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ABSTRACT

We investigate a generalization of stacks that we call C-
machines. We show how this viewpoint rapidly leads to
functional equations for the classes of permutations that
C-machines generate, and how these systems of functional
equations can be iterated and sometimes solved. General
results about the rationality, algebraicity, and the existence
of Wilfian formulas for some classes generated by C-machines
are given. We also draw attention to some relatively small
permutation classes which, although we can generate
thousands of terms of their counting sequences, seem to not

have D-finite generating functions.
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- could not conjecture a generating
function

- did not know how to do asymptotic
analysis!
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Dear Prof. Guttmann,

Michz
Nath: Vince told me today that he shared some of our data with you. While the sequence he sent is correct, the functional } .
1 2 Depa equation is not. I've attached a pdf which has the correct pair of functional equations that give the desired series. Ctu re a gener atlng
b Depa
CB%Z;Z It should be noted that we did not use these functional equations to actually get the 350 terms. We used a
4 Depa structural description of the class itself (with a dynamic programming approach) to get the terms in about a day of

° Depa computation on a laptop.

AR T It's very exciting that you are interested in the sequence. It would be great if we could show that it is non-D-finite!

ow to do asymptotic

| Article Best,
Jay Pantone
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equations can be iterated and sometimes solved. General

d Enumeration results about the rationality, algebraicity, and the existence
Stack of Wilfian formulas for some classes generated by C-machines
Sorting machine are given. We also draw attention to some relatively small

permutation classes which, although we can generate
thousands of terms of their counting sequences, seem to not
have D-finite generating functions.

© 2018 Elsevier Inc. All rights reserved.
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Jay Pantone <jay.pantone@gmail.com> Wed, Oct 22, 2014, 3:37PM ¥ @ “
to tonyg v

Dear Professor Guttmann,

My name is Jay Pantone, and | am a graduate student of Vince Vatter at the University of Florida. We
corresponded briefly in July about the asymptotics of the class Av(4231, 4123) — in particular, that it seems likely
to be non-D-finite.

The National Science Foundation runs a summer program each year called East Asia and Pacific Summer
Institutes (EAPSI) in which they fund travel for graduate students to various counties in the East Asia and Pacific
regions for eight weeks over the summer. | am considering applying for this program, and | was wondering if you
would be willing to be my mentor / host.

| would be interested in continuing the study of the permutation class Av(4231, 4123), as well as other classes that
arise by a similar construction. This is all very closely related to the study of sorting / generating permutations by
stacks in series, which is a problem that Vince tells me you have been thinking about. Of course, I'm also open to
any other problems you may be working on.

The program runs between late June and mid-August of 2015, and is co-sponsored by the Australian Academy of
Science.

Thanks for your time.

Best wishes,
Jay Pantone
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Wed, Oct 22, 2014, 3:37PM

Tony Guttmann <tony.guttmann@gmail.com>

to Vince, me «

Dear Jay,

I'd be very happy to have you visit. I'm overseas from early April until early June, but will be back for the period of

* © «

Wed, Oct 22, 2014, 6:33PM

the program, and have no teaching duties then, so the timing is perfect.
We can provide you with office space, computing facilities, library access etc etc. There may be some local
bureaucracy at this end, but we can sort that out closer to the time.

I'm sure there will be plenty of things to work on.

Best wishes,

tony

Tony Guttmann

* © «“
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ABSTRACT

We give an improved algorithm for counting the number of
1324-avoiding permutations, resulting in 14 further terms
of the generating function, which is now known for all
lengths < 50. We re-analyse the generating function and
find additional evidence for our earlier conclusion that
unlike other classical length-4 pattern-avoiding permutations,
the generating function does not have a simple power-
law singularity, but rather, the number of 1324-avoiding
permutations of length n behaves as

B ™ py™ - nd.

We estimate p = 11.600 £ 0.003, p; = 0.0400 £ 0.0005,
g = —1.1 & 0.1 while the estimate of B depends sensitively
on the precise value of u, u; and g. This reanalysis provides
substantially more compelling arguments for the presence of

the stretched exponential term ,ui/ﬁ.
© 2018 Elsevier Inc. All rights reserved.

