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Tony has studied so many LGF. The simplest is the simple
hyper-cubic LGF:

G(t) =
1

(2π)n

∫
dϕ1 dϕ2 dϕ3 dϕ4 dϕn

1 − t · λ
,

λ = c1 + c2 + c3 + · · · + cn,

where cj = cosϕj . Let us consider the example introduced by
Tony (no lattice !):

G(t) =
1

(2π)4

∫
dϕ1 dϕ2 dϕ3 dϕ4

1 − t · λ
,

λ = c1c2c3 + c1c2c4 + c1c3c4 + c2c3c4,

The (minimal order) linear differential operator annihilating G(t) is
irreducible, of order 8, and has a Sp(8, C) differential Galois
group. All the LGF are simple examples of diagonals of rational
functions (just change ϕj into zj = exp(i· , ϕj)).
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The well-suited framework: diagonal of rational functions

We also found in enumerative combinatorics, lattice statistical
mechanics, many other solutions of selected linear differential
operators, which have special differential Galois groups. All
these linear differential operators are globally nilpotent: they are
not only Fuchsian, they are such that their p-curvatures are
nilpotent, and all their critical exponents are rational numbers,
... They are “Derived from Geometry”: they annihilate n-fold
integrals of algebraic integrands (in mathematician’s wording
“Periods”). These n-fold integrals are (or can be recast into)
series with integer coefficients (globally bounded series). These
two set of properties are, in fact, the consequence of the fact that
these holonomic functions are actually diagonal of rational
functions. As Monsieur Jourdain talked prose, without knowing it,
n-fold integrals in physics are, without knowing it, diagonal of
rational functions, which corresponds to a quite remarkable set.
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Definition of the diagonal of series of several complex
variables

Definition:

F
(
z1, z2, . . . , zn

)
=

∞∑
m1 =0

∞∑
m2 =0

· · ·
∞∑

mn =0

Fm1,m2, ...,mn · z
m1
1 zm2

2 · · · zmn
n ,

Diag
(
F
(
z1, z2, . . . , zn

))
=

∞∑
m=0

Fm,m, ...,m · zm.

The result: if the algebraic, or rational, integrand of a n-fold
integral has a multi-Taylor expansion, then this n-fold integral is
the diagonal of a rational function.

Two by-products: Diagonal of rational functions are (or can be
recast into) series with integer coefficients, which actually
reduce modulo any prime to algebraic functions !!
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Ising n-fold integrals : the χ(n)’s

The full susceptibility of the two-dimensional Ising model can be
written as an infinite sum of n-folds integrals holonomic
functions (w = s/2/(1 + s2), k = s2):

χ(w) =

∞∑
n=1

χ(n)(w).

All these n-fold integrals χ(n) are actually diagonals of rational
functions.

The magnetic susceptibility χ is not a holonomic function, it is
not D-finite: χ is not solution of a linear differential equation.
It is much more involved.

The full susceptibility χ has a (unit circle) natural boundary, in
the complex k-plane.

|k| = 1 is a natural boundary of χ(k).
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Accumulation of the singularities of the linear ODEs for the
χ(n) in the k complex plane

the full susceptibility is clearly a quite involved function !
Remark: for a holonomic function, there is a difference between
the singularities of that function, and the singularities of the
linear differential operator annihilating the function !!

6 / 51



Is the full susceptibility of the Ising model differentially
algebraic ?

We also considered the full susceptibility of the square Ising model,
in order to see if it could be differentially algebraic:

Automata and the susceptibility of the square lattice Ising model
modulo powers of primes, A.J. Guttmann and JMM, 2015 J. Phys.
A: Math. Theor. 48 474001
Lacunary series mod. 32, 64 and thus reduce to algebraic series
mod. 25, 26.

L(u) = 1 + u + u2 + u4 + u8 + u16 + u32 + u64 + u128

+u256 + u512 + u1024 + · · ·

More generally, the full susceptibility series reduces to algebraic
series mod. 2r.
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Diagonals solutions of high order linear differential operators

As seen in “Experimental mathematics on the magnetic
susceptibility of the square lattice Ising model”, or “High order
Fuchsian equations for the square lattice Ising model: χ(5)”, by A
J Guttmann et. al, the χ(n)’s are solutions of linear differential
operators of quite large order, which factorize into products and
direct sums of many factors:( ( )

·
( )
· · ·

( ))
⊕

(( )
·
( )
· · ·

( ))
⊕ · · ·

where each factor has highly selected function solutions: elliptic
functions, modular forms, derivatives of modular forms, and
other remarkable functions with modularity properties (Calabi-Yau
but that’s another story, ...).
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At this step: Modular forms are just snob, posh elliptic
functions.

