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Outline of this talk

1) Exceptional researcher
2) What are exceptional points?
3) Exceptional points in the Z(N) free parafermion model

4) Exceptional points in the XY model



1) Exceptional researcher

A J Guttmann: Most prolific author in J Phys Al

» Journal of Physics A: General Physics (1968-1972)

» Journal of Physics A: Mathematical, Nuclear and General
(1973-1974)

» Journal of Physics A: Mathematical and General (1975-2006)
» Journal of Physics A: Mathematical and Theoretical (2007-)



Anthony J. Guttmann (130 papers)

Giorgio Parisi (91 papers)
Stuart G. Whittington (86 papers)
Michael V Berry (83 papers)

Pavel Winternitz (71 papers)



Flashback to Tony Guttmann's 60th, Dunk Island, 10-15
July, 2005

Like most of the audience, | was inspired to work on self-
avoiding walks by Tony Guttmann. Much of the progress
made from the perspective of exactly solved O(n) models
was driven by input from the wealth of knowledge that
Tony has amassed over the years with his students, post-
docs and colleagues. Fortunately, the exact results are in
2D, where the self-avoiding constraint is most severe.



2) What are exceptional points?

Exceptional points are spectral singularities in the parameter space
of a system in which two or more eigenvalues, and their
corresponding eigenvectors, simultaneously coalesce.

EPs are level degeneracies induced by non-Hermiticity.

They are central to exotic topological phenomena associated with
the winding of eigenvalues and eigenvectors.

A vast and highly active topic!

Of experimental relevance.



3) Exceptional points in the Z(N) free parafermion model

Recall the exact solution:

F C Alcaraz, MTB and Z-Z Liu, J Phys A 50, 16LT03 (2017)

—H= ZTJ_'—/\Z J+1

L
—E=> wley, pi=0,1,....N-1, w=e"/N
j=1

= (1 + AN 4 2AN/2 cos k) N

k; satisfy

sin(L + 1)k = —AN2sin Lk

2/N
for A =1, k; = ji=1,..., Landek:(2cosg)/.

2L+1



Free parafermion eigenspectrum (N =3, [ = 4, \ = ¢*™i¢/N)

4.70 0.31
¢ = 0.100 X
x X X °
w X
= ),g()?()g( x .
™ .
% 034 4 o >-<§<)2'(),2;(>'?f§\§gs \E 0.12 °
= XX Ko M 3&; -
x )§3§:§( X %
w X
x ¢ = 0.100
4.01 T 0.08 T
-4.92 -0.76 3.40 -0.08 0.75 1.58
Re(E) Re(e)
3.88 0.65
®=0500 ¢ = 0.500 ° .
X x
x x
X T %
~ X x .y
[\ﬂ/ -0.00 4 X X;)( )(;)-( xi x % -0.00
K XX E
X, 2w Ex X
X )(x)( x)( x
x X x . R
-3.88 T -0.65 T
-3.94 0.21 4.37 -0.05 0.50 1.04

Re(E) Re(e)



For real positive A, the quasi-energies ¢; are always positive and
distinct.

For complex )\, a pair of them may become equal at certain values
of A\, which depend on N and L.

We call these quasi-energy exceptional points.

We call EPs in the energy spectrum Hamiltonian exceptional
points.

—> quasi-energy EPs give rise to Hamiltonian EPs.

Moreover, we can calculate them.



A quasi-energy EP will occur when
sin(L + 1)k = —AN2sin Lk

has a repeated root, meaning that both this equation and its
derivative are satisfied.

The EPs are pairs of values kgp and Agp which satisfy these
equations simultaneously.

In this way we obtain kgp as the solution to
sin(2L+ 1)k — (2L+1)sink =0,
with the corresponding value Agp given by

W _ [=sin(L+ Dkep 2
N sin Lkep ‘
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(left) k solutions for L = 4

(middle) difference between smallest and second-smallest
quasi-energies for N = 2

(right) difference between smallest and second-smallest
quasi-energies for N =3

The corresponding values of Agp are also shown as crosses.
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Can apply large L expansion results for k to show that Agp satisfies

2] 27j
AV = cos (%) +isin (%) .
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Summary
> We have located the quasi-energy EPs in the complex plane.
» Numerical tests confirm they correspond to Hamiltonian EPs.
» And also confirm that the corresponding eigenvectors coalesce.
P For large L they are on the unit circle in the complex A plane.

» There are other degeneracies in the energy eigenspectrum, but
they are not EPs.

> The EPs are also present in the N = 2 Ising case.

details in R.A. Henry and MTB, SciPost Physics 15, 016 (2023)



4) Exceptional points in the XY model

The spin—% anisotropic XY model is defined by the Hamiltonian

L-1

1+~ 1—v

H:—E < 5 0§0§+1+72 oo
n=1

Free fermion eigenspectrum
E::|:61:|:€2:|:--~:|:€L

The quasienergies follow directly from the eigenvalues of the L x L

matrix
y2 0 Xy 0 0
0 x2+y2 0 Xy 0
xy 0 2 +y? 0 0
0 xy 0 X2+ y? 0
0 0 0 0 x2

where x = %(1+'y) and y = %(1 — 7).



Solved in 1961 by Lieb, Schultz and Mattis.

For this model
e =[1—(1—~?)sin? k.
The k; satisfy
sin(L+2)k _
sin Lk ’
where

Work through in the same way to obtain the location of the
exceptional points!



Examples of building the eigenspectrum (L
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Can show (broken) PT-Symmetry if A is pure imaginary.
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(a) L =50 (b) L =50
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See two concentric rings of EPs which converge to the unit circle
in the infinite size limit.

R.A. Henry, D.C. Liu and MTB (to appear soon)



