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I didn't succeed

Despite this in 1997 I was accepted into PhD as Andrew-2

SAWs, SAPs, polyominoes, generating functions

Mathematics via computer-aided analysis, numerology and guessing
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The importance of self-avoidance

Volume exclusion in polymer chains

You can step on a vertex once, but not twice

Easy to describe but very hard to prove much

Computer-aided counting & numerics have been key to our understanding

Guttmannia — series analysis and extrapolation

Warning — clumsy segway ahead
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This is the Mian–Chowla sequence  and is a Sidon sequence.Mian Chowla (1944)
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How dense can  be so that only trivial solutions in  to equationA ⊆ Z A

+ = + ⟺ { , } = { , }a1 a2 a3 a4 a1 a2 a3 a4

Such sets  are now called Sidon sets.A

 proved that .Erdős & Turan (1941) max{|A|} = + O( )n−−√ n1/4

 offfered $500 bounty for (dis)proof .Erdős (1995) max{|A|} = + O( )n−−√ nϵ

Lots of number-theoretic fun to be had

Excellent literature review by O'Bryant (2004)

https://link.springer.com/article/10.1007/BF01455900
https://www.renyi.hu/~p_erdos/1941-01.pdf
https://mathematica-pannonica.ttk.pte.hu/articles/mp05-2/mp05-2-261-269.pdf
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Fix  then defineA ⊆ Z

A(h, k) = {( , … , ) ∈ ∣ + … = k, ≤ ⋯ ≤ }∣∣ a1 ah A
h a1 ah a1 ah ∣∣

When , we say  is a -set∀k,A(h, k) ≤ g A (g)Bh

(Original) Sidon set — (1)B2

Can consider variant where  not ordered — sometimes ambiguity in literature, … ,a1 ah

Define  as max size of a -set in (g,n)Rh (g)Bh {1, 2, … ,n}

Want to understand the behaviour of (g,n)Rh
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Generalised Sidon set

How many tuples? How many sums?

Let  be a subset of 

Then there are at most  possible -fold sums

A {1, 2, … ,n}

hn h

The set  gives  ordered -tuplesA ≈
|A|h

h! h

To be a -set, no sum can be used more than  times(g)Bh g

Pigeon-stuffing gives us |A| ≲ (ghn ⋅ h!)1/h

So expect (g,n) ∼Rh n1/h

Open problem to compute the limit

the limiting maximal density of a  set.

(g) =σh lim sup
n→∞

(g,n)Rh

n1/h

(g)Bh
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Approximately — find a function that overlaps with itself as little as possible

Eg:  gives f(x) = (1 − 4 )3
2 x2 = 1μ2

2

Eg:  gives f(x) = 2
π 1−4x2√

= 0.574694862 …μ2
2

https://people.maths.ox.ac.uk/greenbj/papers/open-problems.pdf
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Connect continuous and discrete worlds

Connection was “in the air”, but made explicit by 

Bound Sidon density by autoconvolution norm

 building on ideas from 

Before 2022:  by  and 

Martin & O'Bryant (2002)

(g) ≤σ2
2g − 1

μ2
2

− −−−−−

√

White (2022) Green (2001)

0.574575 ≤ ≤ 0.640733μ2
2 Martin & O'Bryant (2007) Green (2001)

White used fourier transforms and quadratic programming to bound μ2
2

I learned about this problem as an examiner of White's thesis

https://arxiv.org/abs/math/0210041
https://arxiv.org/abs/2210.16437
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Autoconvolution to quadratic program

Fourier and two families of functions

We have  defined on , from which we define  on f (− , )1
2

1
2 F (−1, 1)
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Careful computation of slowly converging double-sum over k,m

For fixed , easy to compute  via Euler-Maclaurinm Am

The  python library is excellent — arbitrary precision numericsMPMATH

https://mpmath.org/
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Compute  to high precision via Euler-Maclaurin and MPMATH
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Kummers transform

Am

Guttmann: “it is easier to prove something when you know its true”

A quick plot of  vs  shows Am m ∼Am m−1/2

Ansatz   system of linear equations for =Am ∑p cpm
−p/2 ⇝ cp

“Solve” the system for moderate -values and observe m and LLL

= π/4c1 = ζ(1/2)/2c2 = π/16c3

= ζ(1/2)/4c4 = 3π/128c5 = ζ(1/2)/8 + ζ(−3/2)/2c6

Use this to compute sums, and get

Quick 1-variable minimisation gives 

(a) = + + (−3.3099871a + 4.4489347 − 2.088022 + 0.97736 )μ2
2

2

3

π2a4

6

16

π4
a2 a3 a4

≤ 0.57469 …μ2
2

Is  best upper bound (used 30k variables)1.000085×
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From this can compute  and its first derivatives( , , … , )μ2
2 a0 a1 aℓ

Minimse via  iterative solver which avoids matrix inversion and HessianBFGS

Finally, after much (not-entirely-rigorous) hackery arrive at

≈ 0.57463960715151959272725542758 …μ2
2

Despite much numerology I have no idea what this is

https://dlmf.nist.gov/3.9
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Levin-transforms and  ball-arithmetic help a lotFlint c++ library

Now “just” high-dimensional quartic polynomial minisation via Newton-Raphson

A little work with Hölder’s inequality gives bounds from both sides

=μ2
2

0.574639607151519592727255427527052971437026369373 …

… 1566116308767489255216181789880(3)

Not quite rigorous yet, but soon.
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So what is the function

I have some ideas

Nearly-optimal f(x) = ( )(1 − 41
1−4z2√

∑p ap
p

p−1/2
x2)p

The coefficients  and then ≈ 0.986, ≈ 0.014a0 a1 ∼ (−8ak k−1 )−k

Tony — Can we differential approximant this?

Can we extend these methods to the more general autoconvolution problem

especially the  limit

=μp ( dx)∫
1

−1
f(t)f(x − t)dt

∣

∣
∣∫

1/2

−1/2

∣

∣
∣

p 1/p

p → ∞



Thanks to Nathan, Nick and Tim
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