In the following, we will focus on modular forms, modular curves,
modular correspondences ... At this step, just see a modular form
as an “automorphic function” Φ(x) for a “symmetry” x → y(x):

Φ
(
y(x)

)
= A(x) · Φ(x).
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Z2 in χ(3) or χ(5): a modular form

The solution of the linear differential operator Z2 can be expressed
in terms of the 2F1 hypergeometric function up to a modular
invariant pull-back:

S =
(
Ω · Mx

)1/12
× 2F1

(
[
1

12
,
5

12
]; [1]; Mx

)
, where:

Ω =
1

1728

(1− 4x)6 (1− x)6

x · (1 + 3x + 4x2)2 (1 + 2x)6
,

Mx = 1728
x · (1 + 3x + 4x2)2 (1 + 2x)6 (1− 4x)6 (1− x)6

(1 + 7x+ 4x2)3 · P 3
,

P = 1 + 237x + 1455x2 + 4183x3 + 5820x4 + 3792x5 + 64x6.

It is a modular form.
Be careful not any 2F1([α, β], [1], p(x)) corresponds to a modular
form ...
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Simple (automorphy) covariance is too simple: the full
susceptibility of the Ising model

Remarkably long series expansion (5000 coefficients !!!) were
obtained for the low-temp. full susceptibility of the Ising model

χ̃L(w) = 4w4 + 80w6 + 1400w8 + 23520w10 + 388080w12

+6342336w14 + 103062976w16 + 1668639424w18

+26948549680w20 + · · ·

to be compared with the series for χ̃(2)(w) namely :

χ̃
(2)
L = 4w4 · 2F1

(
[
3

2
,
5

2
], [3], 16w2

)
= 4w4 + 80w6 + 1400w8 + 23520w10 + 388080w12

+6342336w14 + 103062960w16 + 1668638400w18

+26948510160w20 + · · ·
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Simple (automorphy) covariance is too simple: the full
susceptibility of the Ising model

The hypergeometric function χ̃
(2)
L is not exactly of the

automorphic form

Φ
(
y(x)

)
= A(x) · Φ(x).

The hypergeometric function χ̃
(2)
L can, in fact, be written as an

order-one linear diff. operator L1 acting on a modular form:

χ̃
(2)
L = − 1

12
· L1 · 2F1

(
[
1

2
,
1

2
], [1], 16w2

)
.

L1 = w · (8w2 − 1) · d

dw
+ 8w2.

and we have a rather simple generalization of the previous
automorphy relation:
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Simple (automorphy) covariance is too simple:
Renormalization group

χ̃(2)
( 2
√
k

1 + k

)
= 4 · 1 + k

k
· d χ̃

(2)(k)

dk
,

where: χ̃(2)(k) =
k4

43
· 2F1

(
[
3

2
,
5

2
], [3], k2

)
.

Conversely, this relation can also be written as

χ̃(2)(k) =
1

4
·
(
k · (k − 1) · d

dk
+

k2 + k + 2

k + 1

)
· χ̃(2)

( 2
√
k

1 + k

)
,

or, introducing the inverse (descending) Landen transformation:

χ̃(2)
(1 −√1 − k2

1 +
√
1 − k2

)
=

((k2 − 2) ·
√
1 − k2 + 2

4 k2

)
· χ̃(2)(k)

+
k2 − 1

4 k
·
(
1 −

√
1 − k2

)
· dχ̃

(2)(k)

dk
.
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Landen transformation and renormalization group

The Landen transformation, or the inverse Landen transformation,
is an exact generator of the renormalization group. An exact
generator of the renormalization group must be compatible with
the elliptic parametrization of the Ising (resp. Baxter) model. It
must have the critical point, k = 1, as a fixed point, but, beyond
must have k = 0, 1, ∞ preserved by such a generator. At this
step, an infinite number of functions can be generator of the
renormalization group. However one must impose that the lattice
of periods is actually compatible with such generator of the
renormalization group. The only such transformations are
isogenies of the elliptic curves: they are algebraic
transformations, corresponding to modular correspondences. We
are going to study these modular correspondences in detail, in
the following.
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The Landen transformation is the simplest example of such a
transformation. Naively one expects covariance like