- computed the number of 1324 -
avoiding permutations up to length 50

- asymptotic analysis
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Table 1

An example of the state as the permutation 5427 10 8 9 1 3 6 is built up. The numbers
above the link diagrams indicate the actual numbers that the link end represents. The
numbers in parentheses correspond to the four types of insertion given in the text.
Conversely, consider the similar permutation 5 4 2 7 10 6 9 1 3 8 which is not 1324
avoiding. The first five elements are the same; the sixth element is not allowed, as it
would have to go inside the loop ending at 7.

Element

Notes

Result

Start state

Not consecutive with anything; future elements could
go either side. (1)

Consecutive with 5 and so merged into it. (3)

New link as not consecutive with anything. (1)

Larger than a previous link, makes constraint that no
new elements between 2 and 7 may be added until
every element greater than 7 has been added. (1)

Removed from consideration as largest element. (3)

Merged with 7. (2)

Merges the 7 — 8 link with the largest element; said
link removed from consideration. (4)

Merges with 2 link. (3)

Merges the 1 — 2 and 3 — 5 links. (4)
Merges the 1 — 5 link with the largest element. (4)

bd the number of 132/ -
> permutations up to length 50

tic analysis
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71 Table 1
An example of the state as the permutation 5427 108 9 1 3 6 is built up. The numbers
“q above the link diagrams indicate the actual numbers that the link end represents. The
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={ numbers in parentheses correspond to the four types of insertion given in the text.

Conversely, consider the similar permutation 5 4 2 7 10 6 9 1 3 8 which is not 1324
avoiding. The first five elements are the same; the sixth element is not allowed, as it
would have to go inside the loop ending at 7.

Element

Notes

Result

Start state

Not consecutive with anything; future elements could
go either side. (1)

Consecutive with 5 and so merged into it. (3)

New link as not consecutive with anything. (1)

Larger than a previous link, makes constraint that no
new elements between 2 and 7 may be added until
every element greater than 7 has been added. (1)

Removed from consideration as largest element. (3)

Merged with 7. (2)

Merges the 7 — 8 link with the largest element; said
link removed from consideration. (4)

Merges with 2 link. (3)

Merges the 1 — 2 and 3 — 5 links. (4)
Merges the 1 — 5 link with the largest element. (4)

- Y A ab
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Based on the first 50 terms, they predict the exponential growth rate for the
number of 1324 -avoiding permutations is ~11.600.

The number of link patterns of size n is the nth Catalan number, so their
exponential growth rate is 4.

BUT:': each operation adds at most one link, and takes away at most one link,
and the counts we care about are the ones with zero links.

So, they compute 1324 -avoiding permutations to length »n, we only need
link patterns with at most n/2 links.

That makes this a o((4 + €)”?) = o((2 + €)") algorithm!
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It always bugged me that I didn’t see the “big picture” of the paper.

[ downloaded the paper onto my iPad to re-read on the flight home
from Permutation Patterns 2023 in Dijon.

By the time I landed, I understood the big picture, which gave me the
idea for this project:

Counting permutations avoiding any set of patterns by
automatically discovering the “link patterns” for that set.
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Insertion EnCOding Albert, Linton, and Ruskuc, 2005)
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Insertion EnCOding Albert, Linton, and Ruskuc, 2005)
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(The Insertion Encoding of Permutations,

Insertion EnCOding Albert, Linton, and Ruskuc, 2005)
Encodes how a permutation can be built from bottom to top.
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Insertion Encoding

Let B be a set of permutations.

Define Av(B) to be the set of all permutations that,avoid as pattems!all of
the permutations in B.

Examples: CYZRISS  contams 23]

Av(1324)
Av(132, 231) avw\ avoids 123

Av(1324, 51234, 654123)

These kinds of sets are called permutation classes.




Insertion Encoding

Some permutation classes have a “finite insertion encoding” — if you write
down the stages of the insertion encodings of every permutation in the
class, and simplify them in certain ways, you end up with a finite set.

