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1) Exceptional researcher

A J Guttmann: Most prolific author in J Phys A!

I Journal of Physics A: General Physics (1968-1972)

I Journal of Physics A: Mathematical, Nuclear and General
(1973-1974)

I Journal of Physics A: Mathematical and General (1975-2006)

I Journal of Physics A: Mathematical and Theoretical (2007–)



• Anthony J. Guttmann (130 papers)

• Giorgio Parisi (91 papers)

• Stuart G. Whittington (86 papers)

• Michael V Berry (83 papers)

• Pavel Winternitz (71 papers)



Flashback to Tony Guttmann’s 60th, Dunk Island, 10-15
July, 2005

Like most of the audience, I was inspired to work on self-
avoiding walks by Tony Guttmann. Much of the progress
made from the perspective of exactly solved O(n) models
was driven by input from the wealth of knowledge that
Tony has amassed over the years with his students, post-
docs and colleagues. Fortunately, the exact results are in
2D, where the self-avoiding constraint is most severe.



2) What are exceptional points?

Exceptional points are spectral singularities in the parameter space
of a system in which two or more eigenvalues, and their
corresponding eigenvectors, simultaneously coalesce.

EPs are level degeneracies induced by non-Hermiticity.

They are central to exotic topological phenomena associated with
the winding of eigenvalues and eigenvectors.

A vast and highly active topic!

Of experimental relevance.



3) Exceptional points in the Z (N) free parafermion model

Recall the exact solution:
F C Alcaraz, MTB and Z-Z Liu, J Phys A 50, 16LT03 (2017)

−H =
L∑

j=1

τj + λ

L−1∑

j=1

σj σ
†
j+1

−E =
L∑

j=1

ωpj εkj , pj = 0, 1, . . . ,N − 1, ω = e2πi/N

εk =
(

1 + λN + 2λN/2 cos k
)1/N

kj satisfy

sin(L + 1)k = −λN/2 sin Lk

for λ = 1, kj = 2jπ
2L+1

, j = 1, . . . , L and εk =
(
2 cos k

2

)2/N
.



Free parafermion eigenspectrum (N = 3, L = 4, λ = e2πiφ/N)



For real positive λ, the quasi-energies εj are always positive and
distinct.

For complex λ, a pair of them may become equal at certain values
of λ, which depend on N and L.

We call these quasi-energy exceptional points.

We call EPs in the energy spectrum Hamiltonian exceptional
points.

=⇒ quasi-energy EPs give rise to Hamiltonian EPs.

Moreover, we can calculate them.



A quasi-energy EP will occur when

sin(L + 1)k = −λN/2 sin Lk

has a repeated root, meaning that both this equation and its
derivative are satisfied.

The EPs are pairs of values kEP and λEP which satisfy these
equations simultaneously.

In this way we obtain kEP as the solution to

sin(2L + 1)k − (2L + 1) sin k = 0 ,

with the corresponding value λEP given by

λN =

[− sin(L + 1)kEP
sin LkEP

]2
.
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Figure 3: (Left) Equation (15) evaluated for L = 4. The zeros are marked with white crosses.
(Middle, right) The absolute value of the di↵erence between the smallest and second-smallest
quasienergies �✏01 for N = 2 (middle) and N = 3 (right). The zeros from the left figure
are transformed using Eq. (16) and marked with white crosses. They correspond to actual
zeros of �✏01 to numerical precision, except for the trivial zero occurring at k = 0 and
� = exp(2⇡ij/N), j 2 {0, . . . , N � 1}.

producing an identical spectrum to the unrotated case. This invariance under a rotation of !
makes it convenient to introduce a rescaled rotation angle � such that

� = |�|e2⇡i�/N (11)

In this notation, any integer value of � will produce an identical spectrum, and the full
set of rotated spectra can be found in the range 0  � < 1. However, applying the rotation
to only one term of H produces an undesirable overall rotation of the spectrum. This can be
avoided by applying an additional global rotation of half the magnitude:

H = �e�i⇡�/N
L�1X

j=0

Z†
j Zj+1 � |�|ei⇡�/N

LX

j=1

Xj , (12)

This rotation is necessary to make the ground state energy expression work correctly, and
possibly ensure some other nice properties of the spectrum/quasienergies under the rotation. I
will add a bit more information about this. I could also add some graphs showing convergence
to the L = 1 ground state energy although it may be su�cient just to mention it. On the
other hand, it might be better to avoid applying this global rotation except when necessary to
avoid confusing the reader...

