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Polymer Adsorption

Polymers near a sticky impermeable wall have been studied for a long time.
(Hammersley Torrie Whittington J Phys A 15 p539 1982 and many more)

• Boltzmann weight for monomers in the
surface is w

• Adsorption Transition (continuous) at
wc > 1: two phases

• Desorbed 〈m〉 = o(n) for w < wc and
Adsorbed 〈m〉 ∼ An for w > wc

w w

• Adsorbed fraction 〈m〉 ∼ nφ at w = wc

• φ = 1/2 . . . except 3D, φ ≈ 0.484
• (Diehl & Shpot NPB 1998, Grassberger J Phys A 2005, Bradly et al. PRE 2018)
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PolymerManipulation

Pulling of individual polymers (AFM) modelled by adding a force to one
end of the polymer.

• Boltzmann weight for distance of end
above the surface is y = eβF

• Vertical pulling force F
• Continuous pulling transition at yc = 1

(Beaton 2015)

y

• Two phases: Desorbed for y < 1 and Ballistic for y > 1
• In Desorbed phase end point is pushed to surface
• While for y > 1 Ballistic phase the size exponent ν = 1
• φ = ν so in dimension two φ = 3/4 (Bradly & Owczarek 2023)
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Polymer Adsorption andManipulation

Add vertical pulling force F, inducing a Boltzmann weight y = eβF, and in
the presence of a sticky surface with Boltzmann weight w
(Krawczyk et al J Stat Mech P10004 2004, Rensburg Whittington J Phys A 46 435003 2013)

• Three phases: Desorbed, Adsorbed and
Ballistic

• Adsorption at value wc when y = 1
(continuous) Desorbed to Adsorbed

• Pulling transition at yc(w)
• For w ≤ wc we have yc = 1 (continuous)

Desorbed to Ballistic
• For w > wc we have yc > 1 (first order)

Adsorbed to Ballistic

w w

y
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Polymer Adsorption andManipulation

Let w = a and "free" = "desorbed"
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Localisation: a defect interface

Consider a sticky permeable interface - a defect line - also well studied
Add a Boltzmann weight for monomers in the interface as w
(Bray Moore J Phys A 10 p1927 1977, Hammersley et al J Phys A 15 p539 1982, Kremer J
Chem Phys 83 p5882 1985, Zhao et al Phys Rev A 1990, Vrbova Whittington J Phys A 31
p7031, 1998, Madras J Phys A 50 064003, 2017)

Expectations (no proof):
• Continuous transition at wc = 1

with two phases
• Delocalised 〈m〉 ∼ o(n) when

w ≤ 1
• Localised 〈m〉 ∼ A n when w > 1

w w w
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Bisolvent

Consider a polymer near an interface between two different solvents
One can prove that
• Two (desorbed) phases exist
• First order transition between them
• When b > 1 the polymer will stay below

the interface
• When b < 1 the polymer will stay above

the interface

b

b

b

b

b

b

b b b
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Our model

Combine all of these features into a larger model so that localisation and
adsorption are limits or specialisations of our model.

y

w w

b

b

bbb

bb

w
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Two types of lattice polymer

Self-avoiding walks:
• good model of long polymers

with excluded volume,
• reproduces universal features:

exponents
• one avenue to study SAW is with

Monte Carlo simulations

Directed walks:
• exactly solvable
• often phase diagrams are similar

to undirected SAW
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Our full model

Pulling SAW vertically from a localising interface between two different solvents

Physical quantities:
• Number of vertices of the

polymer in lower half space v
• Number of vertices of polymer

on the surface m
• Height of endpoint above surface

h

Boltzmann weights:
• Lower solvent quality (relative) b

conjugate to v
• Surface interaction w conjugate

to m
• Force weight y conjugate to h

h

y

w w

b

b

bbb

bb

w
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Our full model II

Pulling SAW vertically from a localising interface between two different solvents
Partition function

Zn(b,w, y) =
∑
vmh

sn(v,m, h) bvwmyh

Order parameters (finite size)

〈v〉/n, 〈m〉/n, 〈h〉/n
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Simulations

flatPERM (Prellberg & Krawczyk PRL 2004)

• grow walks by random endpoint extension
• weight samples by cumulative number of possible moves:

Wn =
∏n−1

i=0 ai

• prune/enrich: Wn ≈ sn

• flat histogram, n = 0, . . . , nmax

• can extend to include 2 of v,m, h
• athermal (add weights later)
• parallel implementation, 107 iterations
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Directed walks

• basic Dyck path:
D(z) =

∑
n

dn zn

D(z) = 1 + z2D(z)2 =
1 −
√

1 − 4z2

2z2

• non-analyticities in the generating function indicate phase boundaries
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Directed walks + interactions

Q(b,w, y, z) =
∑
nvmh

dn(v,m, h) znbvwmyh

• b = w = 1 — pulled tail: T(y, z)
• y = w = 1 — bisolvent: B(b, z)

E. Orlandini and S. G. Whittington J.Phys. A 37 5305 2004

• b = y = 1 — interaction with interface: I(w, z)
A. Rechnitzer and E. J. Janse van Rensburg Discrete Appl. Math 140 49-71 2004

