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Tale of two loop models
Q-state Potts model

@ (Q-state spins; interactions have Sy permutation symmetry.

@ Equivalent loop model on medial lattice [Baxter-Kelland-Wu 1976].
@ Respects fixed orientation of lattice edges: PSU(n) symmetry.

@ Related to integrable 6-vertex model and Temperley-Lieb algebra.

@ S commutes with partition algebra %, (Q), descending to
Potts—Temperley—Lieb algebra P7Z»,(v/ Q) in d = 2.

O(n) model
@ Vector spins € R"; interactions have O(n) symmetry.
@ Equivalent loop model in d = 2 after modification [Nienhuis 1982].
@ Related to integrable 19-vertex model and Motzkin algebra.

@ O(n) commutes with Brauer algebra %, (n), descending to
unoriented Jones—Temperley—Lieb algebra u 7% ,(n) in d = 2.
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O(n) model [Nienhuis 1982]

loop weight n _
Vertex weights 1 and K

1 K K K
All configurations can be built by a transfer matrix:
Ry :>—<+K>—<+K>—<+K2>—<+K2>—<+ K2>—<+K2>—<+K2>—<

Define the partition function

Z(K, n) — Z K#monomersn#loops )

loops
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Z(K, n) — Z K#monomersn#loops )

loops

Monomer fugacity at the critical point:

K, — (21@)71/2,

where —2 < n < 2. Plus (minus) sign for the dilute (dense) phase.

Special cases:

@ n =1 dense: Site percolation

@ n =1 dilute: Ising model

@ n = 0 dilute: Self-avoiding walks

@ n = 2 either: Gaussian free field, XY model
Most of there are really logarithmic CFTs.

Our first objective is to understand the case of ‘generic’ n.
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Conformal Field Theory of the O(n) model

Central charge

RG22 >0,

c=13-68%—-66"2  with {
B2¢Q.

Conformal weight A and momentum P:
A=P—Piqy, Dps=Posg—Fan, Prs —2< pr+p6- S) :
Field content, with left- and right-moving conformal weights (A, A):

(A,4)
Degenerate V<‘i’s> r=1,s€2N+1| (A¢s), A, S))

Name Notation | Parameters

Diagonal Ve PeC (P2

2
(1 1)’ P(11))

Non-diagonal | V,; s reiN%selz | (Aps), Dirs)
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Interpretation of fields within the loop model:

Diagonal and non-diagonal fields

w(P) exp 1532, Ok

V<°1’ 3) is the energy operator.

The dense O(n) model has a CFT limit iff V<‘{73> is irrelevant:

ROz >1 <= RBZ>1.
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Correlation functions

For example: Site percolation (n = 1, dense phase)

<ot

&%
e

by global conf. inv.

Coopo

P(21,22, 23 € same hull) = - ox = Sox 7 — s

A=}and Copp = ???
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Dream about correlation functions

Here e are V|, s) insertions, and x are Vp insertions.
Open curves define a combinatorial map on a Riemann surface.

Segal’'s axioms: Three basic building blocks
1) Annulus with one insertion, 2) Disk with two insertions, 3) Pants.
The blocks are glued by integrating over eigenstates.
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Progress this far

@ Fields related to irreps of affine Temperley-Lieb algebra, #7%(n).
@ Bijection between correlation functions and combinatorial maps.

@ Conformal symmetry enhanced to interchiral symmetry via Vg 3)"
@ Global O(n) symmetry in interplay with conformal symmetry.

First goal is to understand N < 4 points on the sphere.
@ N = 2 understood from critical exponents.

@ N = 3 conjecturally understood in all cases.
And two cases are rigorously understood [Ang—Cai—Sun-Wu, 2024 preprint].

@ N = 4 from conformal bootstrap. Partial analytical control.

