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ROOTED PLANAR EULERIAN ORIENTATIONS

Problem: How many planar Eulerian orientations have n edges? (
[Bousquet-Mélou, Bonichon, Dorbec, Pennarun, 2017])

Planar Eulerian orientation:

Each vertex has equally many incoming as outgoing edges.
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ROOTED PLANAR EULERIAN ORIENTATIONS

Let gn be the number of rooted planar Eulerian orientations with n
edges.

There is 1 planar Eulerian orientations with one edge (g1 = 1).

There are 5 planar Eulerian orientations with two edges (g2 = 5).
Aim: Find a formula for gn.

Enumeration of planar Eulerian orientations Andrew Elvey Price



ROOTED PLANAR EULERIAN ORIENTATIONS

Let gn be the number of rooted planar Eulerian orientations with n
edges.

There is 1 planar Eulerian orientations with one edge (g1 = 1).

There are 5 planar Eulerian orientations with two edges (g2 = 5).

Aim: Find a formula for gn.

Enumeration of planar Eulerian orientations Andrew Elvey Price



ROOTED PLANAR EULERIAN ORIENTATIONS

Let gn be the number of rooted planar Eulerian orientations with n
edges.

There is 1 planar Eulerian orientations with one edge (g1 = 1).

There are 5 planar Eulerian orientations with two edges (g2 = 5).
Aim: Find a formula for gn.

Enumeration of planar Eulerian orientations Andrew Elvey Price



MY INTRODUCTION TO EULERIAN ORIENTATIONS.

Mireille to Tony (2016): With coauthors from Bordeaux
(Bonichon, Dorbec, Pennarun) we looked at this problem... it
looks hard... you may like it

I computed the number gn of these orientations for n ≤ 100, and
sent the numbers to Tony.
Tony’s response (using differential approximants): here are 1000
more terms (to an accuracy of around 30 significant digits)
Tony then estimated the asymptotics as

gn ∼ c · µnn−2 log(n)−2,

with µ ≈ 21.7656
at the same time he estimated for a related problem

qn ∼ c1 · µn
1n−2 log(n)−2,

with µ1 ≈ 12.5664.
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MY INTRODUCTION TO EULERIAN ORIENTATIONS.

Tony’s asymptotic conjecture [E.P., Guttmann 2018]
→ Exact conjecture→ Guess and check proof [E.P., Bousquet-Mélou,
2020]
Since then:

Rigorous exact solution to six vertex model on a planar map
[E.P., Zinn-Justin, 2023], following [Kostov, 2000]
Exact enumeration of Planar Eulerian orientations by edges and
vertices [E.P., Bousquet-Mélou, 2025]
distribution of height function related to six vertex model on
random map [E.P. 2025+]
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EXACT SOLUTION [E.P., BOUSQUET-MÉLOU, 2020]

Let R(t) = t − 2t2 − · · · be the unique series satisfying

t =
∞∑

n=0

1
n + 1

(
2n
n

)2

R(t)n+1.

Theorem: The generating function of planar eulerian orientations is
given by

G(t) := g1t + g2t2 + · · · = 1
2t2 (t − 2t2 − R(t)).

Asymptotically,

qn ∼ κ
µn+2

n2(log n)2 ,

where κ = 1/18 and µ = 4
√

3π.
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New work: Refined enumeration of
Euluerian (partial) orientations

[E.P., Bousquet-Mélou, 2025]
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RELATED WEIGHTED MODEL

Height-labelled quadrangulations:
Each face has degree 4
Adjacent labels differ by 1
Root edge labelled from 0 to 1

Weights:
A weight v per local minimum
A weight ω per alternating face
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RELATED WEIGHTED MODEL

Height-labelled quadrangulations:
Each face has degree 4
Adjacent labels differ by 1
Root edge labelled from 0 to 1