Φ
( 2
√
k

1 + k

)
= A(k) · Φ(k),

like, for instance, in the simplest example of elliptic function (and
modular form ...), namely the (complete elliptic integral) EllipticK
function:

K
( 2
√
k

1 + k

)
= (1 + k) · K(k),

With χ̃(2) we see that we have a slight generalization of these
automorphy relations.
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Modular forms

The Ising model seems to be nothing but the theory of elliptic
curves and other modular forms, and also derivatives of modular
forms, what else ?

Let us focus on modular forms, modular curves, modular
equations, modular correspondences.

16 / 51



We need to understand modular forms, modular
correspondences.
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Modular Forms

Let us consider the second order linear differential operator

d2

dt2
+

(
t2 + 56 t+ 1024

)
t · (t+ 16) (t+ 64)

· d
dt
− 240

t · (t+ 16)2 (t+ 64)
.

which has the (modular form) solution:

2F1

(
[
1

12
,
5

12
], [1], 1728

t

(t+ 16)3

)
= 2 ·

( t+ 256

t+ 16

)−1/4
· 2F1

(
[
1

12
,
5

12
], [1], 1728

t2

(t+ 256)3

)
.

This looks like one identity: in fact it is an infinite number of
identities.
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Fundamental modular curve.

The two pull-backs in the previous modular form

x =
t

(t+ 16)3
, y =

t2

(t+ 256)3
= x

(212
t

)
,

are related by a simple involution t ←→ 212/t, and
correspond to a rational parametrization of the modular curve:

157464000000000 · x3 y3 − 8748000000 · x2 y2 · (x+ y)

+10125 · x y · (16x2 − 4027x y + 16 y2)

−(x+ y) · (x2 + 1487x y + y2) + x y = 0.

Let us introduce another rational parametrization where the
elliptic function parametrization of the Ising (resp. Baxter model)
plays a crucial role, thus underlining the Landen transformation as
an exact generator of the renormalization group.
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Isogenies, Landen transformations, modular curve.

We will denote k the modulus of the elliptic functions in the
parametrization of the Ising (resp. Baxter model), and j(k) the
j-invariant of the corresponding elliptic curve.
The previous modular curve has another rational
parametrization

x =
1

j(k)
, y =

1

j(kL)
where kL =

2
√
k

1 + k

j(k) = 256 · (1− k2 + k4)3

(1− k2)2 · k4
, j

( 2
√
k

1 + k

)
= 16 · (1 + 14 k2 + k4)3

(1− k2)4 · k2

These two rational parametrizations are actually related by the
following change of variables:

t = 256 · k2

(k2 − 1)2
or: 16 · (k

2 − 1)2

k2
i.e: k → 1 − k

1 + k
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Isogenies, Landen transformations, Modular curve.

The modular curve is thus an algebraic representation of the
Landen transformation k → 2

√
k/(1 + k), and in the same

time, since this curve is x ↔ y symmetric, of its compositional
inverse, the inverse Landen transformation. The algebraic
function y = y(x) is a multivalued function, but we can single
out the series expansions:

y2 = x2 + 1488x3 + 2053632x4 + 2859950080x5 + · · ·

and its compositional inverse series (with ω2 = 1):

y1/2 = ω · x1/2 − 744 · x2/2 + 357024 · ω · x3/2 + · · ·
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More correspondences.

2F1

(
[
1

12
,
5

12
], [1], 1728

t

(t+ 27) · (t+ 3)3

)
= A(t) · 2F1

(
[
1

12
,
5

12
], [1], 1728

t3

(t+ 27) · (t+ 243)3

)
,

where A(t) is an involved algebraic function. The elimination of t
between the two pullbacks

x =
t

(t+ 27) · (t+ 3)3
, y =

t3

(t+ 27) · (t+ 243)3
= x

(36
t

)
,

gives another modular curve P3(x, y) = P3(y, x) = 0

y3 = x3 + 2232x4 + 3911868x5 + 6380013816x6 + · · ·

and its compositional inverse series (with ω3 = 1):

y1/3(ω, x) = ω · x1/3 − 744 · ω2 · x2/3 + 356652 · x3/3 + · · ·
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Simple covariance: modular form.