The talk summarises this progress.
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Diagrammatic algebras

Partition algebra:

imaginary time

Generators:

A 1/ 2/ 3/ 4/ 5.1 6/ 7/ 8/

P UKL o= LT s D TH

1<i<L—-1

1<i<lL 1<i<Ll—1



From this we can construct the TL generator:

i i1

DY U DY
€ = S, 1SiSi+1S;11 =
2 2

To get the periodic algebra /5% (n) we add two more generators:

S D=V

Define also the pseudo-translation t of the 2r € N* through-lines:
P P —~ (T
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AT (n) is co-dimensional. A finite-dimensional quotient, the
unoriented Jones—Temperley—Lieb algebra u 75~ ,(n), is obtained by
replacing non-contractible loops by n and imposing

t2r 1.

UJ9§L(”)

The standard modules W"). are irreps of u 9% (n), spanned by link
(r;s)

,S

patterns with 2r defects. E.g. for W((11g)):

BN PN e

We have

(1 o) Wit —o.

(r:8)
The labels (r, s) carry over to the CFT.

12/32



Conformal partition function on the torus

Obtained by Di Francesco-Saleur-Zuber in 1987.
Let g = €™’ with 7 the modulus, and 7(q) is the Dedekind function.

Z X<1s q) + Z ZLrs) X(rs(q)

SE2N+-1 re N+ selz

with the diagonal degenerate characters

P2 2

2
q e — gt

X(r,s)(q) = n(q)

and the non-diagonal characters

2 _p2
N ()= q toghi-9
R TTE
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Z X<1s Z ZLI’S) X(rs q)

SE2N+1 res IN* se rZ
We have the Virasoro representations:

R 1) = diagonal level-s degenerate rep. with character x4 ¢(Qq) ,
Wr.s) = indecomposable rep. with character X?ﬁ,s)(q) + x?ﬂ,,s)(q) ,

_ - N
V) it o gz Verma module with character x(; ¢(q) -

The multiplicities L(, 5)(n) were obtained [Read-Saleur, 2001] and proved
combinatorially [J-Richard, 2007]:

2r—1
Lir,sy(n) = dr10sc2z 41 + Z e™"'Sx X@2rar(N)
with polynomials xq(n) defined by

Xo(n)=2 , x(n)=n , nxq(n)=Xg-1(N) + Xa+1(n) .
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Global O(n) symmetry

This looks like Schur-Weyl duality.
Indeed we have both CFT and O(n) symmetry.

O(n) can be defined for n € C (Deligne category).
Under the global O(n) symmetry, primary operators transform in irreps:

[1: o , [20: LI , [11]: H, [5421] : |.

Known dimensions and tensor products (Newell-Littlewood numbers).

Loop-model interpretation:
Each loop carries [1], the fundamental (defining) representation.
Empty space corresponds to [], the trivial representation.
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Z90)(q) = Z X@,(q) + Z ZL(,,S)(H)X?;,S)(Q)

SE2N+1 reIN*selz

The proper way to understand it is that the O(n) CFT has a space of
states (spectrum)

s = P ekng® B D s ®Wirs

SE2N+1 re }N* selz

acted upon by O(n) x €, where € is conformal symmetry.

So dimo(n) A(rs) = L(r,s)(n)- And of course dimo(n)[] =1
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Introduce the formal alternating hook representations

t—1
/\t = 51‘50 mod 2[] + Z(_1)k[t_ kv 1k] :
k=0

We find then

2r—1
/\(r s) — 5r 1 53€2Z+1 [] + emr s X@r)ar N o ).
@rynr’

There exists an equivalent formula which makes clear that the
expansion coefficients of Young tableaux € N.
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Let us have a closer look:

A1o):[1]a

Naoy = 1[2],

Aq,1y =[11],

Ns oy =B+ 1],

Aaz) = [21],

Ny = [4]+[22] + [211] + [2] +[],

Ny = 1B1]+[211] + [11]
Aoy = [31]+[22] + [1111] + [2] .

We also have e.g. [1] ® [1] = [2] + [11] +[].
This tells us how to decompose two loop lines on O(n) irreps.
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Consequences for correlation functions

Two-point functions are given by the conformal dimensions, up to
normalisation of the field.

Three-point functions are also fixed by global conformal invariance, up
to structure constants.

Four-point functions could be determined by differential equations, if
both V§ , and V{ ,, were present, but we only have the former!

