A tour of combinatorics and
statistical mechanics:
In memory of Richard Brak
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1995: a Melbourne spring




lattice walks, polyominoes and polygons

exclusion processes

osculating walks and alternating sign matrices

percolation



Mireille Bousquet-Mélou, CNRS, Bordeaux, France

(© Raschel, Trotignon




Let S be a finite subset of Z? (set of steps) and py € Z? (starting point).

Example. § = {«,~\,—, \}, po = (0,0)
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Let S be a finite subset of Z? (set of steps) and py € Z? (starting point).
Let C be a cone of R?.

Example. S = {+-,\,—,\/}, po = (0,0) and C = R3.




Let S be a finite subset of Z? (set of steps) and py € Z? (starting point).
Let C be a cone of R?.

What is the number a(n) of n-step walks starting at py and
contained in C?

For (i,j) € C, what is the number a(i, j; n) of such walks that end at
(i,4)?

Example. S = {+-,\,—,\,}, po = (0,0) and C = R3.




e Many discrete objects can be encoded in that way:
@ in combinatorics, statistical physics...
@ in (discrete) probability theory: random walks, queuing theory...

40> D>



An attractive topic with a long history

e Many discrete objects can be encoded in that way:
@ in combinatorics, statistical physics...
@ in (discrete) probability theory: random walks, queuing theory...

410> D
e Melbourne, FPSAC 2002...
Enumeration of solid 2-trees ... .. ... i s #13
M. Bousquet, C. Lamathe
Walks in the quarter plane: a functional equation approach ..................... . ... #14
M. Bousquet-Mélou
On the equivalence problem for succession rules ....... ... ... . .. ool #15
S. Brlek, E. Duchi, E. Pergola, S. Rinaldi
Words restricted by patterns with at most 2 distinet letters ................... ... .. #16

A. Burstein, T. Mansour

e A Melbourne topic!
N. Beaton, R. Brak, A. Elvey Price, A. Owczarek, A. Rechnitzer, R. Xu...



e Our original question:
a(n)="7 a(i,j;n)="7
e Generating functions:

A(t) = Z a(n)t", A(x,y; t) = Z a(i,j; mx'y/t"

n>0 ij.n
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Remarks
e A(1,1;t) = A(t)
e if C C Ry x R, then A(0, y; t) counts walks ending on the y-axis



e Our original question:
a(n)="7 a(i,j;n)="7
e Generating functions:

A(t) = Z a(n)t", A(x,y; t) = Z a(i,j; mx'y/t"

n>0 ij.n

= 30 )il

w walk
Remarks
e A(1,1;t) = A(t)
e if C C Ry x R, then A(0, y; t) counts walks ending on the y-axis

Can one express these series? What is their nature?



A hierarchy of formal power series

o Rational series

o Algebraic series
1—A(t) + tA(t)* =0
o Differentially finite series (D-finite)
t(1 —16t)A"(t) + (1 — 32t)A(t) — 4A(t) =0

e D-algebraic series
(2t + 5A(t) — 3tA'(t))A"(t) = 48t
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Classification of walks confined to cones

e Half-space: algebraic series

o

e Convex cone = quadrant

e Non-convex cone = three quadrants




Focus: quadrant walks with small steps

e Small steps: S C {—1,0,1}2\ {(0,0)}. Only 28 models.

e Some models are trivial, or equivalent to a half plane problem

= 79 really interesting and distinct models [mbm-Mishna 10]

I (i7j): (473)




Focus: quadrant walks with small steps
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@ One can always write a recurrence relation for the numbers q(i, j; n)
@ or equivalently, a linear functional equation for Q(x,y; t) = Q(x, y)



A systematic approach

@ One can always write a recurrence relation for the numbers (i, j; n)
@ or equivalently, a linear functional equation for Q(x,y;t) = Q(x,y)

Example: § = {«,], 7}, with x:=1/xand y :=1/y
Qlxy) =1+ t(x+y +x7)Q(x,y) — txQ(0,y) — ty Q(x,0).
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A systematic approach

@ One can always write a recurrence relation for the numbers (i, j; n)
@ or equivalently, a linear functional equation for Q(x,y;t) = Q(x,y)

Example: § = {«,], 7}, with x:=1/xand y :=1/y
Qlx,y) =1+ t(x+y +xy)Q(x,y) — txQ(0,y) — ty Q(x,0).

Equivalently,

(1—t(X+7 +x))xQ(x,y) = xy — tyQ(0,y) — txQ(x,0)

The (Laurent) polynomial S(x,y) :

= X + y + xy is the step polynomial of
this model, and K(x,y) :=1—t(Xx+y + x

y) is the kernel.



(small steps)

quadrant models: 79
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algebraic DF transc. D-alg. not D-alg.
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quadrant models: 79
!

| \
|G| < oo: 23 |G| = oo: 56

| |
D-finite Not D-finite
—L—
19 9 47

| | |

algebraic | DF transc. D-alg. not D-alg.

Invariants: a notion introduced by W. Tutte to count properly coloured
planar triangulations (1973-1984)



Fix a step set S, with step polynomial S(x,y).

e A pair of series (/(x),J(y)) in t with coefficients in Q(x) and Q(y)
(respectively) is a pair of invariants if

I(x) = J(y) = (1 = t5(x, ¥))H(x, )
where H(x, y) has poles of bounded order at x =0 and y = 0.