Revisiting the previous 2F1 identities, corresponding to the
modular correspondence series, one can write:

2F1

(
[
1

12
,
5

12
], [1], 1728 y

)
= A(x) · 2F1

(
[
1

12
,
5

12
], [1], 1728x

)
,

where A(x) is an algebraic function. The relation P (y, x) = 0 is
one of the previous modular equations. Introducing

F (x) = x · (1 − 1728 · x)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · x

)2
,

the previous covariance relation on 2F1 can, in fact, be written

λ · F (y) = F (x) · dy
dx

or: λ · dx

F (x)
=

dy

F (y)
.
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Modular form: Schwarzian condition.

Eliminating A(x) one gets the following Schwarzian differentially
algebraic equation condition:

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0,

where

W (x) = −1

2
· 1 − 1968x + 2654208x2

x2 · (1 − 1728x)2
,

and where {y(x), x} denotes the Schwarzian derivative:

{y(x), x} =
y′′′(x)

y′(x)
− 3

2
·
(y′′(x)
y′(x)

)2

This non-trivial condition coincides exactly with one of the
conditions G. Casale obtained in a classification of Malgrange’s
D-envelope and D-groupoids on P1.
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The Schwarzian equation encapsulates all the modular
equations of the theory of elliptic curves: the infinite number
of correspondences, x → xn + · · · , are actually solutions of
the same Schwarzian equation.
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Are the solutions of the Schwarzian equations only modular
correspondences ?
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Beyond the modular correspondence x → xn + · · · , a
one-parameter series.

A one-parameter series is actually solution of the Schwarzian
equation:

y(a, x) = a · x − 744 · a · (a− 1) · x2

+36 · a · (a− 1) · (9907 a− 20845) · x3

-32 · a · (a− 1) · (4386286 a2 − 20490191 a+ 27274051) · x4

+6 · a · (a− 1) · (8222780365 a3 − 61396351027 a2

+171132906629 a -183775457147) ·x5 + · · ·
One-parameter family of commuting series:

y
(
a, y(a′, x)

)
= y(a a′, x).
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In the a → 0 limit

Q̃(x) = lim
a→ 0

y(a, x)

a
= x + 744x2 + 750420x3

+872769632x4 + 1102652742882x5 + · · ·

In the a → ∞ limit

X̃ = lim
a→∞

y
(
a,

x

a

)
= x − 744x2 + 356652x3

−140361152x4 + 49336682190x5 + · · ·

y(a, x) = X̃
(
a · Q̃(x)

)
or: Q̃

(
y(a, x)

)
= a · Q̃(x).

Since y(1, x) = x, one deduces that X̃ must be the
compositional inverse of Q̃. X̃ and Q̃ are differentially
algebraic: they are solutions of some Schwarzian equations.
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Similarly the two previous algebraic series, y2 and y1/2, can be
written respectively:

X̃
(
Q̃(x)2

)
and: X̃

(
ω · Q̃(x)1/2

)
.

2 · y2 · (1 − 1728 · y2)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · y2

)2

= x · (1 − 1728 · x)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · x

)2
· dy2
dx

.

2 · F (y2) = F (x) · dy2
dx

.

More generally, the modular correspondence series read:

X̃
(
Q̃(x)N

)
and: X̃

(
ω · Q̃(x)1/N

)
.
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N-th root values of the parameter

Note that y(a, x) for aN = 1 is such that its N -th compositional
iterate is the identity. Such a series must be “special”. Let us

consider the modular curve ΓN having X̃
(
Q̃(x)N

)
and

X̃
(
ω · Q̃(x)1/N

)
as solution series. In the nome Q̃(x) ΓN

amounts to writing in the same time Q̃→ Q̃N and
Q̃→ ω · Q̃1/N . Performing the resultant of ΓN with itself, in
order to get ΓN2 , amounts to performing Q̃→ Q̃N → Q̃N2

,
Q̃→ ω · Q̃1/N → Q̃1/N2

but also Q̃→ Q̃N → ω · (Q̃N )1/N ,
namely Q̃→ ω · Q̃ with ωN = 1. In other words y(a, x) for
aN = 1 is not only a series of order-N with respect to the
composition of function, it is an algebraic series, solution of a
modular curve: it is a correspondence. We thus have an infinite
number of algebraic series solutions of the Schwarzian equation.
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More generally

In the a → 1 limit, let us denote ϵ = a − 1. The one-parameter
series y(x) = y(a, x) can, thus, be seen as an ϵ-expansion:

y(a, x) = x +

∞∑
n=1

ϵn · Bn(x),

where B1(x) = F (x)

B2(x) =
1

2
· F (x) ·

(dB1(x)

dx
− 1

)
.