Therefore we need the conformal bootstrap.

But we can do better than usual for two reasons:
° Vg 3 generates an interchiral symmetry.
@ We can exploit the global O(n) symmetry.
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Consider a four-point function of non-diagonal primary fields, and its
s-channel decomposition into conformal blocks:

4
<H r,,s,> Z Ds?1s + Z ZD(rsg(rs .

i=1 SE2N+1 rel N* SErZ

The blocks are known from Zamolodchikov’s recursion relation.

H H H D(r s+1) D
Degenerate shift equations using V< >determme Do) and Dsj'
So rewrite

4
<H V(fi,Si)> = Ds,#s, + Z Z D(f»s)%fzs) ]
=1 re ;N selzn(—1,1]

in terms of interchiral blocks

Ds _p D(r,S+/)
%So = Z Fg<1 7S> ’ %I’,S) = D g(ﬂs'i‘j) :
sespt2N %0 jean (19
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Solve then the crossing equations

> o<;> - o

ves(s) 1 Ve 5’(1) ves)

s-channel t-channel u-channel

We know the spectrum. And we can constrain the solution space by
fixing the O(n) symmetry of the exchanged fields V.

In favourable cases this gives a unique (numerical) solution.

Conjecture: Each solutions to the crossing equations gives a valid
correlation function in the O(n) CFT.

We have computed the 30 correlation functions with 2?11 r=2,3,4.
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We have two ways to prove

2r—1
A(f s) = Or10se2z.41 (] + Z e x X@2r)ar </\ or ) .

@nar’

1st proof: Compute the torus partition function twisted by a non-trivial
group element of O(n). This produces the character A, s), not just its
dimension L, 5)(n) as in [Read-Saleur, 2001] and [J-Richard, 2007].

2nd proof: The commutant of O(n) on &LO(”) is the Brauer algebra,
2, (n), generated by e; and p;. Butin d = 2, it reduces to u 7% (n).

Hence we must compute the branching rules %, (n) | uf7%,(n).

This is a solvable combinatorial problem.
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Combinatorial maps

A (connected) combinatorial map is a (connected) graph, together with
a cyclic permutation of the half-edges around each vertex.
Monogons are forbidden.

/- QL

A map is weakly connected if it cannot be split into two non-trivial
maps [trivial means: a sphere with 0 or 1 vertex].

—D-0

This map is not weakly connected (it should have ‘used’ the handle).
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Number of maps |.#4 n(r;)| and of weakly connected maps ) Sn(r)|-
Genus g, number of points N, vertex valencies 2r;

[t

1=

84

Signature of a planar map with four vertices:

r284a

A map M is weakly connected iff Vx € {s, t, u},ox(M) >0

X

Njw
BMCO
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For any N-point function of diagonal and non-diagonal fields, the
dimension of the space of solutions of conformal bootstrap equation

with spectra made only of non-diagonal fields is ‘/%;N(r,-)‘.

The critical limit of a loop model correlation function is a solution of the
conformal bootstrap equations.

The set of correlation functions is a basis of solutions of the
corresponding conformal bootstrap equations.
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Digression on the Barnes double gamma function

Recallc=13—-682—-632andset Q=5+ 3.
For x > 0 define I'3(x) through

% 4t Xt _ o—Qt/2 (Q/2—-x)?> Q/2—-x
log I'5(x) _/o T [(1 —e A1 —et/B) 2e! ot ]

and the shift equations

Mo(x+8) _ 5872 Talx+p) g2
o0 VR F(W)

Sometimes one defines also the upsilon function

]
Fs(x)Ms(Q—x)

Ts(x) =
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4-point functions of diagonal and non-diagonal fields

In addition to monomer weight K and bulk loop weight n, define vertex
weights w; (with i = 1,2, 3, 4) and channel weights wy (with x = s, t, u):

X)
Wo
Ws WS
W+ w
®) X

At most one of the loop types wy can exist in a given configuration.

