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@ Vesicles: closed membranes formed of lipid bi-layers
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Polygon Models of Biological Vesicles

Biological Vesicles

Staircase Polygons

@ Vesicles commercially produced by electro-swelling
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Modelling Vesicles

We model vesicles as two-dimensional self-avoiding polygons. This is
known as the Fisher-Guttmann-Whittington vesicle model.

Figure: A self-avoiding polygon of perimeter 2n = 52 and area a = 37.
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G(t, q) = Z Ch,a t"q?
n,a

where ¢, 5 is the number of SAP with perimeter 2n and area a.
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G(t, q) = Z Ch,a t"q?
n,a

where ¢, , is the number of SAP with perimeter 2n and area a.

q A

inflated phase Ye tri-critical point
—>
.,
P A
N
1
A}
1
1)
A}
\
deflated phase \
A3
\‘~
I >
te t
«40O>» 4Fr «=)>» «=)» = Q>



«40>» «Fr «=» « E = oA

Understanding the scaling behaviour

e R. Brak, A. L. Owczarek, and TP, “A Scaling Theory of the
Collapse Transition in Geometric Cluster Models of Polymers and
Vesicles,” J. Phys. A: Math. Gen. 26 (1993) 4565-4579
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Relevant Papers

Understanding the scaling behaviour

@ R. Brak, A. L. Owczarek, and TP, “A Scaling Theory of the
Collapse Transition in Geometric Cluster Models of Polymers and
Vesicles,” J. Phys. A: Math. Gen. 26 (1993) 4565-4579

Exactly solvable models (discrete and semi-continuous)

e R. Brak, A L. Owczarek, and TP, “Exact Scaling Behaviour of
Partially Convex Vesicles,” J. Stat. Phys. 76 (1994) 1101-1128
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Relevant Papers

Understanding the scaling behaviour

@ R. Brak, A. L. Owczarek, and TP, “A Scaling Theory of the
Collapse Transition in Geometric Cluster Models of Polymers and
Vesicles,” J. Phys. A: Math. Gen. 26 (1993) 4565-4579

Exactly solvable models (discrete and semi-continuous)

e R. Brak, A L. Owczarek, and TP, “Exact Scaling Behaviour of
Partially Convex Vesicles,” J. Stat. Phys. 76 (1994) 1101-1128

g-deformed functional equations

e TP and R. Brak, “Critical Exponents from Non-Linear Functional
Equations for Partially Directed Cluster Models,” J. Stat. Phys. 78
(1995) 701-730

Thomas Prellberg(QMUL) Staircase Polygons



Polygon Models of Biological Vesicles
Staircase Polygons

Relevant Papers

Understanding the scaling behaviour

@ R. Brak, A. L. Owczarek, and TP, “A Scaling Theory of the
Collapse Transition in Geometric Cluster Models of Polymers and
Vesicles,” J. Phys. A: Math. Gen. 26 (1993) 4565-4579

Exactly solvable models (discrete and semi-continuous)

e R. Brak, A L. Owczarek, and TP, “Exact Scaling Behaviour of
Partially Convex Vesicles,” J. Stat. Phys. 76 (1994) 1101-1128

g-deformed functional equations

e TP and R. Brak, “Critical Exponents from Non-Linear Functional
Equations for Partially Directed Cluster Models,” J. Stat. Phys. 78
(1995) 701-730

and finally computing a scaling function

e TP, “Uniform g-Series Asymptotics for Staircase Polygons,” J. Phys.
A: Math. Gen. 28 (1995) 1289-1304
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Also relevant

@ M Bousquet-Mélou and X G Viennot, “"Empilements de segments et
g-énumération de polyominioes convex dirigés,” J. Comb. Th. A 60
(1992) 196-224

Polyomino parallélogramme Polyomino tas

Polyomino convexe dirigé

Fi6. 04. Différentes familles de polyominos convexes.

(first cited by us in 1999!)
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Staircase polygons

Panel (a) shows staircase polygons, a.k.a. skew-Ferrers diagrams or
parallelogram polyominos
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Staircase polygon generating function |

Differentiate horizontal /vertical steps with variables x/y, respectively, so
G(t,q) becomes S(x,y, q) with

0 qn(n+1)/2(_qx)n

0 11— ") ﬁ(l—ycm

. k=1
Saya) =bt| < JRECESY /2( x)"

"0 T - ¢%) T1(1 - ya¥)
k=1 k=1

o G(t,q) =S(t,t,q)
@ notice g-Bessel functions (I will avoid g-series notation)

@ S(x,y,q) not explicitly symmetric in x and y!
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@ bijections to other objects and using known results

@ heaps of pieces (“recognisable” from the given expression)