B3(x) =
1

3
· F (x) ·

(dB2(x)

dx
− dB1(x)

dx
+ 1

)
,

B4(x) =
1

4
· F (x) ·

(dB3(x)

dx
− dB2(x)

dx
+

dB1(x)

dx
− 1

)
,
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More generally.

(n+ 1) · Bn+1 + n · Bn = F (x) · dBn(x)

dx
,

∂
∑

n Bn+1 · ϵn+1

∂ϵ
+ ϵ ·

∂
∑

n Bn · ϵn

∂ϵ

= F (x) ·
(∂∑

n Bn(x) · ϵn

∂x

)
,

a · ∂y(a, x)
∂a

= F (x) · ∂y(a, x)
∂x

.

The series y(a, x) is solution of the Schwarzian equation with:

W (x) =
F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2
.

This remains valid for any function F (x).
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Polynomial example

F (x) = x · (1 − 373 · x) · (1 − 371 · x).

W (x) = −1

2
· 1 − 830298x2 + 411827808x3 − 57449564067x4

x2 · (1 − 373x)2 · (1 − 371x)2
.

y(a, x) = a · x − 744 · a · (a− 1) · x2

+
1

2
· a · (1245455 a − 968689) · (a− 1) · x3 + · · ·

Q̃(x) = x · (1 − 371x)371/2

(1 − 373x)373/2

a · Q̃(x) = Q̃
(
y(a, x)

)
, y(a, x) = X̃

(
a · Q̃(x)

)
.

Finding the (simple) algebraic expressions of Q̃(x) and X̃(x) from
large series expansions is quite hard !
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Polynomial truncation of the hypergeometric.

F (x) = x − 744x2 − 393768x3 = x ·
(
1 − p · x

)
·
(
1 − q · x

)
,

with:

p = 372 + 6 · 147821/2, q = 372 − 6 · 147821/2,

Q̃(x) =
x · (1 − p · x)p/(q−p)

(1 − q · x)q/(q−p)
= x + 744x2 + 750420 x3

+753621408x4 + 782312864472 x5 +
4097211834177216

5
x6 + · · ·

Q̃(x) is D-finite, but the linear differential operator is not globally
nilpotent and the series for Q̃(x) is not globally bounded.
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Differentially algebraic series.

With y(a, x) associated with canonical correspondences, we had
an infinite number of algebraic functions for y(a, x) with aN = 1,
and an infinite number of differentially algebraic series with integer
coefficients for y(a, x) with a ∈ Z.
The λ-extensions of the two-point correlation functions of the
square Ising model have very similar properties. These series are
solutions of (sigma-form of) Painlevé equations, they are, thus,
differentially algebraic. For selected values (λ = cos(πm/n),
which can also be written as N -th root of unity) these series
become algebraic series, and for integer values of λ we have
differentially algebraic series with integer coefficients.
We thus have the same remarkable properties with different
kinds of differentially algebraic series (Schwarz versus Painlevé,
Replicable functions versus isomonodromy).
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So many people have a defeatist attitude towards non-linear
differential equations: they think nothing can be done on
non-linear differential equations.

This is defeatist nonsense

As far as differentially algebraic functions are concerned:
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Making further progress in differentially algebraic series will be a
huge challenge. It will require many acts of great courage or skill,
almost a marathon feat.

But we are strong !
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The road is hard, but I am strong (Jean-Paul Sartre’s Roads to
Freedom trilogy, sung by Georgia Brown).
La route est dure mais qu’elle est belle. Le but est difficile mais
qu’il est grand ! Allons ! Le départ est donné. Allocution
radiodiffusée du Général de Gaulle (13 mai 1958).
THE END (of this talk)
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Additional slides to answer the questions the public did not
ask.
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Modular form, Eisenstein series

E4 = 1 + 240

∞∑
n=1

n3 · q(τ)n

1− q(τ)n
= 2F1

(
[
1

12
,
5

12
], [1],

1728

j(τ)

)4

In terms of k the modulus of the elliptic functions, the E4

Eisenstein series can also be written as:

2F1

(
[
1

12
,
5

12
], [1],

27

4

k4 · (1 − k2)2

(k4 − k2 + 1)3

)4

= (1− k2 + k4) · 2F1

(
[
1

2
,
1

2
], [1], k2

)4
.

