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Biological Vesicles

Vesicles: closed membranes formed of lipid bi-layers

Micelle

Inverted micelle

Lipid bilayer Vesicle
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Biological Vesicles

Vesicles commercially produced by electro-swelling

Thomas Prellberg(QMUL) Staircase Polygons



Polygon Models of Biological Vesicles
Staircase Polygons

Modelling Vesicles

We model vesicles as two-dimensional self-avoiding polygons. This is
known as the Fisher-Guttmann-Whittington vesicle model.

Figure: A self-avoiding polygon of perimeter 2n = 52 and area a = 37.
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The Vesicle Generating Function

G (t, q) =
∑
n,a

cn,a t
n qa

where cn,a is the number of SAP with perimeter 2n and area a.
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Relevant Papers

Understanding the scaling behaviour

R. Brak, A. L. Owczarek, and TP, “A Scaling Theory of the
Collapse Transition in Geometric Cluster Models of Polymers and
Vesicles,” J. Phys. A: Math. Gen. 26 (1993) 4565-4579

Exactly solvable models (discrete and semi-continuous)

R. Brak, A L. Owczarek, and TP, “Exact Scaling Behaviour of
Partially Convex Vesicles,” J. Stat. Phys. 76 (1994) 1101-1128

q-deformed functional equations

TP and R. Brak, “Critical Exponents from Non-Linear Functional
Equations for Partially Directed Cluster Models,” J. Stat. Phys. 78
(1995) 701-730

and finally computing a scaling function

TP, “Uniform q-Series Asymptotics for Staircase Polygons,” J. Phys.
A: Math. Gen. 28 (1995) 1289-1304
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Richard’s most cited paper (on Scopus)
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Also relevant

M Bousquet-Mélou and X G Viennot, “Empilements de segments et
q-énumération de polyominioes convex dirigés,” J. Comb. Th. A 60
(1992) 196-224

(first cited by us in 1999!)
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Staircase polygons

Panel (a) shows staircase polygons, a.k.a. skew-Ferrers diagrams or
parallelogram polyominos
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Staircase polygon generating function I

Differentiate horizontal/vertical steps with variables x/y , respectively, so
G (t, q) becomes S(x , y , q) with

S(x , y , q) = bt



∞∑
n=0

qn(n+1)/2(−qx)n

n∏
k=1

(1− qk)
n∏

k=1

(1− yqk)

∞∑
n=0

qn(n+1)/2(−x)n

n∏
k=1

(1− qk)
n∏

k=1

(1− yqk)

− 1



G (t, q) = S(t, t, q)

notice q-Bessel functions (I will avoid q-series notation)

S(x , y , q) not explicitly symmetric in x and y !
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Methods for finding an exact solution

bijections to other objects and using known results

heaps of pieces (“recognisable” from the given expression)

combinatorial decomposition, recurrences/functional equations

With S(x) ≡ S(x , y , q)
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Solving the functional equation

Linearise S(x) = S(qx)y + S(qx)S(x) + qxy + qxS(x) with

S(x) = y

(
T (qx)

T (x)
− 1

)
to get

T (x)− (1 + y)T (qx) + yT (q2x) = −qxT (qx)

Insert T (x) =
∞∑
n=0

tnx
n to get recurrence

(1− qn)(1− yqn)tn + qntn−1 = 0

Finish off by iterating the recurrence

tn =
qn(n+1)/2(−1)n

n∏
k=1

(1− qk)
n∏

k=1

(1− yqk)

Thomas Prellberg(QMUL) Staircase Polygons



Polygon Models of Biological Vesicles
Staircase Polygons

Solving the functional equation

Linearise S(x) = S(qx)y + S(qx)S(x) + qxy + qxS(x) with

S(x) = y

(
T (qx)

T (x)
− 1

)
to get

T (x)− (1 + y)T (qx) + yT (q2x) = −qxT (qx)

Insert T (x) =
∞∑
n=0

tnx
n to get recurrence

(1− qn)(1− yqn)tn + qntn−1 = 0

Finish off by iterating the recurrence

tn =
qn(n+1)/2(−1)n

n∏
k=1

(1− qk)
n∏

k=1

(1− yqk)

Thomas Prellberg(QMUL) Staircase Polygons



Polygon Models of Biological Vesicles
Staircase Polygons

Solving the functional equation

Linearise S(x) = S(qx)y + S(qx)S(x) + qxy + qxS(x) with

S(x) = y

(
T (qx)

T (x)
− 1

)
to get

T (x)− (1 + y)T (qx) + yT (q2x) = −qxT (qx)

