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MATRIX, a word of thanks

• 10th Anniversary of MATRIX

• Key role in the early stages of MATRIX

• Chair of the MATRIX Advisory Board for 9 years

• Listening ear and sage advice

• Advocacy for Australian mathematical sciences research institute for
more than 30 years

• Knowledge, expertise, enthusiasm and community spirit in advancing
MATRIX
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MATRIX, a word of thanks

https://www.youtube.com/watch?v=PDWcANR-nLQ
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https://www.youtube.com/watch?v=PDWcANR-nLQ


Personal memories

Half around the bay.

Wishing you many healthy years to come!
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Knot = Unknot?

How to determine whether a knot is equivalent to the unknot?

Learning to Unknot, Gukov et al., arXiv:2010.16263
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Braids

A knot is the closure of a braid

A braid is a permutation if we forget about under/over crossings
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Word problem

Let p 2 Sn be a permutation and �i an elementary transposition

(p1; p2; : : : ; pi; pi+1; : : : ; pn) � �i = (p1; p2; : : : ; pi+1; pi; : : : ; pn)

What is the the permutation corresponding to

�5�8�7�4�8�3�2�7�3�9�5�7�3�4�5�8�1�9�3�5?

Answer:

(6; 1; 5; 2; 3; 4; 9; 10; 7; 8)

Another example

�4�2�6�7�7�9�6�2�7�9�4�3�4�5�3�5�4�7�3�4

Answer:

(1; 2; 3; 4; 5; 6; 7; 8; 9; 10)
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Combinatorics: walks on Permutohedron
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Machine learning

• Can a machine predict permutations from words in the symmetric group
through statistical learning?

• How to train a machine when n is large?

• What does a machine learn? Does it memorise or learn mathematics?

Input

Let x = (x1; : : : ; xN ) 2 XN with X = f1; : : : ; n(n� 1)=2g represent a word in
Sn, i.e.

w = �x1 � � ��xN :

Output

Probability distribution on sequences of integers 2 [1; n],

� : XN ! ([0; 1]n)n; � : x! P(p)

with p = (p1; : : : ; pn)?
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Set up

Train a neural network

• Randomly generate a (small) subset of points x and corresponding
permutations p

• Train a Transformer network architecture to learn � : x! P(p) on this
data

• For large n train only using words that do not permute more than m
elements with m < n

• In our experiment n = 16 (N = 60) and m = 10: 1660 � 1:8 � 1072
posible words, 16! = 2:0 � 1013 permutations; training data was 1:6 � 107

• Test � on new words x that were not used in training

• What is the performance on words that permute more than m elements
(out of distribution learning)? 10



Transformer
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Multi Layer Perceptron (MLP)
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Li(x) = �i(Wix+ bi)
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Attention

Input

Token
embedding

+
Position

embedding

Attention

Query and Key matrices,

Q = XQT
0 K = XKT

0

A = softmax

�
QKT

p
C

�
(softmax = Boltzmann)

Ai;j is how much attention is paid by token i to token j
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Error

error =
#incorrect predictions

#test datapoints
:

Training (blue) and validation (orange) error (log scale).
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Loss

Training (blue) and validation (orange) loss (log scale).
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Interpretability

Token embedding

Token embedding for general transpositions
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Interpretability

Position embedding

Can embedding structure be interpreted?
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Conclusion

• Machine learning of mathematics is fun!

• No noise in data ) overfitting can be good (grokking)

• Can learn Sn from training on embeddings of Sm with m < n

• Applications to pattern avoidance?

• Extend to braid group and knots

Happy birthday Tony!
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