Weights:
A weight v per local minimum
A weight ω per alternating face

Aim: determine the refined generating function

Q(t, ω, v) =
(
2v + ωv + ωv2) t + · · ·

1 0 1 0

1 0

1 01 0

2−1
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RELATED WEIGHTED MODEL

Height-labelled quadrangulations:
Each face has degree 4
Adjacent labels differ by 1
Root edge labelled from 0 to 1

Weights:
A weight v per local minimum
A weight ω per alternating face

Aim: determine the refined generating function

Q(t, ω, v) =
(
2v + ωv + ωv2) t + · · ·

Claim: 2G(t) = Q(t, 0, 1)
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BIJECTIONS

Bijection: 1 to 1 correspondence between two types of objects
→ Free result: same number of objects in each class

Our bijections:

−1 0
1

0 −1

Labelled Quadrangulation

duality
Eulerian partial orientation

duality
Quartic Eulerian orientation

0

0
1

Weakly labelled map

Ambjørn-Budd
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Bijection 1: H-maps to Eulerian
orientations (EO-maps)

(EP and Guttmann (2018)).
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EO-QUARTS

EO-quarts: each vertex has two incoming and two outgoing edges.
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H-QUADS TO EO-QUARTS

Start with a height-labelled quadrangulation.
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H-QUADS TO EO-QUARTS

Draw the dual with edges oriented according to the rule.
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H-QUADS TO EO-QUARTS

Each red vertex has two incoming and two outgoing edges.
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H-QUADS TO EO-QUARTS

Each vertex has two incoming and two outgoing edges.
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Bijection 2: height-labelled
quadrangulations to weakly height-labelled

maps

(Miermont (2009)/Ambjørn and Budd (2013)).

Enumeration of planar Eulerian orientations Andrew Elvey Price



QUADRANGULATIONS TO MAPS

Start with a height-labelled quadrangulation.

The new map is now a
D-patch
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H-QUADRANGULATIONS TO H-MAPS

Start with a height-labelled quadrangulation.
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D-patch
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H-QUADRANGULATIONS TO H-MAPS

Draw a red edge in each face according to the rule.

The new map is
now a D-patch
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H-QUADRANGULATIONS TO H-MAPS

Remove all of the original edges.

This invisible bit needs to be long
enough to get to the next line.
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H-QUADRANGULATIONS TO H-MAPS

Remove any isolated vertices.

This invisible bit needs to be long
enough to get to the next line.
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H-QUADRANGULATIONS TO H-MAPS

The new map is a weakly height-labelled map (adjacent labels differ
by at most 1).
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TWO MORE STATISTICS

−1 0
1

0 −1

Labelled Quadrangulation
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TWO MORE STATISTICS
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WEIGHTED MODEL BACKGROUND

2000: Quartic Eulerian orientation problem non-rigorously
“solved” with weight ω [Kostov]
2013: Bijection between Height-labelled quadrangulations and
Height-labelled maps [Ambjørn and Budd]
2017: Eulerian orientation enumeration problem posed
[Bousquet-Mélou, Bonichon, Dorbec, Pennarun]
2018: Bijective link H-maps to EO-maps and H-quads to
EO-quarts [E.P., Guttmann], conjectured Asymptotics
2020: Exact solution for ω = 0, 1 [E.P., Bousquet-Mélou] (using
guess and check of functional equations)
2023: Exact solution for all ω [E.P., Zinn-Justin] (using complex
analysis, following Kostov)

New work: [E.P., Bousquet-Mélou, 2025]
Exact solution for all ω (using algebraic methods)
Exact solution for ω = 0, 1 with new weight v
Functional equations for all ω, v.
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Solution part 1: Combinatorics→
Functional equations for Q(t, ω, v)
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COUNTING HEIGHT-LABELLED QUADRANGULATIONS

Characterisation 1: There are series P(y), D(x, y) and E(x, y),
uniquely defined by:

D(x, y) = v +
y
v

D(x, y)[z1]D(x, z) + y[x≥0]

(
1
x

D(x, y)P
( t

x

))
,

(1− x)(D(x, y)− v) = [y>0]D(x, y)
(

yP(y) + y− vy + ω
t
y
+

t
v
[z1]D

(
t
y
, z
))

,

E(x, y) = E(y, x) =
1
v
[x≥0]

(
D
( t

x
, y
)

P(x)
)
.