E6 = (1 + k2) · (1 − 2 k2) ·
(
1 − k2

2

)
· 2F1

(
[
1

2
,
1

2
], [1], k2

)6

= (1 + k2) · (1 − 2 k2) ·
(
1 − k2

2

)
× (1− k2 + k4)−3/2 · 2F1

(
[
1

12
,
5

12
], [1],

27

4

k4 · (1 − k2)2

(k4 − k2 + 1)3

)6
.
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A pedagogical example of diagonal of rational functions.

Let us consider the rational function of three complex variables
F = 1/(1 − z2 − z3 − z1z2 − z1z3). Its diagonal reads:

1 + 4z + 36z2 + 400z3 + 4900z4 + 63504z5 + · · ·

which is nothing but the complete elliptic integral (first kind):

∑
m≥0

(
2m

m

)2

· zm = 2F1

(
[
1

2
,
1

2
], [1], 16 z

)
This diagonal modulo any prime reduces to an algebraic
function, for instance:

Diag(F) mod 7 =

= 1 + 4 z + z2 + z3 + 4z7 + 2z8 + 4z9 + · · ·

=
1

6
√
1 + 4z + z2 + z3

mod 7.
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Another example of diagonal of rational functions.

A less obvious example corresponds to the modular form:

(
1

1− z1 − z2 − z3 − z1z2 − z2z3 − z3z1 − z1z2z3
)

=
1

1 − z
· 2F1

(
[
1

3
,
2

3
], [1];

54 z

(1 − z)3

)
.

Such diagonals of rational functions are highly selected
functions: modulo any prime they reduce to algebraic functions.

They can be seen as the simplest (transcendental)
generalisations of algebraic functions.

The integrands of the χ(n) n-fold integral of the Ising model have
a multi-Taylor expansion and are, thus, diagonals of a rational
function.

42 / 51



Ising n-fold integrals : χ(5)

The five-particle contribution χ̃(5) of the susceptibility of the Ising
model is solution of an order-33 linear differential operator which
has a direct-sum factorization (DFactorLCLM in Maple): the
selected linear combination

χ̃(5) − 1

2
χ̃(3) +

1

120
χ̃(1),

is solution of an order-29 (globally nilpotent) linear differential
operator

L29 = L5 · L12 · L̃1 · L11,

where:

L11 = (Z2 ·N1)⊕ V2 ⊕ (F3 · F2 · Ls
1).
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Ising n-fold integrals : χ(6)

Similarly χ̃(6) is solution of an order-52 linear differential operator
which has a direct-sum factorization: the selected linear
combination

χ̃(6) − 2

3
χ̃(4) +

2

45
χ̃(2),

is solution of an order-46 (globally nilpotent) linear differential
operator

L46 = L6 · L23 · L17,

where: L17 = L̃5 ⊕ L3 ⊕ (L4 · L̃3 · L2),

L̃5 =

(
d

dx
− 1

x

)
⊕
(
L1,3 · (L1,2 ⊕ L1,1 ⊕Dx)

)
.
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The “Quarks” in χ(5) and χ(6)

Quasi-trivial order-one (globally nilpotent) linear differential

operators: L̃1, N1, Ls
1, L1,n −→ Dx − 1

N ·
d ln(R(x))

dx

V2, L2, L3, L5 and L6 are respectively equivalent
(homomorphic) to LK , to the symmetric square of LK and to the
symmetric fourth and fifth power of LK , where LK is the second
order linear differential operator annihilating the complete elliptic
integral K = 2F1([1/2, 1/2], [1], k

2).

F2, F3, L̃3 do correspond to modular forms: F3 and L̃3 are
homomorphic to the symmetric square of order-two operators
associated with the (fundamental) modular curve X0(2), and F2

is related to Z2 (and thus h6, Apéry, ...).

Remains to understand the “very nature” of:

L4 and: L12, L23
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L4 is a Hadamard product of two elliptic curves:

it is a Calabi-Yau operator !

