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What is a decision diagram?
● A data structure
● Represents a binary function

– e.g. f(a,b,c) = (a xor b) and (not c)

The Art of Computer Programming, Volume 4, Fascicle 1, 

Bitwise Tricks & Techniques; Binary Decision Diagrams 

Donald Knuth 



  

Combinatorics motivation
● A binary function can be considered to define a 

set S = {x:f(x)=true}
● e.g. variables are bonds on a fixed size lattice, 

function is true if they form a self avoiding walk.
● Number of true elements = number of self 

avoiding walks.
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Not what it naively looks like!



  

What can you do with an xDD?
● Often store a complex function of n variables in 

much less space than O(2n).
● Logical operations (and or not) of sizes s and t 

take worst case O(st) and often much better
● Fast to count, find smallest number of satisfying 

elements, get an arbitrary solution



  

Application : SAWs
● Self avoiding walk on a finite rectangular lattice
● Each bond is a variable
● Function is true if it is a SAW
● Same algorithm as to count them, just with a 

more complex answer than an integer.



  

Application : Tilings
● Knuth suggest the problem of tiling a 

chessboard with dominoes – how many ways?

 1 of 12988816                    5134724 of 12988816



  

Speed
● BDD: 2.1 ms 5679 nodes (11712 to generate)

– 41 lines of code including comments, not counting xDD library
● ZDD: 3.2 ms 2298 nodes (19790 to generate)
● Simple dynamic programming approach: 6 µs

– 27 lines of code including comments

Program: https://github.com/AndrewConway/xdd

https://github.com/AndrewConway/xdd


  

Bigger problem
● Tiling with unimoes, dominoes, trionimoes:
● 92109458286284989468604
● 243057372832 fewest tiles
● BDD: 1.4s,  2,447,347 nodes
● ZDD: 1.7s,     512,225 nodes 



  

Application : Directed animals
● Polyonimoes on a square lattice. 

– Each occupied site other than the root has to have 
an element directly below or to the left

– One variable for each site on a sufficiently large 
lattice.

– All constraints are local (suits xDD).

root



  

Performance
● 20 terms. 86,574,831 animals
● BDD : 7.8s

– 2,191,868 nodes 23,292,361 used
● ZDD : 6.2s

– 1,292,942 nodes 13,952,387 used
● Dynamic programming :228µs  

– 5022 cache elements



  

Not looking great for xDDs.
● Simple program much faster for counting.
● xDDs make it easier to make pictures. Possibly 

more straight forward?



  

Pattern Avoiding Permutations
● Let p be a permutation of 1..n
● Let P be a permutation of 1..m  m≤n
● p contains the pattern P if a subset of p of length m has the 

same relative ordering as P.
– Otherwise p avoids the pattern P.

● Examples:
– 1,5,3,2,4 contains the pattern 1,3,2 as the subsequence 1,5,3 is in 

the same relative order as 1,3,2. (also 1,5,2 and 1,5,4 and 1,3,2)
– 1,2,3,4,5 avoids the pattern 1,3,2 (also avoids 2,1)



  

Enumeration of pattern avoiding 
permutations : length 1 to 4

● All but one class solved analytically.
● Dedicated algorithms for enumeration of the 

1324 class.



  

Enumeration of PAPs : length 5

● Too many hard patterns for specialized 
algorithms

● Best general algorithms explicitly generated 
all solutions, so slow



  

Permutation Decision Diagrams
● Minato had a novel idea for representing a set 

of permutations
– Represent permutations by a set of binary variables
– Make a new operation on such ZDDs to compose 

permutations, maintaining canonicity.
– These are called πDDs. 

● Inoue improved the encoding, called Rot-πDDs.



  

Use of  πDDs in PAPs
● Minato defined a set of operations that created 

a set of all pattern containing permutations.
● Then subtract from n! to get PAPs.
● Much faster than direct enumeration.
● Inoue’s variation is better still.



  

Pattern containing permutations
● Next step : How many permutations contain a 

pattern exactly 1 time? Or r times?
● For simple patterns, there are some analytic 

solutions.
● More generally…?



  

Minato’s algorithm and multisets
● Take Minato’s algorithm for generating all 

pattern containing permutations
● Use multisets instead of sets.

– Where {a,b,b,c}×{b,b,c} = {b,b,b,b,c}

● Now the multiplicity of each element is the 
number of times it contains the pattern.



  

Multisets and decision diagrams
● Decision diagrams can be extended to 

represent multisets.
– f(booleans) →ℕ

● Modification: instead of a reference to a node, 
have an integer multiple and a reference to a 
node.



  

MBDD
A

B B

C
0 0

1 0

0

00

1

1 1
00

01

1 1

3

2

5

A B C f(A,B,C)

0
0
2x3=6
0
2x5=10
0
0
0

0 0 0
0
0
0

1

0

1

0

0
1
1
1
1

1

1

1
0
1
0
1
0
1



  

Canonicalization
● Need to have a unique representation for each 

multiset.
– A multiple of 0 iff the reference is to 0.
– Each node has two references. Their multiples should 

be coprime (or 1 if the other is 0).
● Details and theory in section 2 of: 

“Counting Occurrences of Patterns in Permutations”
January 2025 The Electronic Journal of Combinatorics 32(1)
DOI:10.37236/12963

https://www.researchgate.net/journal/The-Electronic-Journal-of-Combinatorics-1077-8926?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
http://dx.doi.org/10.37236/12963


  

Implementation
● Rust library at https://github.com/AndrewConwa

y/xdd
● Can enumerate by multiplicity efficiently.
● Multiset BDD is an MBDD. 

– Similarly MZDD, MπDD,Rot-MπDD 
● Program used in paper is in that as an 

example.

https://github.com/AndrewConway/xdd
https://github.com/AndrewConway/xdd
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