(Finding Regular Insertion Encodings for Permutation Classes, Vatter, 2012)
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Even if a class has an infinite insertion encoding, you can still use it to count
the number of permutations in a class up to some point.
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Even if a class has an infinite insertion encoding, you can still use it to count
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Even if a class has an infinite insertion ¢ -
the number of permutations in a class

Av[(?:z"l) y B
\ 10 2<©
O 20 =16
010

O QLIOZQIO




Insertion Encoding Avliz24)

<&

¢ & 1© O




Insertion Encoding Avliz24)

<&

2
e O

1OF 616 (020 01O Oztio  Qiszo




Insertion Encoding Avliz24)

O
¢ & 1O 0P —i—\\
¢ 0/(2;/%10 2915 OzL1o Q1929

3




Insertion Encoding Avliz24)

O
¢ & 1O 0P —i—\\
¢ 0/(2;/%10 2915 OzL1o Q1929

3

e




Insertion Encoding Avliz24)

R,

2
¢ - QOF 10T 010 1020 WO Sztio  Qiseo

3

e




Insertion Encoding Avliz24)

R,

OF 107 01© 1029 20IO Szsio  oisze

3

e




Insertion Encoding Avliz24)

R,

N s SRR

OF 107 01© 1029 01O Ozsio  oisze

3

e




Insertion Encoding Avliz24)

R,

B s SN

OF 107 01© 1029 2010 Ozsio  Qisze

3

e




Insertion Encoding Avliz24)

R,

3 4-() 4‘|<> %)vo ‘—i—\\
d //q(m N )
¢ - OF O™ OO0 1029 VIO Oztio  Qivze

3

e




Insertion Encoding Avliz24)

RY,

A 1
7"2_ %@ “0(<> ‘(<> 120 ‘ 2910 Oetio Q1529

3

e




Insertion Encoding Avliz24)

R,

DETHOE 016 (1020 2010 Szsio  oiszo

T

e




Insertion Encoding Avliz24)

R,

<> 1O 40‘¢ ‘(<> 120 ‘ QIO O7ze10 01520

3

e




Insertion Encoding Avliz24)

R,

<> 1O 40‘¢ ‘(<> 120 ‘ QIO O7ze10 01520

3




Insertion Encoding

The “link diagrams” in the 1324 paper are precisely encoding the
relationships between slots — often you cannot fill slot A until after slot B
has been closed.
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transitions between simplified slot configurations are.




Insertion Encoding

The “link diagrams” in the 1324 paper are precisely encoding the
relationships between slots — often you cannot fill slot A until after slot B
has been closed.

That means they can follow the link diagrams to know exactly what the
transitions between simplified slot configurations are.

Huge computational savings because the simplification is an expensive
operation in the original insertion encoding.
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So the “big picture”, translated into the insertion encoding, is that the paper
uses a very efficient construction to generate the insertion encoding finite
state machine for all states with up to 25 slots.




Insertion Encoding

So the “big picture”, translated into the insertion encoding, is that the paper
uses a very efficient construction to generate the insertion encoding finite
state machine for all states with up to 25 slots.

It also uses some extremely clever theoretical and optimization tricks to
reach length 50!

Table 2
The first 50 terms of the Av(1324) series.

49339914891701589053
402890652358573525928
3313004165660965754922

03 27424185239545986820514

103 228437994561962363104048

13 1914189093351633702834757

9762 16130725510342551986540152

15793 136664757387536091240503406

94776 1163812341034817216384582333

591950 9959364766841851088593974979

3824112 85626551244475524038311935717

25431452 739479176041581588794042743521
173453058 6413612398452364144369673970347
1209639642 55855094052029166019855630997080
8604450011 488354507551082299792086219184434
62300851632 4286013140398612535730177106798038
458374397312 37753338738386034300928290519149333
3421888118907 333720028221302436110132711265898937
fggg;igéigggégs 2959914488410727889919188039470296624
5353462183164 26338690757116988316771828238926079326
120153258 16023313 235113956679181729949424482617740434207
04044352005 T728825 2105162587512716675745868833684827184388
E T 0AGA84559152932 18904804517351837590874336467009693522354
6087537591051072864 170253750251391700942449152528030601519757
1537516984674177479234766336099763469212469
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Generalizing to Any Permutation Class

In the rest of this talk, I’ll explain how to generalize this to any
permutation class.

