

Decision Diagrams in Combinatorics

Andrew Conway

Conference in honor of Tony Guttmann’s 80th
birthday

Talk Contents
● What is a binary decision diagram (BDD)?

– How is it useful in combinatorics?
– How about a other variants?

● Use in pattern avoiding permutations
– Generalization to multiset – MBDD, MZDD, etc.
– Paper with Tony:

“Counting Occurrences of Patterns in Permutations”
January 2025 The Electronic Journal of Combinatorics 32(1)
DOI:10.37236/12963

https://www.researchgate.net/journal/The-Electronic-Journal-of-Combinatorics-1077-8926?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
http://dx.doi.org/10.37236/12963

What is a decision diagram?
● A data structure
● Represents a binary function

– e.g. f(a,b,c) = (a xor b) and (not c)

The Art of Computer Programming, Volume 4, Fascicle 1,

Bitwise Tricks & Techniques; Binary Decision Diagrams

Donald Knuth

Combinatorics motivation
● A binary function can be considered to define a

set S = {x:f(x)=true}
● e.g. variables are bonds on a fixed size lattice,

function is true if they form a self avoiding walk.
● Number of true elements = number of self

avoiding walks.

A

B B

C C CC

0 0 1 0 1 0 0 0

0

0

0 0 0

0

0

1

1 1

1 1 1 1

A B C f(A,B,C)

0
0
1
0
1
0
0
0

0 0 0
0
0
0

1

0

1

0

0
1
1
1
1

1

1

1
0
1
0
1
0
1

Truth Table Decision Diagram

A

B B

C C

0 0 0 0

0

0

0

0

0

1

1 1

1 1

A

B B

C

0 0

0

00

0

1

1 1

1

Deduplication

O(2n) O(2≤ n)

MOST IMPORTANT SLIDE OF THE TALK

A

B B

C C

0 0 1 0

0

00

0

1

1 1

1

A

B B

C
0 0

1 0

0

00

1

1 1

Replace

with

x

y y

0 1

y

BDD

A

B B

C C

0 0 1 0

0

00

0

1

1 1

1

A

B

0

0

1

1

0

0

1

1

Replace

with

x

y

0 1

y

ZDD

Not what it naively looks like!

What can you do with an xDD?
● Often store a complex function of n variables in

much less space than O(2n).
● Logical operations (and or not) of sizes s and t

take worst case O(st) and often much better
● Fast to count, find smallest number of satisfying

elements, get an arbitrary solution

Application : SAWs
● Self avoiding walk on a finite rectangular lattice
● Each bond is a variable
● Function is true if it is a SAW
● Same algorithm as to count them, just with a

more complex answer than an integer.

Application : Tilings
● Knuth suggest the problem of tiling a

chessboard with dominoes – how many ways?

 1 of 12988816 5134724 of 12988816

Speed
● BDD: 2.1 ms 5679 nodes (11712 to generate)

– 41 lines of code including comments, not counting xDD library
● ZDD: 3.2 ms 2298 nodes (19790 to generate)
● Simple dynamic programming approach: 6 µs

– 27 lines of code including comments

Program: https://github.com/AndrewConway/xdd

https://github.com/AndrewConway/xdd

Bigger problem
● Tiling with unimoes, dominoes, trionimoes:
● 92109458286284989468604
● 243057372832 fewest tiles
● BDD: 1.4s, 2,447,347 nodes
● ZDD: 1.7s, 512,225 nodes

Application : Directed animals
● Polyonimoes on a square lattice.

– Each occupied site other than the root has to have
an element directly below or to the left

– One variable for each site on a sufficiently large
lattice.

– All constraints are local (suits xDD).

root

Performance
● 20 terms. 86,574,831 animals
● BDD : 7.8s

– 2,191,868 nodes 23,292,361 used
● ZDD : 6.2s

– 1,292,942 nodes 13,952,387 used
● Dynamic programming :228µs

– 5022 cache elements

Not looking great for xDDs.
● Simple program much faster for counting.
● xDDs make it easier to make pictures. Possibly

more straight forward?

