are, in some sense, a natural generalisation of bridges.

Ae looks suspiciously close to π/2 for d = 2.

More to be done for exactly solvable endless models and enumeration
of eSAWs.

Work in progress: a single site pivot move would dramatically
improve the efficiency with which we can sample eSAWs.

Unclear to me whether there will be ongoing applications of eSAWs
due to their nice features, or if this is an interesting and fun dead end.

For now, there are more insights into SAWs and polymer models to
be discovered.