Big idea: We use a structure that automatically discovers and tracks the
relationships between slots.

[t simultaneously derives the right “link pattern” analogues and uses
them to count.
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Automatic enumeration of permutation
classes (and other objects)

Discovers (rigorously) combinatorial
specifications, which can be turned into
generating functions and polynomial -time
counting algorithms.
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Figure 24: A pictorial representation of the combinatorial specification found by Combinatorial
Exploration for Av(1243,1342,2143).
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Figure 24: A pictorial representation of the combinatorial specification found by Combinatorial
Exploration for Av(1243,1342,2143).
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The Permutation Pattern Avoidance Library
(PermPAL)

PermPAL is a database of algorithmically-derived theorems about
permutation classes.

The Combinatorial Exploration framework produces rigorously verified combinatorial
specifications for families of combinatorial objects. These specifications then lead to
generating functions, counting sequence, polynomial-time counting algorithms,
random sampling procedures, and more.

This database contains 24,454 permutation classes for which specifications have
been automatically found. This includes many classes that have been previously
enumerated by other means and many classes that have not been previously
enumerated.

Some Notables Successes:

e 6 out of 7 of the principal classes of length 4

all 56 symmetry classes avoiding two patterns of length 4

e all 317 symmetry classes avoiding three patterns of length 4

e the "domino set" used by Bevan, Brignall, Elvey Price, and Pantone to
investigate Av(1324)

e the class Av(3412, 52341, 635241) of Alland and Richmond corresponding a
type of Schubert variety

e the class Av(2341, 3421, 4231, 52143) equal to the (Av(12), Av(21))-staircase
(see Albert, Pantone, and Vatter), which appears to be non-D-finite

e all of the permutation classes counted by the Schroder numbers conjectured by
Eric Egge

e the class Av(34251, 35241, 45231), equal to the preimage of Av(321) under the
West-stack-sorting operation (see Defant)

Section 2.4 of the article Combinatorial Exploration: An Algorithmic Framework for
Enumeration gives a more comprehensive list of notable results.

The comb_spec_searcher github repository contains the open-source python
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Tilings

One of the fundamental tools for Combinatorial Exploration is the tiling. It’s
essentially a data structure that represents a set of (gridded) permutations.

Gridded permutation = a permutation with grid lines draw so that entries are
split into cells of a grid
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A gridded permutation p contains a gridded permutation g as a pattern it
there is a subsequence of entries of p that are order-isomorphic to g and in
the same cells.
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A gridded permutation p contains a gridded permutation g as a pattern it
there is a subsequence of entries of p that are order-isomorphic to g and in
the same cells.
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Tilings

A tiling is a grid with
obstructions: gridded permutations that must be avoided
requirements: gridded permutations that must be contained

A tiling represents the set of all gridded permutations that can be drawn on
that grid that avoid all of the obstructions and contain all of the
requirements.
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The tiling represents all gridded permutations on a 2x3 grid with:

> exactly one point in the bottom-left cell

> no points in the bottom-middle or top-right cells

> Nno 132 pattern in the top left cell

> Nno crossing 21 pattern between the top-left and top-middle cells
> contains a 12 pattern in the top-middle cell
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The tiling represents all gridded permutations on a 2x3 grid with:

> exactly one point in the bottom-left cell

> no points in the bottom-middle or top-right cells

> Nno 132 pattern in the top left cell

> No crossing 21 pattern between the top-left and top-middle cells
> contains a 12 pattern in the top-middle cell
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Tilings
We can generate the insertion encoding graph using tilings instead of slot
configurations!

Each tiling represents a set of permutations just like each insertion encoding
configurations represents the set of permutations that can be generated

from that configuration.

It is a fast operation to “place an entry into a slot” on a tiling and simplify
the obstructions.

