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The physical problem

Polymer adsorption

1. A polymer in dilute solution can adsorb at an impenetrable
surface

2. For an infinite polymer there will be a phase transition from
an adsorbed phase to a desorbed phase at some characteristic
temperature

3. For an adsorbed polymer, the polymer can be desorbed by
application of a force



The idea behind AFM




Self-avoiding walks on Z¢ — Large n behaviour

Suppose that ¢, is the number of n-step self-avoiding walks on
Z4.

e The limit limyu_—con~ 1109 ¢, = Ky exists [Hammersley 1954].

e l0gd < ky<log(2d—1)



Positive walks

Coordinates of a vertex in Z%: (z,y,...z). The i'th vertex of a
walk has coordinates (z;,y;,...z;).

A positive walk is a self-avoiding walk on Zd, starting at the
origin and having z; > 0 for all 3.

Suppose c,(v,h) is the number of positive walks with n edges,
v+ 1 vertices in z = 0 and with z, = h. v counts visits to the
adsorbing plane. h is the height of the walk.

Define the partition function

Cn(a,y) = > en(v, h)a’y".
v,h



Connection to physical variables

Cnla,y) =Y cn(v, h)a’y".
v,h

e—e/kT f/kT

a = Yy=-e€

Two special cases:
1. No force: f=0 y=1

2. No surface interaction: e=0 a=1



No force, y=1
The limit limy—son 11og Cpn(a, 1) = k(a) exists.
k(a) is a convex function of loga.
k(a) = k(1) = kg for all a < 1.

For a > 1, k(a) > max[ky, kg_1 + logal.

There is a phase transition at a = a. where 1 < a. < explkg — Kq—1]-

x(a) is asymptotic to ky_1 + loga.



No surface interaction, a =1
The limit limp—oon 1 1og Cpn(l,y) = A\(y) exists.
A(y) is a convex function of logy.
AMy) = A1) = kq for all y <1 and A(y) > max[ky, logy] for y > 1.
There is a phase transition at y = y. = 1 [Ioffe and Velenik, Beaton].

A(y) is asymptotic to logy.



General a and y

The limit lim,en tlog Ch(a,y) = Y (a,y) exists and ¥ (a,y) is a convex
function of loga and logy.

Y(a,y) = max|[x(a), A(y)]

There is a phase boundary, vy = y.(a), in the (a,y)-plane, for y > 1,
determined by k(a) = A\(y).

The phase boundary is asymptotic to y = exp[k4—1]a as a — oo.

The phase transition is first order except perhaps at (ac, 1).



Phase diagram in the force-temperature plane

Recall that

e—e/kT f/kT

a = y=ce

When d > 3,
lim df (") /dT’ 0]
T_50 f( )/ >

so the phase boundary is reentrant.

When d = 2, limp_,odf(T)/dT = 0.



Phase diagram in the force-temperature plane when d = 2
(Guttmann and Jensen)
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Star and comb homeomorphism types
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3-stars in Z3

The free energy is given by

2X(y) + k3 26(a) + A(y) |

o13l(a,y) = max |k(a), s .

SO we have a mixed phase as well as an adsorbed phase and a
ballistic phase.
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3-stars in Z3

The free energy is given by

2X(y) + k3 26(a) + A(y) |

o13l(a,y) = max |k(a), 5 .

The phase boundary between the mixed and adsorbed phases is
at the solution of

Ay) = k(a)

and between the mixed and ballistic phases at

AMy) = 2k(a) — k3.
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Asymptotics

The phase boundary between the mixed and adsorbed phases is
at the solution of

AMy) = k(a)
and between the mixed and ballistic phases at

AMy) = 2k(a) — k3.

Asymptotically (large a) the boundaries approach

y = explro]a
and

y = exp[2ks — k3la’.
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Asymptotics and Monte Carlo
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Monte Carlo work by Chris Bradly and Aleks Owczarek.
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Combs with t teeth in Z°3

The free energy is given by

(t 4+ )X (y) +trs A(y) + 2tx(a)
2t + 1 ’ 2t + 1 '

¢ (a,y) = max |k(a),

and we have adsorbed, ballistic and mixed phases, independent
of the number of teeth. Increasing the number of teeth does
not increase the number of phases.
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