3 Exceptional Points

For real positive �, the quasienergies ✏j are always positive and distinct. For complex �, a
pair of them may become equal at certain values of �, which depend on L and N . These are
exceptional points of the matrix Eq. (6), and, as will be shown, correspond to special excep-
tional points of the Hamiltonian. It is important to note the disctintion between degeneracies
of the ✏j , which will be referred to as quasienergy exceptional points, and exceptional points of
the full Hamiltonian, Hamiltonian exceptional points. As will be demonstrated, most but not
all quasienergy EPs give rise to many Hamiltonian EPs occuring at once, known as confluent
exceptional points. However the Hamiltonian has many other EPs, which are typically not
confluent and do not arise from degeneracies in the quasienergies, but more accidentally.

6

(left) k solutions for L = 4

(middle) difference between smallest and second-smallest
quasi-energies for N = 2

(right) difference between smallest and second-smallest
quasi-energies for N = 3

The corresponding values of λEP are also shown as crosses.



3.2 Trivial Exceptional Points 3 EXCEPTIONAL POINTS
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Figure 3: (Top left) Equation (13) evaluated for L = 4. The zeros are marked
with white crosses. Also shown are the absolute value of the di↵erence between
the smallest and second-smallest quasienergies �✏01 for N = 2 (top right), N = 3
(bottom left) and N = 4 (bottom right). The zeros from the left subfigure are
transformed using Eq. (14) and marked with white crosses in each subfigure.
They correspond to actual zeros of �✏01 to numerical precision, except for the
trivial zero occurring at k = 0 and near the roots of unity � = exp(2⇡ij/N),
j 2 {0, . . . , N � 1}.

8



N = 3 L = 50

Can apply large L expansion results for k to show that λEP satisfies

λN = cos

(
2πj

L

)
± i sin

(
2πj

L

)
.
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Figure 5: The absolute distance between the smallest two quasienergies for L = 50, N =
3. The exceptional points found by minimising Eq. (15) are marked with white crosses.
Subfigures show di↵erent parameter ranges.
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N = 3 L = 50



Summary

I We have located the quasi-energy EPs in the complex plane.

I Numerical tests confirm they correspond to Hamiltonian EPs.

I And also confirm that the corresponding eigenvectors coalesce.

I For large L they are on the unit circle in the complex λ plane.

I There are other degeneracies in the energy eigenspectrum, but
they are not EPs.

I The EPs are also present in the N = 2 Ising case.

details in R.A. Henry and MTB, SciPost Physics 15, 016 (2023)



4) Exceptional points in the XY model

The spin-12 anisotropic XY model is defined by the Hamiltonian

H = −
L−1∑

n=1

(
1 + γ

2
σxnσ

x
n+1 +

1− γ
2

σynσ
y
n+1

)

Free fermion eigenspectrum

E = ±ε1 ± ε2 ± · · · ± εL
The quasienergies follow directly from the eigenvalues of the L× L
matrix 

y2 0 x y 0 · · · 0

0 x2 + y2 0 x y · · · 0

x y 0 x2 + y2 0 · · · 0

0 x y 0 x2 + y2 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

0 0 0 · · · 0 x2


where x = 1

2
(1 + γ) and y = 1

2
(1 − γ).



Solved in 1961 by Lieb, Schultz and Mattis.

For this model
εj = [1− (1− γ2) sin2 kj ]

1
2 .

The kj satisfy
sin (L + 2)k

sin Lk
= λ±1,

where

λ =
1− γ
1 + γ

.

Work through in the same way to obtain the location of the
exceptional points!



Examples of building the eigenspectrum (L = 4)



Can show (broken) PT-Symmetry if λ is pure imaginary.





See two concentric rings of EPs which converge to the unit circle
in the infinite size limit.

R.A. Henry, D.C. Liu and MTB (to appear soon)