No expensive checks, just like the link patterns in 1324, but we didn’t need to
first describe and prove any structure by hand.




We can remove the points and only use the top row because the obstructions
already keep track of where the bad patterns can show up.

Two states are isomorphic when they are simply the same tiling. For the
original insertion encoding this was a very expensive check.




Tilings

None of this is specific to 1324, and we can do it with any set of
forbidden patterns.
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Results

Very preliminary — still improving the parallel implementation

Definitely does not beat 50 terms of Av(1324)!

Since this is general purpose, it doesn’t “know” a structural theorem
like the link patterns ahead of time.

But, I can get to the mid-30s on my laptop and into the 40s on a larger
machine.
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Abstract

We have made a systematic numerical study of the 16 Wilf classes of length-5
classical pattern-avoiding permutations from their generating function coefficients.
We have extended the number of known coefficients in fourteen of the sixteen classes.
Careful analysis, including sequence extension, has allowed us to estimate the growth
constant of all classes, and in some cases to estimate the sub-dominant power-law
term associated with the exponential growth.

There are 120 classes of the form Av(3) where
| #| = 5. They split into 16 different groups based on
their counting sequence.

One is already solved, one independently counted
up to length 38, and this paper computed the
other 14 up to lengths between 23 and 27.

Our method looks like to get most of the 14 up to
length 30, some up to 35 or 40.

Efficiency varies a lot between classes. The number
of different tilings computed could be exponential,
polynomial, even linear.




Results

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, oy AV(1432, 1324) . .
Series A up to length 100 on my laptop in under 10 minutes

www.elsevier.com /locate/jcta quadratic number Of States per ]_ayer

Generating permutations with restricted containers R AV(l 432,12 43)

Check for

updates

Michael H. Albert?, Cheyne Homberger ", Jay Pantone ', up to length 100 on my laptop in under 10 minutes
Nathaniel Shar ¢, Vincent Vatter !

& Department of Computer Science, University of Otago, Dunedin, New Zealand ]_inear number Of States per ]_a_yer

b Department of Mathematics, University of Maryland Baltimore County,
Baltimore, MD, USA

¢ Department of Mathematics, Dartmouth College, Hanover, NH, USA

4 Department of Mathematics, Rutgers University, New Brunswick, NJ, USA

¢ Department of Mathematics, University of Florida, Gainesville, FL, USA AV(1324 1234)

)
ARTICLE INFO up to length 100 on my laptop in under 2 minutes
Article history: We investigate a generalization of stacks that we call C- ConStant number Of States per ]_ayer

Received 12 July 2016 machines. We show how this viewpoint rapidly leads to
Available online 7 March 2018 functional equations for the classes of permutations that
C-machines generate, and how these systems of functional
Permutation patterns equations can be iterated and sometimes solved. General
Enumeration results about the rationality, algebraicity, and the existence

Stack of Wilfian formulas for some classes generated by C-machines AV(]. 432’ 132 4’ 12 43)

Sorting machine are given. We also draw attention to some relatively small
permutation classes which, although we can generate

thousands of terms of thelr counting sequences, scem to not up to length 100 on my laptop in under 1.5 minutes
linear number of states per layer

Keywords:

© 2018 Elsevier Inc. All rights reserved.




Bounds on the Growth Rate

In addition to the counting sequences, you can also turn these truncated
insertion encoding trees into rigorous lower bounds for the growth rate
of the class. (maybe upper bounds too?)

Av(12453):
erowth rate is known to be 9 + 44/2 ~ 14.6568
we get a lower bound of 13.3748 by counting up to length 30

Av(41235):
Tony estimates the growth rate is ~ 13.703 using 27 terms

we get a lower bound of 12.1619 by counting up to length 27




Other Avenues

We have adapted this to count pattern-avoiding involutions, and
applied it to the patterns 1324 and 4231. Forthcoming paper with
Christian Bean and Tony.

Christian and I have also adapted it to count pattern-avoiding inversion
sequences. You can really do this for any combinatorial object that you
can make a tiling-like object for.




Happy Birthday Tony!