The generating function Q(t, ω, v) is given by

Q = [y1]P(y)− v.

I will show one element of the proof.
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D-PATCHES

D-patch: Digons are allowed next to the root vertex and the outer face
may have any degree.

0

0

1

1

1

1

−1

0
−1

1

−1

0

2

2

0

0
−1

1

2

D

Restrictions:
- outer labels must be 0 or 1.
- vertices adjacent to the root
must be labelled 1.

In D(x, y):
- x counts digons.
- y counts the degree of the outer
face (halved)
- t, ω, v same as before.
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DECOMPOSITION OF D-PATCHES

Colour the vertex two places clockwise from the root vertex around
the outer face.
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0
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2

D

Restrictions:
- outer labels must be 0 or 1.
- vertices adjacent to the root
must be labelled 1.

In D(x, y):
- x counts digons.
- y counts the degree of the outer
face (halved)
- t, ω, v same as before.
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DECOMPOSITION OF D-PATCHES

Highlight the maximal connected subgraph of nonpositive labels,
containing the coloured vertex.
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Restrictions:
- outer labels must be 0 or 1.
- vertices adjacent to the root
must be labelled 1.

In D(x, y):
- x counts digons.
- y counts the degree of the outer
face (halved)
- t, ω, v same as before.
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DECOMPOSITION OF D-PATCHES

Add to the subgraph all vertices and edges contained in its inner
face(s).
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Restrictions:
- outer labels must be 0 or 1.
- vertices adjacent to the root
must be labelled 1.

In D(x, y):
- x counts digons.
- y counts the degree of the outer
face (halved)
- t, ω, v same as before.
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DECOMPOSITION OF D-PATCHES

Record the subgraph with labels increased by 1.

This extracted map is
a patch!
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1

1

1
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0
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0

1
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DECOMPOSITION OF D-PATCHES

Contract the highlighted map to a single vertex (labelled 0).

The new
vertex may be adjacent to digons.
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DECOMPOSITION OF D-PATCHES

Contract the highlighted map to a single vertex (labelled 0).

The new
vertex may be adjacent to digons.
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DECOMPOSITION OF D-PATCHES
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DECOMPOSITION OF D-PATCHES
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DECOMPOSITION OF D-PATCHES

Contract the highlighted map to a single vertex (labelled 0). The new
vertex may be adjacent to digons.
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DECOMPOSITION OF D-PATCHES

Merge the new vertex with the root vertex.

The new map is now a
D-patch
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DECOMPOSITION OF D-PATCHES
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COUNTING HEIGHT-LABELLED QUADRANGULATIONS

Characterisation 1: There are series P(y), D(x, y) and E(x, y),
uniquely defined by:

D(x, y) = v +
y
v

D(x, y)[z1]D(x, z) + y[x≥0]

(
1
x

D(x, y)P
( t

x

))
,

(1− x)(D(x, y)− v) = [y>0]D(x, y)
(

yP(y) + y− vy + ω
t
y
+

t
v
[z1]D

(
t
y
, z
))

,

E(x, y) = E(y, x) =
1
v
[x≥0]

(
D
( t

x
, y
)

P(x)
)
.

The generating function Q(t, ω, v) is given by

Q = [y1]P(y)− v.

Simplification: DefineM(x) by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),
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CHARACTERISATION OFM(x)

Theorem: Fix v, ω ∈ C. There is a unique series

M(y) =
∞∑

n=1

∞∑
k=−n

mn,ktnyk,

with [y−1]M(y) = tv such that

yM (y)
(

1−M (y)− (1− v)t
y

− ωy
)

has only positive powers of y and

M (M(x)) = x.