Pattern Avoiding Permutations
● Let p be a permutation of 1..n
● Let P be a permutation of 1..m m≤n
● p contains the pattern P if a subset of p of length m has the

same relative ordering as P.
– Otherwise p avoids the pattern P.

● Examples:
– 1,5,3,2,4 contains the pattern 1,3,2 as the subsequence 1,5,3 is in

the same relative order as 1,3,2. (also 1,5,2 and 1,5,4 and 1,3,2)
– 1,2,3,4,5 avoids the pattern 1,3,2 (also avoids 2,1)

Enumeration of pattern avoiding
permutations : length 1 to 4

● All but one class solved analytically.
● Dedicated algorithms for enumeration of the

1324 class.

Enumeration of PAPs : length 5

● Too many hard patterns for specialized
algorithms

● Best general algorithms explicitly generated
all solutions, so slow

Permutation Decision Diagrams
● Minato had a novel idea for representing a set

of permutations
– Represent permutations by a set of binary variables
– Make a new operation on such ZDDs to compose

permutations, maintaining canonicity.
– These are called πDDs.

● Inoue improved the encoding, called Rot-πDDs.

Use of πDDs in PAPs
● Minato defined a set of operations that created

a set of all pattern containing permutations.
● Then subtract from n! to get PAPs.
● Much faster than direct enumeration.
● Inoue’s variation is better still.

Pattern containing permutations
● Next step : How many permutations contain a

pattern exactly 1 time? Or r times?
● For simple patterns, there are some analytic

solutions.
● More generally…?

Minato’s algorithm and multisets
● Take Minato’s algorithm for generating all

pattern containing permutations
● Use multisets instead of sets.

– Where {a,b,b,c}×{b,b,c} = {b,b,b,b,c}

● Now the multiplicity of each element is the
number of times it contains the pattern.

Multisets and decision diagrams
● Decision diagrams can be extended to

represent multisets.
– f(booleans) →ℕ

● Modification: instead of a reference to a node,
have an integer multiple and a reference to a
node.

MBDD
A

B B

C
0 0

1 0

0

00

1

1 1
00

01

1 1

3

2

5

A B C f(A,B,C)

0
0
2x3=6
0
2x5=10
0
0
0

0 0 0
0
0
0

1

0

1

0

0
1
1
1
1

1

1

1
0
1
0
1
0
1

Canonicalization
● Need to have a unique representation for each

multiset.
– A multiple of 0 iff the reference is to 0.
– Each node has two references. Their multiples should

be coprime (or 1 if the other is 0).
● Details and theory in section 2 of:

“Counting Occurrences of Patterns in Permutations”
January 2025 The Electronic Journal of Combinatorics 32(1)
DOI:10.37236/12963

https://www.researchgate.net/journal/The-Electronic-Journal-of-Combinatorics-1077-8926?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
http://dx.doi.org/10.37236/12963

Implementation
● Rust library at https://github.com/AndrewConwa

y/xdd
● Can enumerate by multiplicity efficiently.
● Multiset BDD is an MBDD.

– Similarly MZDD, MπDD,Rot-MπDD
● Program used in paper is in that as an

example.

https://github.com/AndrewConway/xdd
https://github.com/AndrewConway/xdd

References
● Theory and results

“Counting Occurrences of Patterns in Permutations”
January 2025 The Electronic Journal of Combinatorics 32(1)
DOI:10.37236/12963

● Library and program
– https://github.com/AndrewConway/xdd

● Program to make pictures & benchmarks in this talk
– https://github.com/AndrewConway/xdd_pictures

https://www.researchgate.net/journal/The-Electronic-Journal-of-Combinatorics-1077-8926?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
http://dx.doi.org/10.37236/12963