In the lattice model, define C'°°P(L, ¢|K, n, w;, wy), with L the size and ¢
the separation between z;, zo and z3, z4 (in the s-channel).
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We find the s-channel decomposition

C|00p(L7€|K’ n, w;, WX) = Z Aw(L’K, n, wi, WX)<

Aw(L|K7 na WS) >£
weS(L) )

Amax(L|K, n, ws

with (Aw)wes() the 49 (n) spectrum of transfer matrix eigenvalues.

Remarkable that only /7% (n) eigenvalues participate here!

Define ratios wrt different values of the weights: f(x : x’) = ff(()’((,)).

Even more remarkably, we find that

A(r,s),p (L|K7 n, wi, wy : W)/() = D(s)

(r.s) (1 Wi, W o wy)

Here w = (r, s), p, where p labels states in the same module (r, s).
There is no dependence on p, L and K. Hence the amplitudes have
nothing to do with CFT and should be computable from 5% (n).

Looks like a Wigner-Eckart theorem, but lifted from QM to 4% (n).
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Reference 2- and 3-point structure constants

Omitting the known coordinate dependence, define:
(ViVe) =612B1 . (Vi VaV3) = Cizs .

For non-diagonal fields, set:

ref (_)rs 1 1
569 = 2in ((frac(r) + ))sin (n(r + B~29)) Hrﬁ (5 EorEp s) >

f _ — (p+8~" -1
CE2,S1)(f2,Sz)(f3,33) - H rﬂ <ﬁ 26 + g ‘Zieiri‘ + /BTZIEI'SI') .

€1,€2,63=%

For diag fields, set Vp = V(g 24p), SO C(rgtzﬁﬂ)(0,26P2)(0,26P3) = Cp, p, P,

When w; = 0, Cp, p, p, gives the probability that three points belong to
the same FK cluster [Delfino-Viti, 2013]. The general Cp, p, p, Wwas found
by [Ikhlef-J-Saleur, 2016] and proved by [Ang—Cai-Sun-Wu, 2024 preprint]. It is
actually the imaginary Liouville version of the DOZZ formula.
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Normalised 4-point structure constants

Cref Cref
p¥) _ (r1,81)(r2,82)(r,8) (r,s)(rg,s3)(r4,s4)d(x)
(r.s) BEef ) (r;s)
rs

Combining analytical arguments with numerical bootstrap and transfer
matrices, we find that d((f)s) is a polynomial in n = —2 cos (7/32), with
B-independent coefficients and deg,, d((;()s) <r(r—1).

If the x-channel decomposition involves a diagonal field Vp,, then d((f)s)
is also polynomial in w(P).

If some V; = Vp, is diagonal, then d((;‘)s) is polynomial in w; = w(F;).

The dependence on wy = w(Pyx) becomes polynomial after we
subtract a rational term that is needed for the 4-point function to be
holomorphic in P.

This polynomial agrees between CFT and the off-critical finite-size lattice model.
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Results on 3-point structure constants

Not clear how to factorise 4-point structure constants on 3-point ones,
since several fields can have the same dimension.

But we find that 3-point structure constants of combinatorial maps are

simply given by C('z"sﬂ(rz’sz)(ra,sg), by taking a ratio that is invariant

under field renormalizations V(; sy — A(r.s) V(1,s):

Cref

Wiog = C:%fs 000
- ref ~ref ref
C011 C022 C033

Here 0 = Id = V| 1_g2). The reference 2-point structure constant
f _ —2 ( 5+ —1 (g1 —1
Cooa-s2)r.9)r) = 1;[ r® (6+) E r3 (64 +rs+s)

differ from the B'®f defined above only by simple factors.
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E.g. ('1 0)(1,0)(1,0) gives the probability that 3 points € same loop.

2
Wi1,0,(1,0,(1.0)7

161

N
weeo o
weoe o o
.o

w
.

¢ @eeee o
.

0.5 1. 0

This case is the one proved by [Ang—-Cai-Sun-Wu, 2024 preprint].
We checked a baker’s dozen of cases:

" ”l““““ltull‘ I.||IIHIIIIIHHIII'
S . i
1

. 1 ‘;'
N '
!
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