The series Q(t, ω, v) is given by

Q(t, ω, v) = t−2[y−2]M(y)− v.

Next section: Solution for ω = 0, 1
Following section: Solution for v = 1
Still open: General solution
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Part 2: Solution for ω = 0, 1
(Eulerian (partial) orientations by edges and vertices).
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SOLUTION FOR ω = 0

Theorem: Let R(t, v) be the unique series with constant term 0
satisfying

t =
∑

n,k≥0

1
n + 1

(
2n
n

)(
2n + k

k

)(
2n + k

n

)
tk(v− 1)kRn+1.

The generating function Q(t, 0, v) for height-labelled
quadrangulations (with no alternating faces) counted by faces and
local minima is given by

Q(t, 0, v) = −v+
1
t2

∑
n,k

1
n + 1

(
2n
n

)(
2n + k

k

)(
2n + k − 1

n

)
tk(v−1)kRn+1.
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1
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(
2n
n

)(
2n + k

k

)(
2n + k

n

)
tk(v− 1)kRn+1.

The generating function Q(t, 0, v) for height-labelled maps counted
by edges and faces is given by

Q(t, 0, v) = −v+
1
t2

∑
n,k

1
n + 1

(
2n
n

)(
2n + k

k

)(
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n
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n + 1

(
2n
n

)(
2n + k

k

)(
2n + k

n

)
tk(v− 1)kRn+1.
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SOLUTION FOR ω = 1

Theorem: Let R(t, v) be the unique series with constant term 0
satisfying

t =
∑

n,k≥0

1
n + 1

(
2n
n

)(
2n + k

k

)(
3n + 2k
n + k

)
tk(v− 1)k Rn+1.

The generating function Q(t, 1, v) for height-labelled
quadrangulations counted by faces and local minima is given by

Q(t, 1, v) = −v+
1
t2

∑
n,k

1
n + 1

(
2n
n

)(
2n + k

k

)(
3n + 2k − 1

2n + k

)
tk(v−1)k Rn+1

1 .
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SOLUTION FOR ω = 1

Theorem: Let R(t, v) be the unique series with constant term 0
satisfying

t =
∑

n,k≥0

1
n + 1

(
2n
n

)(
2n + k

k

)(
3n + 2k
n + k

)
tk(v− 1)k Rn+1.

The generating function Q(t, 1, v) for Eulerian partial orientations
counted by edges and vertices is given by

Q(t, 1, v) = −v+
1
t2

∑
n,k

1
n + 1

(
2n
n

)(
2n + k

k

)(
3n + 2k − 1

2n + k

)
tk(v−1)k Rn+1

1 .
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Part 3: Analytic functional equations

0
z 7→ χ(z)

0 π

γ/2 γ/2 + π

χ(γ/2)

π/2

χ(0) χ(π/2)
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ANALYTIC FUNCTIONAL EQUATIONS

Recall: There is a unique seriesM(y) ∈ t
yZ[ω, v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)
(

1−M (y)− (1− v)t
y

− ωy
)
∈ K[[y]],

M (M(x)) = x,

Claim: For sufficiently small t, there is an even meromorphic
function χ on C and some γ ∈ iR>0 satisfying χ(z + π) = χ(z)

M(χ(z)) = χ(γ − z),

and

1 +
t(v− 1)
χ(z)

= χ(γ + z) + ωχ(z) + χ(z− γ).

Last section: Solved for ω = 0, 1.
Next section: Solution for v = 1.
Still open: All other values ω, v.
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Part 4: Six vertex model (v = 1)
(Previous solution: Kostov (2000)/EP and Zinn-Justin (2019)).
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RECALL: SOLUTIONS AT ω = 0, 1

The generating function Q(t, 0, 1) is given by

t =
∞∑

n=0

1
n + 1

(
2n
n

)2

R0(t)n+1,

Q(t, 0, 1) =
1

2t2 (t − 2t2 − R0(t)).