@ combinatorial decomposition, recurrences/functional equations

«Or 4Fr o« > > a

it
a



Polygon Models of Biological Vesicles
Staircase Polygons

Methods for finding an exact solution

@ bijections to other objects and using known results
@ heaps of pieces (“recognisable” from the given expression)

e combinatorial decomposition, recurrences/functional equations

With S(x) = S(x, y, q)

Staircase Polygons

B I S O

Six) Slgx)y Slgr)S(x) qry  qeS(z)
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@ Linearise S(x) = S(gx)y + S(gx)S(x) + gxy + gxS(x) with
Sk =y (T(qX)
to get

oY)
T(x) = (L+y)T(qx) + yT(4°x) = —axT(qx)



o Linearise S(x) = S(gx)y + S(gx)S(x) + gxy + gxS(x) with

S() =y (T(qX)
to get

) 1)

(o)
@ Insert T(x) = > t,x" to get recurrence
n=0

(1-q¢")1—yq")th+q"th_1 =0

«40>» «Fr «=» « E = oA

T(x) = (14 y)T(gx) + yT(¢°x) = —qxT(qx)
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Solving the functional equation

e Linearise S(x) = S(gx)y + S(gx)S(x) + gxy + gxS(x) with
w0-+(5)

T(x) = (14 y)T(gx) + yT(¢°x) = —qxT(qx)

to get

(o)
@ Insert T(x) = Y t,x" to get recurrence
n=0

(1-q¢")(1—yq")ta+q"th_1 =

@ Finish off by iterating the recurrence

qn(n+1)/2(_1)n
10— a9 [1( - e

=1

ty =
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Xy

@ Back in 1992/3, Richard was bothered that our approach did not use

symmetry

«40r 4F>r «=)r « =) = Q>



Xy

@ Back in 1992/3, Richard was bothered that our approach did not use

symmetry

@ From the original functional equation one can easily deduce that

S(x,y,q) = axy+axS(x,y,q)+qyS(x,y,q)+S(gx, qy,q)S(a, b, q)

«40>» «Fr «=» « E = oA
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The symmetric decomposition

e Back in 1992/3, Richard was bothered that our approach did not use

X <ry symmetry

@ From the original functional equation one can easily deduce that

S(x,y,q9) = gxy +gxS(x,y,q)+qyS(x,y,q)+S(ax, qy,q)S(a, b, q)

@ The corresponding combinatorial decomposition
OERI GIYOE @
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The symmetric decomposition

e Back in 1992/3, Richard was bothered that our approach did not use

X <>y symmetry

@ From the original functional equation one can easily deduce that

S(x,y,q) = axy +axS(x, ¥, q) +ayS(x, v, 9)+ 5(ax, qy, 9)S(a, b, q)
@ The corresponding combinatorial decomposition
DR IR
But we did not solve it back then!
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o Change notation: with S(t) = S(tx, ty, q) we need to consider

S(t) = gxyt® + (gxt + qyt)S(t) + S(qt)S(t)
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o Change notation: with S(t) = S(tx, ty, q) we need to consider

S(t) = gxyt® + (gxt + qyt)S(t) + S(qt)S(t)
@ Linearise with

S(t) — qut2 U(qt)
to get

U(e)

U(qt) = U(t) + q(x + y)U(qt) + ¢*t*U(q°t)

«40>» «Fr «=» « E = oA
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Solving the symmetric functional equation

e Change notation: with S(t) = S(tx, ty, q) we need to consider
S(t) = @ut® + (axt + qyt)S(t) + S(qt)S(t)
@ Linearise with

» U(qt)
u(t)

S(t) = gxyt

to get
U(qt) = U(t) + q(x + y)U(qt) + ¢*t*U(q°t)

o0
o Insert U(t) = > q"("t1/2y,t" to get recurrence
n=0

Up 4+ (x+ y)tp—1+ xytupn—2 = q"u,
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Solving the symmetric functional equation

e Change notation: with S(t) = S(tx, ty, q) we need to consider

S(t) = qxyt® + (gxt + qyt)S(t) + S(qt)S(t)

@ Linearise with

S(t) = gxyt

to get
U(qt) = U(t) + q(x + y)U(qt) + ¢*t*U(q°t)

oo
o Insert U(t) = > q"("t1/2y,t" to get recurrence
n=0
Up 4+ (x+ y)tp—1+ xytupn—2 = q"u,
@ This two-term recurrence is somewhat harder to solve
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@ The left hand side of

up + (X + y)un—l + Xyup_o = q"Un

A+ x)A+y)

«40r 4F>r «=)r « =) = Q>

is a constant term recurrence with characteristic polynomial
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Solving the two-term recurrence (1 of 2)

