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Generating functions

e For a class of maps C, equipped with some size (edge number...),

C .= Z (M)

MeC

e Multivariate versions, with more variables.

* The series C is algebraic of degree k if
P(C,t) =0

for some irreducible polynomial P of degree k in its first variable.



Vertex colourings of maps

Definition. Vertices are coloured in g colours

monochromatic o=

Proper colouring: neighbour vertices get different colours.
Potts model: a generalisation
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The g-state Potts model on planar maps

Definition. Let g be positive integer, M a map. The partition function
of the (g-state) Potts model on M (or: Potts polynomial of M) is

Pmliq,v) = Z vmie)
c:V(M)—{1,...,q)

where m(c) is the number of monochromatic edges in the colouring c.

Example. Pm(q,v) :=qv+q(q—1).
A h
oo oo
Properties

+ polynomial in g and v
o duality: for q = (v —=1)(v* = 1),

(v = DFM=TPy (g, v) = (v = 1MI=TPy (q,v7).
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A new result [Crnbm-Notarantonio 257]

Proposition. For any i= ], the 3-Potts generating function T; of
near-triangulations of outer degree i is algebraic of degree 1.

Minimal polynomial of the derivative of T) (degree 2 in 1):

2764807 'v" — 27648v® (31v +24) T{® + 1152v° (1021v? + 1678v + 541) T{
—18v* (46080t + 51935v? + 138243v% + 92253v + 17089) T?
+72v2 (1920v® (17v + 7) t + 6545v* + 25755v> + 26863v* + 10253v + 1144) T/

—4v* (1008v> (727v* + 586V + 127) t + 38596v° + 219355v" + 322318V + 190022v? + 43274v + 2915) Tf
+4v (216v7 (2433v° + 2879v* + 1255V + 153) t + 8027v° + 67626v° + 134820v* + 109109v> + 38007v*

+5103v + 188) T7+(41472v8 (v — 1) t% — 12v3 (78871v* + 122456v> + 80010v* + 19688V + 1375) t
—3876v" —53138v® — 145202v° — 151460v* — 71656v> — 14332v* — 958v — 18) T7/ +(—13824v° (5v + 1) (v — 1) t*
+8v% (5v + 1) (6823v* + 11843v> + 9045v* + 2429v + 100) t + 208v” + 6088v® + 24600v° + 31836v* + 19256v>

+5040v2 + 440v +12) T7 + (1 728vH (v — 1) (5v + 1)7t2 — 12v (3v + 1) (1358v° + 2771v* + 2504v> + 868>
+58v + 1)t — 312v° — 2401v> — 3747v* — 2821v> — 899v* — 78v — 2) T{+v (—96\/2 (v—1)(5v+ 1) t?

+4 (v +1) (1229v° 4 2390v* + 2114v> + 697vZ +49v + 1) t + (104v* +189v> +177v* +67v +3)) T
+2v2 (v = 1) (5v + 1) t2=2v2 (v +2) (104v* + 1893 +177v% +67v +3) t = 0.
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Properly 3-coloured triangulations & face-bicoloured triangulations
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B) = LylB(y) : near-triangulations of outer degree 3



Properly 3-coloured triangulations are 1-catalytic

Face-bicoloured near-triangulations,
by vertices and outer degree:

B(t;y) = B(y) = ) 7 MyodM)/s
M

N

O
/
POI(B(U),B1,J[,H) = (

An equation in one catalytic variable, y
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One-catalytic implies algebraic !

Theorem [Popescu 861 [mbm-Jehanne 06]

I a polynomial equation

POI(S(t;U)HAU (t)> .. °>Ak(t)>t>y) =0

with coefficients in some field F has a S(tiy), Ai(t),

v, AR(T) N
over [F(t,y).

Cmmbm-Jehanne 06]

, then all these series are algebraic

An effective procedure.



3-Potts on near-triangulations is algebraic

Proposition. Let g=3. There exists an explicit polynomial such that

Pol(T(y), Ty, T3, Ts, T7, v, t,y) =0 (1)
where

Corollary. The 3-Potts GF of near-triangulations T(y) is algebraic.

[Bernardi-mbm 1]
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3-Potts on near-triangulations is algebraic

Proposition. Let g=3. There exists an explicit polynomial such that

Pol(T(y), Ty, T3, Ts, T7, v, t,y) =0 (1)
where

Corollary. The 3-Potts GF of near-triangulations T(y) is algebraic.

[Bernardi-mbm 1]

Better algorithms than [mbm-Jehanne 061: Bostan, Chyzak,
Notarantonio, Safey el Din (2022-) ... but (1) was still too big.

Now a solution...

What happened?



Il1l. Solving 1-catalytic

equations




General approach to 1-catalytic equations [mbm-AJ]

Consider the l-catalytic equation
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Theorem: Let A(a, a2, as, a4, t, y) be the discriminant of
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General approach to 1-catalytic equations [mbm-AJ]

3-Potts on near-triangulations: A(T), T3, Ts, T, 1,y) has degree 26
in y, total degree 10 in the Ti's (and 4/71/10 double roots in y).

Theorem [Bernardi-mbm 15] There exist two polynomials

D+(Ty, T3, Ts, T, t,w) and D(Ty, T3, Ts, T, 1, u), of degree 5 and 6
in u respectively, degree 2 in the Ti's, that have each 2 double roots
inu (U, Uy and Uz, U4).

A much smaller polynomial system!

D—|— (T1 ) T3> T5> T7> t, ul) — ay D—l— (T1 y T3> Solution for 3-Potts on
D_(Ty,T3,Ts, T, t, Ui) = 3,D_(Ty, T3, near-triangulations

Elimination via resultants =



The case of general planar maps

Proposition. The 3-Potts generating function M(v,t) of general planar
maps is algebraic of degree 22, with an explicit minimal polynomial.

Cmbm-Notarantonio 25]

« Same starting point with D+, D_
+ Alternative solution technique



IV. Asymptotics




Asymptotics for 3-Potts on near-triangulations

Proposition. Fix v > 0. The 3-Potts GF T of near-triangulations of
outer degree i has radius of convergence py where

A1(v,py) =0 for O0<v<v.:=1+3/V47,
Ar(v,py) =0 for v, <v,

for explicit polynomials Ay and Az of degrees 5 and 9 in p.
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Asymptotics for 3-Potts on near-triangulations

Proposition. Fix v > 0. The 3-Potts GF T of near-triangulations of
outer degree i has radius of convergence py where

A1(v,py) =0 for O0<v<v.:=1+3/V47,
Ar(v,py) =0 for v, <v,

for explicit polynomials Ay and Az of degrees 5 and 9 in p.

As 1 approaches p,

Ti = Xy T Bv“ _t/pv) "I'VVU _t/pv)(x (1 + O(”)»

Wit a=3/2 if v£ve, «=6/5 if v=-v,.
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Final remarks

e As far as one can go at the moment with explicit solutions of
I-catalytic equations

* Some missing tools (asymptotics):

» Systematic way of ruling out
other dominant singularities?
[Chen-Turunen 23, Chen
21(a), Albenque et al. 21]

» Nature of the singularities:
continuity of the singular

exponent a in v

+ Algebraic series?
« Coefficients in N[v1?

Merci |