The generating function Q(t, 1, 1) is given by

t =
∞∑

n=0

1
n + 1

(
2n
n

)(
3n
n

)
R1(t)n+1,

Q(t, 1, 1) =
1

3t2 (t − 3t2 − R1(t)).
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SOLUTION FOR Q(t, ω, 1)

Define

ϑ(z, q) =
∞∑

n=0

(−1)n(e(2n+1)iz − e−(2n+1)iz)q(2n+1)2/8.

Let q = q(t, α) be the unique series satisfying

t =
cosα

64 sin3 α

(
−ϑ(α, q)ϑ

′′′(α, q)
ϑ′(α, q)2 +

ϑ′′(α, q)
ϑ′(α, q)

)
.

Define R(t, ω) by

R(t,−2 cos(2α)) =
cos2 α

96 sin4 α

ϑ(α, q)2

ϑ′(α, q)2

(
−ϑ
′′′(α, q)
ϑ′(α, q)

+
ϑ′′′(0, q)
ϑ′(0, q)

)
.

Then
Q(t, ω) =

1
(ω + 2)t2

(
t − (ω + 2)t2 − R(t, ω)

)
.
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Part 5: Height distribution
(To appear eventually EP 2025+)
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HEIGHT FUNCTION ON LATTICE

Height function: Labelling of vertices of square lattice where
adjacent labels differ by 1, origin is labelled 0.

1

0 1

0

0 1

21

−10 0 1

0−101

0 1 2

121

2 3 2

123

Alternating
(weight ω)

` `+ 1

`+ 1 `

Claim: Uniform random height function well defined.
Theorem: For large n the height of (n, 0) has variance ∼ log(n).
[Duminil-Copin, Harel, Laslier, Raoufi, Ray, 2019]
Conjecture: Converges to Gaussian free field (GFF).
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WEIGHTED HEIGHT FUNCTION ON LATTICE

Height function: Labelling of vertices of square lattice where
adjacent labels differ by 1, origin is labelled 0.

1

0 1

0

0 1

21

−10 0 1

0−101

0 1 2

121

2 3 2

123

Alternating
(weight ω)

` `+ 1

`+ 1 `

Boltzmann weight: ω ≥ 0 per alternating face.

Theorem: If ω ∈ [1, 2], the height of (n, 0) has variance ∼ log(n).
[Duminil-Copin, Karrila, Manolescu, Oulamara, 2022]
Theorem: If ω > 2, height variance bounded. [Glazman, Peled, 2019]
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HEIGHT DISTRIBUTION IN HEIGHT LABELLED MAP

We now count height-labelled quadrangulations with a highlighted
vertex v which gets weight δheight of v.
New generating function: Q̂(t, ω, δ).

1

0

1

0

−1

0

−1

−1

−2

This example contributes t7ω2δ−2 to Q̂(t, ω, δ)

We have now found the exact form of Q̂(t, ω, δ), using theta functions.

Enumeration of planar Eulerian orientations Andrew Elvey Price



RECALL: SOLUTION FOR Q(t, ω)

Define

ϑ(z, q) =
∞∑

n=0

(−1)n(e(2n+1)iz − e−(2n+1)iz)q(2n+1)2/8.

Let q = q(t, α) be the unique series satisfying

t =
cosα

64 sin3 α

(
−ϑ(α, q)ϑ

′′′(α, q)
ϑ′(α, q)2 +

ϑ′′(α, q)
ϑ′(α, q)

)
.

Define R(t, ω) by

R(t,−2 cos(2α)) =
cos2 α

96 sin4 α

ϑ(α, q)2

ϑ′(α, q)2

(
−ϑ
′′′(α, q)
ϑ′(α, q)

+
ϑ′′′(0, q)
ϑ′(0, q)

)
.