SAW near a Permeable interface Owczarek



Introduction SAW Model and Simulations Directed Walk Model Bisolvent Pulling Localisation and pulling Localisation and bisolvent Phase diagrams

Pulled endpoint and bisolvent: Directed walks

G(b, y, z) = [1 + B(b, z)]
[
1 + T(y, z)

]
z1 =

1
2
, z2 =

1
2b

z3 =
y

y2 + 1

deloc.-above – ballistic (continuous): yc = 1, b < 1
deloc.-above – deloc.-below (first-order): bc = 1, y < 1
ballistic – deloc.-below (first-order): bc =

y2+1
2y , y > 1

E. Orlandini and S. G. Whittington J.Phys. A 37 5305 2004
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Pulled endpoint and bisolvent in SAW
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Pulled endpoint and interacting interface: Directed model

G(w, y, z) = I(w, z)
[
1 + T(y, z)

]

z1 =
1
2
, z2 =

√
2w − 1
2w

z3 =
y

y2 + 1

delocalised – ballistic (continuous): yc = 1, w ≤ 1
delocalised – localised (continuous): wc = 1, y ≤ 1
ballistic – localised (first-order): wc = 1

2

(
y2 + 1

)
, y > 1

A. Rechnitzer and E. J. Janse van Rensburg Discrete Appl. Math 140 49-71 2004
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Pulled endpoint and interacting interface: SAW model
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Interacting interface and bisolvent: DirectedModel

B(b,w, z) = 1+wz2 [D(z) + bD(bz)] B(b,w, z)

z1 =
1
2
, z2 =

1
2b

z3 =

√
w − 1

√
w − b

√
w + bw − b

w (w + bw − 2b)

deloc.-above – deloc.-below (first-order): bc = 1, w < 1
localised – deloc.-above (continuous): bc = −w2+2w

w2−2w+2 , w > 1

localised – deloc.-below (continuous): bc =
w2+w

(√
w2+4w−4−2

)
4w−4 , w > 1
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Interacting interface and bisolvent: SAW Model
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Localised–delocalised-below transition
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Symmetry in delocalised phases (SAWs)
• As b→ 0: localisation→ adsorption
• As b→ ∞: interface also impermeable

fhalf(b) = log (µdb)

• localised walks:

finterface(w) = log (µd−1w)

• free energy for localisation and bisolvent:

f (b,w)


= log (µd) b small, w < wc(b),
= log (µdb) b large, w < wc(b),
∼ log (µd−1w) w→ ∞, w > wc(b).

• choice of side is arbitrary

(a = 1, b,w) 7→ (1/b, 1,w/b)
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Schematic phase diagram
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Exponents
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• We have numerical evidence to suggest that for decol.below-localised
that φm = 1/2 for b > 1: see figure (c)

• Presumably the same for b < 1 by symmetry: see figure (c)
• This compares to the result that φm = 1 − ν = 1/4 for b = 1 (Bray Moore J

Phys A 10 p1927 1977, Zhao et al Phys Rev A 1990)

• For b ≤ 1 in (a) and w ≤ 1 in (b) we predict φy = ν = 3/4 for decol.
above - ballistic transition, extends b = 0,w = 1 (Bradly & Owczarek 2023)
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Summary

We studied localisation and pulling at a permeable interface with a bisolvent
as a generalisation of adsorption with an impermeable surface

C. J. Bradly, N. R. Beaton and A. L. Owczarek, J. Phys. A: Math. Theor. 57 445004 (17 pp) (2024)
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Localisation in higher dimensions

Consider a d-dimensional lattice with a permeable hypersurface of
dimension dh, and difference
Let ∆ = d − dh

• For ∆ = 1: expect wc = 1 (line in 2D, plane in 3D, etc.)
• For ∆ = 2: also wc = 1 (plane in 4D)
• For ∆ > 2: conjecture wc > 1 (line in 4D)

• Self-avoiding walks: MC simulations
• Directed walks (line in 4D):

• Project to (d − 1)-dimensional orthogonal hyperplane
• Without interactions: simple random walk; recurrent if d − 1 ≤ 2 but

transient if d − 1 > 2.
• Interaction weight wc > 1 is required to induce a positive density of returns

to the origin.

• More generally, wc may be sensitive to orientation of
dh-dimensional hypersurface

SAW near a Permeable interface Owczarek



Introduction SAW Model and Simulations Directed Walk Model Bisolvent Pulling Localisation and pulling Localisation and bisolvent Phase diagrams

Looking Forward

• We studied localisation and pulling at a permeable interface with a
bisolvent as a generalisation of adsorption with an impermeable surface
• Phase diagrams similar between SAW and directed walks
• Order of transitions (not exponents) are the same
• Some curvature and asymptotics of phase boundaries differ
• Crossover exponent for the continuous localised to

delocalised-below transition looks like it is 1/2 for b > 1
• Also looked at Motzkin paths
• Higher dimensions: both full space in dimension d and attractive

hypersurface
• Will need to consider exponents more fully
• In particular, localisation near b = w = 1 case more closely
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