Seeking for 4F3 hypergeometric functions up to homomorphisms,
and assuming an algebraic pull-back with the square root
extension, (1 − 16 · w2)1/2, we actually found that the solution of
L4 can be expressed in terms of a selected 4F3

4F3

(
[1/2, 1/2, 1/2, 1/2], [1, 1, 1]; z

)
= 2F1

(
[1/2, 1/2], [1]; z

)
⋆ 2F1

(
[1/2, 1/2], [1]; z

)
,

where: z =
(1 +

√
1 − 16 · w2

1 −
√
1 − 16 · w2

)4
= k4

where the pull-back z is nothing but the fourth power of the
modulus k of the elliptic functions !
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The χ(n)’s are diagonal of rational functions.

Let us consider the series of χ̃(3)/8/w9

1 + 36w2 + 4w3 + 884w13 + 196w5 + 18532w6 + · · ·

Let us now consider this very series modulo the prime p = 2. It
reads the lacunary series

1 + w8 + w24 + w56 + w120 + w248 + w504 + w1016 + · · · ,

In fact,modulo the prime p = 2, H(w) = χ̃(3)/8 is, actually, an
algebraic function, solution of the quadratic equation:

H(w)2 + w · H(w) + w10 = 0 mod 2.

Modulo p = 3. Indeed, H(w) satisfies a polynomial equation of
degree nine (the pn are polynomials of degree less that 63):

p9 · H(w)9 + w6 · p3 · H(w)3 + w10 · p1 · H(w) + p0.
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Elimination of the automorphic prefactor A(x)

A(x) · 2F1

(
[α, β], [γ], x

)
= 2F1

(
[α, β], [γ], y(x)

)
,

The Gauss hypergeometric function 2F1([α, β], [γ], x) is solution
of the second order linear differential operator of wronskian w(x):

Ω =
d2

dx2
+ A(x) · d

dx
+ B(x), B(x) =

αβ

x · (x − 1)
,

A(x) =
(α+ β + 1) · x − γ

x · (x − 1)
= − w′(x)

w(x)
,

A straightforward calculation gives the algebraic function A(x) in
terms of the algebraic function pullback y(x):

A(x) =
(w(y(x))

w(x)
· y′(x)

)−1/2
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The set of solutions of the Schwarzian condition has a
closure property for composition of functions

A(x) · 2F1

(
[α, β], [γ], x

)
= 2F1

(
[α, β], [γ], y(x)

)
,

B(x) · 2F1

(
[α, β], [γ], x

)
= 2F1

(
[α, β], [γ], z(x)

)
,

B(y(x)) · 2F1

(
[α, β], [γ], y(x)

)
= 2F1

(
[α, β], [γ], z(y(x))

)
= B(y(x)) · A(x) · 2F1

(
[α, β], [γ], x

)
The set of solutions of the Schwarzian condition must have a
closure property for composition of functions. It works: see the
Schwarzian derivative of a composition of function:

{z(y(x)), x} = {z(y), y}y=y(x) · y′(x)2 + {y(x), x}
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Non-holonomic functions ratio of holonomic functions

Along this line it is fundamental to recall that the ratio (not the
product !) of two holonomic functions is non-holonomic

d2y

dx
+R(x) · y = 0, τ(x) =

y1
y2

, {τ(x), x} = 2R(x).

The Chazy III equation is a third-order non-linear differential
equation (it can also be rewritten using a Schwarzian derivative)
that has a natural boundary for its solutions:

d3y

dx3
= 2 y

d2y

dx2
− 3

(dy
dx

)2
.

It has the quasi-modular form Eisenstein series E2 has a solution

y =
1

2
· ∆

′

∆
=

1

2
· E2

where ∆ is a selected holonomic function: a modular form.
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Schwarzian derivative and natural boundary

It can be rewritten in terms of a Schwarzian derivative:

f (4) = 2 f ′2 · {f, x} = 2 f ′ f ′′′ − 3 f”2 with: y =
df

dx
.

It was introduced by Jean Chazy (1909, 1911) as an example of a
third-order differential equation with a movable singularity that has
a natural boundary for its solutions. It is also worth recalling the
Halphen-Ramanujan differential system:

P ′ =
P 2 −Q

12
, Q′ =

P Q −R

3
, R′ =

P R −Q2

2
,

where P = E2, Q = E4, R = E6 and X ′ denotes here the
homogeneous derivative q · dX

dq , and En the Eisenstein series.
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