Then

Q(t, ω, 1) =
1

(ω + 2)t2

(
t − (ω + 2)t2 − R(t, ω)

)
.
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SOLUTION FOR Q̂(t, ω, δ)

Define

ϑ(z, q) =
∞∑

n=0

(−1)n(e(2n+1)iz − e−(2n+1)iz)q(2n+1)2/8.

Let q = q(t, α) be the unique series satisfying

t =
cosα

64 sin3 α

(
−ϑ(α, q)ϑ

′′′(α, q)
ϑ′(α, q)2 +

ϑ′′(α, q)
ϑ′(α, q)

)
.

Define R̂(t, ω, δ) by

R̂(t,−2 cos(2α), e2iβ) =
cosα sinβ

sinα cosβ

ϑ(α, q)ϑ′(β, q)
ϑ′(α, q)ϑ(β, q)

.

Then

Q̂(t, ω, δ) = (δ + 1)
1− 2t(ω + δ + δ−1) + R̂(t, ω, δ)

2t(ω + δ + δ−1)
.
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HEIGHT DISTRIBUTION

From Q̂(t, 1, δ) we get the exact distribution of vertex heights in
height-labelled quadrangulations with n faces.

The mean is always 1/2.
The variance Vn grows like

Vn ∼
3

2π2 log(n)2.

After rescaling by multiplying each height by π2

3 log(n) , the
limiting distribution has density function

4
(x− 1)ex + (x + 1)e−x

(ex − e−x)3 .

Similar for any ω ∈ [0, 2).
Appears that heights localised when ω > 2.

Enumeration of planar Eulerian orientations Andrew Elvey Price



HEIGHT DISTRIBUTION

From Q̂(t, 1, δ) we get the exact distribution of vertex heights in
height-labelled quadrangulations with n faces.

The mean is always 1/2.
The variance Vn grows like

Vn ∼
3

2π2 log(n)2.

After rescaling by multiplying each height by π2

3 log(n) , the
limiting distribution has density function

4
(x− 1)ex + (x + 1)e−x

(ex − e−x)3 .

Similar for any ω ∈ [0, 2).
Appears that heights localised when ω > 2.

Enumeration of planar Eulerian orientations Andrew Elvey Price



HEIGHT DISTRIBUTION

From Q̂(t, 1, δ) we get the exact distribution of vertex heights in
height-labelled quadrangulations with n faces.

The mean is always 1/2.
The variance Vn grows like

Vn ∼
3

2π2 log(n)2.

After rescaling by multiplying each height by π2

3 log(n) , the
limiting distribution has density function

4
(x− 1)ex + (x + 1)e−x

(ex − e−x)3 .

Similar for any ω ∈ [0, 2).
Appears that heights localised when ω > 2.

Enumeration of planar Eulerian orientations Andrew Elvey Price



FURTHER QUESTIONS

Bijective interpretations for nice formulas (at ω = 0 and ω = 1)
Understand local minima and maxima simultaneously
prove maps converge to critical Liouville quantum gravity.
More reasonably: Prove that other observables behave as they
should according to the description above.

Thank you!
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Thank you!
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BONUS SLIDE: BIJECTION TO A LOOP MODEL

Let C(t, ω) be the generating function for partially oriented cubic
maps in which each vertex is one of the following types.

Right turn
(weight ω−1

√
t)

Left turn
(weight ω

√
t)

Theorem: Q(t, ω2 + ω−2) = C(t, ω).
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Bijection 3: A loop model
(Kostov (2000)).
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BONUS SLIDE: BIJECTION TO A LOOP MODEL

Theorem: Q(t, ω2 + ω−2) = C(t, ω)

(weight t)

(weight ω2t) (weight ω−2t)

OR

(weight t)

(weight γt)

OR
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(weight t)
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