Insert T (x) =
∞∑
n=0

tnx
n to get recurrence

(1− qn)(1− yqn)tn + qntn−1 = 0

Finish off by iterating the recurrence

tn =
qn(n+1)/2(−1)n

n∏
k=1

(1− qk)
n∏

k=1

(1− yqk)

Thomas Prellberg(QMUL) Staircase Polygons



Polygon Models of Biological Vesicles
Staircase Polygons

The symmetric decomposition

Back in 1992/3, Richard was bothered that our approach did not use

x ↔ y symmetry

From the original functional equation one can easily deduce that

S(x , y , q) = qxy +qxS(x , y , q)+qyS(x , y , q)+S(qx , qy , q)S(a, b, q)

The corresponding combinatorial decomposition

But we did not solve it back then!
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Solving the symmetric functional equation

Change notation: with S(t) ≡ S(tx , ty , q) we need to consider

S(t) = qxyt2 + (qxt + qyt)S(t) + S(qt)S(t)

Linearise with

S(t) = qxyt2 U(qt)

U(t)

to get
U(qt) = U(t) + q(x + y)U(qt) + q3t2U(q2t)

Insert U(t) =
∞∑
n=0

qn(n+1)/2unt
n to get recurrence

un + (x + y)un−1 + xyun−2 = qnun

This two-term recurrence is somewhat harder to solve
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Solving the two-term recurrence (1 of 2)

The left hand side of

un + (x + y)un−1 + xyun−2 = qnun

is a constant term recurrence with characteristic polynomial

(λ+ x)(λ+ y)

The right hand side suggests an expansion in powers of qn, so we let

un = λn
∞∑

m=0

qmnvmq
m2+m

and get a one-term recurrence

(λqm + x)(λqm + y)vm = λ2vm−1 with v0(λ+ x)(λ+ y) = 0

which we can iterate
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Solving the two-term recurrence (2 of 2)

We thus have two linearly independent solutions of
un + (x + y)un−1 + xyun−2 = qnun:

un(λ) =
∞∑

m=0

qmn+m2+mλ2m+n

m∏
k=1

(x + λqk)
m∏

k=1

(y + λqk)

for λ = −x and λ = −y

To satisfy the initial condition, the required solution is now

un = Aun(−x) + Bun(−y) with u−1 = 0

And now put it all together . . .
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Staircase polygon generating function II

S(x , y , q) = xyq
U(qx , qy , q)

U(x , y , q)

where

U(x , y , q) =

x
∞∑
m=0

ymqm2

m∏
k=1

(x − yqk)
m∏

k=1

(1− qk)

∞∑
n=0

qn(n+1)/2(−x)n
∞∑
m=0

xmqm2+mn+m

m∏
k=1

(y − xqk)
m∏

k=1

(1− qk)

−y
∞∑
m=0

xmqm2

m∏
k=1

(y − xqk)
m∏

k=1

(1− qk)

∞∑
n=0

qn(n+1)/2(−y)n
∞∑
m=0

ymqm2+mn+m

m∏
k=1

(x − yqk)
m∏

k=1

(1− qk)
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Mireille’s work

Compare
U(qt) = U(t) + q(x + y)U(qt) + q3t2U(q2t)

with Lemma 4.5 in Mireille and Xavier’s “Empilements de segments et
q-énumération de polyominioes convex dirigés” (1992)

In that paper, the functional equation is actually found from the exact
expression for U (or L), which was obtained by other means

It pays off to be able to read French language papers!
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Staircase polygon generating function III

The solution to

U(qt) = U(t) + q(x + y)U(qt) + q3t2U(q2t)

is given by

U(x , y , q) =
∞∑
m=0

∞∑
n=0

q(n+m)(n+m+1)/2(−x)m(−y)n

m∏
k=1

(1− qk)
n∏

k=1

(1− qk)

= x
∞∑
m=0

ymqm2

m∏
k=1

(x − yqk)
m∏

k=1

(1− qk)

∞∑
n=0

qn(n+1)/2(−x)n
∞∑
m=0

xmqm2+mn+m

m∏
k=1

(y − xqk)
m∏

k=1

(1− qk)

−y
∞∑
m=0

xmqm2

m∏
k=1

(y − xqk)
m∏

k=1

(1− qk)

∞∑
n=0

qn(n+1)/2(−y)n
∞∑
m=0

ymqm2+mn+m

m∏
k=1

(x − yqk)
m∏

k=1

(1− qk)
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Summary

To me, this talk (and the small calculation presented here) has been
more reminiscing than forward looking.

All the techniques used here I learned while a postdoc in Melbourne
1991-1994.

I still dabble in things I encountered while working in Melbourne; working
with Richard has clearly influenced my career significantly.
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