@ The left hand side of
up + (X + y)un—l + Xylup_2 = ann
is a constant term recurrence with characteristic polynomial

A+x)(A+y)

@ The right hand side suggests an expansion in powers of g”, so we let
> 2
u, = A" Z qmnvmqm +m
m=0

and get a one-term recurrence
(AG™ + X)(AG™ + Y)Vim = N1 with (A +x)(A+y) =0

which we can iterate

Thomas Prellberg(QMUL) Staircase Polygons



@ We thus have two linearly independent solutions of
Un + (X + y)up—1 + xyun—2 = q"u,

up(A) =

for A\=—xand A =

«40r 4F>r «=)r « =) = Q>

>t

mn+m +m)\2m+n

m= °H(X+/\qk)H(y+Aq )
k=1

k=1
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Solving the two-term recurrence (2 of 2)

@ We thus have two linearly independent solutions of
Up 4+ (X + y)tp—1 + Xytn—2 = q"up:

mn+m2+m)\2m+n

up(A) = i — ,,,
"0 TTc+ A TT O + AdY)
k=1 k=1

for \=—xand A= —y

o To satisfy the initial condition, the required solution is now

up = Aup(—x) + Bup(—y) with uv_1=0
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Solving the two-term recurrence (2 of 2)

@ We thus have two linearly independent solutions of
Up 4+ (X + y)tp—1 + Xytn—2 = q"up:

mn+m2+m)\2m+n

up(A) = i — ,,,
"0 TTc+ A TT O + AdY)
k=1 k=1

for \=—xand A= —y

o To satisfy the initial condition, the required solution is now

up = Aup(—x) + Bup(—y) with uv_1=0

@ And now put it all together ...
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Staircase polygon generating function |l

U(gx,qy.q
5(X7)/7 Q) = quL(/(xyq))
where

U(x,y,q) =

m_m?

m

m2+mn+m

x"q

= y q - n(n+1)/2 n -
X ™ ™ (_X) m
PRk >
[Tx-y" ]~ [

k=1 k=1

m_m?

y=xqd )] -q"

m

k=1

m_m +mn+m

Yy 9

oo x oo oo
yz q — an(n+1 /2 )nz

I =X ] - ¢ ™ " T —yd) [ -

k=1 k=1 k=1
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Mireille's work

Compare
U(qt) = U(t) + q(x + y)U(qt) + ¢*t*U(q°t)

with Lemma 4.5 in Mireille and Xavier's “Empilements de segments et
g-énumération de polyominioes convex dirigés” (1992)

LeMME 4.5. Lapplication L définie dans la proposition 4.3 par

(n+m+l)

(_1)n+m n.n 3

Xy qd
Lix, y)=
( )) 1120,211120 (q)n(q)m

est l'unique série formelle solution de la q-équation en H,
H(x, y)=(1—q(x+y)) H(xq, yq) ~ xyq’ H(x¢’, yq*),
vérifiant H(0,0)= L.

In that paper, the functional equation is actually found from the exact
expression for U (or L), which was obtained by other means
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Mireille's work

Compare
U(qt) = U(t) + q(x + y)U(qt) + ¢*t*U(q°t)

with Lemma 4.5 in Mireille and Xavier's “Empilements de segments et
g-énumération de polyominioes convex dirigés” (1992)

LeMME 4.5. Lapplication L définie dans la proposition 4.3 par

(n+m+l)

(_1)n+m n.n 3

Xy qd
Lix, y)=
( )) 1120,211120 (q)n(q)m

est l'unique série formelle solution de la q-équation en H,
H(x, y)=(1—q(x+y)) H(xq, yq) ~ xyq’ H(x¢’, yq*),
vérifiant H(0,0)= L.

In that paper, the functional equation is actually found from the exact
expression for U (or L), which was obtained by other means
It pays off to be able to read French language papers!
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Staircase polygon generating function Ill

The solution to

U(gt) = U(t) + q(x + y)U(qt) + ¢*t*U(q°t)

is given by

(n+m)(n+m+1) /2( X)m(_y)n

mon=0 T -¢9]](-d"

2
m__m“+mn+m
q

Q

= Xi Yy q i n(n+1) /2 n i X
m=0 H(X—qu)H(l—qk) n=0 m=0 H(y—xq H (1—4q")
k=1 k=1 k=1
—y Z _ qum’i i qn(n+1 /2 y)n Z § qum +r:7n+m
R CRER) N GO RE 3 | (CRZ0) §
k=1 k=1 k=1 k=1

8
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Summary

To me, this talk (and the small calculation presented here) has been
more reminiscing than forward looking.

All the techniques used here | learned while a postdoc in Melbourne
1991-1994.

| still dabble in things | encountered while working in Melbourne; working
with Richard has clearly influenced my career significantly.
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