What are invariants?

Fix a step set S, with step polynomial S(x, y).
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(respectively) is a pair of invariants if
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What are invariants?

Fix a step set S, with step polynomial S(x, y).

e A pair of series (/(x), J(y)) in t with coefficients in Q(x) and Q(y)
(respectively) is a pair of invariants if

I(x) = J(y) = (1 = t5(x,y))H(x,y)
where H(x, y) has poles of bounded order at x =0 and y = 0.
By this, we mean that there exists /, j such that

XyJny denxy oy

where d,(0) # 0 and d/,(0) # 0.
e We say that /(x) — J(y) is divisible by K(x,y) =1 — tS(x, y).

Example: Trivial invariants: take /(x) = J(y) € Q((t))



e Rational invariants: let lo(x) = x> — X/t — x and Jo(y) = lo(y). Then
- - X —
() — o) = (1= #(% 47 + )7 F = K(x,y)Holx, ),

where Ho(x,y) = (x — y)/(txy) has poles of bounded order at zero.



e Rational invariants: let lo(x) = x> — X/t — x and Jo(y) = lo(y). Then
- - X —
() — o) = (1= #(% 47 + )7 F = K(x,y)Holx, ),

where Ho(x,y) = (x — y)/(txy) has poles of bounded order at zero.

e Q-invariants: from the equation
K(x, y)xyQ(x,y) = xy — txQ(x,0) — tyQ(0, y)



Some non-trivial invariants nl

e Rational invariants: let Ip(x) = x? — >'</t —x and Jo(y) = lo(y). Then
lo(x) = Jo(y) = (1 — t(&R+ 7 +xy)) —= vy~ (oy)Ho(x.y),

where Ho(x,y) = (x — y)/(txy) has poles of bounded order at zero.

e Q-invariants: from the equation

K(va)XyQ(Xay) =Xy — tXQ(X,O) - tyQ(Oa)/)
and the decoupling relation
1 1
Xy =—X—=y+ ri ?K(XJ/);

one derives
1 1

Kexn) (900xn) = 1) = (57 - 3= 0(.0) ) (5 - 7 - v(0.1))



We have two pairs of invariants:

lo(x) = X% — %/t — x, Jo(y) = ho(y),
h(x) =X —1/(2t) + xQ(x,0),  Ji(y) = —h(y).



We have two pairs of invariants:

lo(x) = X% — %/t — x, Jo(y) = ho(y),
h(x) =X —1/(2t) + xQ(x,0),  Ji(y) = —h(y).

The componentwise sum (resp. product) of two pairs of invariants
(lo(x), Jo(y)), (h(x),1(y)) is another pair of invariants.

(lb(x) + h(x), o(y) + A(y)),  (b(x)h(x),Jo(y)h(y))
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We have two pairs of invariants:

lo(x) = X% — %/t — x, Jo(y) = ho(y),
h(x) =X —1/(2t) + xQ(x,0),  Ji(y) = —h(y).

The componentwise sum (resp. product) of two pairs of invariants
(lo(x), Jo(y)), (h(x),1(y)) is another pair of invariants.

A pair of invariants with no pole at zero is trivial.

Observation: /1(x)? — Ip(x) has no pole! Define

1(x) = h(x)? = h(x)  J(y) = h(¥)* — h(y)-
Then (/(x),J(y)) is a pair of invariants with no pole at zero.
Hence /(x) = J(y) is a series in t only.



The series
I(x) = h(x)? = h(x) = (txQ(x,0) — 1/(2t))? + 2tQ(x,0) + x
depends only on t. Thus, /(x) = /(0), that is,



A relation between (1, J;) and the rational invariants (ly, Jo)

The series
I(x) = h(x)? = h(x) = (txQ(x,0) — 1/(2t))? + 2tQ(x,0) + x
depends only on t. Thus, /(x) = /(0), that is,

(txQ(x,0) — 1/(2t))? + 2tQ(x, 0) + x = 1/(2t)? + 2tQ(0, 0).

Summary: starting from an equation between
Qlx,y),  Q(x,0), and Q(0,y),
we have obtained an equation between
Q(x,0) and Q(0,0).

One less variable.



A relation between (1, J;) and the rational invariants (ly, Jo)

The series
I(x) = h(x)? = h(x) = (txQ(x,0) — 1/(2t))? + 2tQ(x,0) + x
depends only on t. Thus, /(x) = /(0), that is,

(txQ(x,0) — 1/(2t))? + 2tQ(x, 0) + x = 1/(2t)? + 2tQ(0, 0).

= In addition, such equations can be solved in a systematic way, and
their solutions are always algebraic (via Brown's quadratic method, or
[mbm-Jehanne 06])



The series

I(x) = h(x)? = I(x) = (txQ(x,0) — 1/(2t))? + 2tQ(x,0) + x
depends only on t. Thus, /(x) = /(0), that is,

(txQ(x,0) — 1/(2t))? + 2tQ(x, 0) + x = 1/(2t)? + 2tQ(0,0).

= In addition, such equations can be solved in a systematic way, and
their solutions are always algebraic (via Brown's quadratic method, or
[mbm-Jehanne 06])

Let Z = Z(t) be the only series in t such that Z = t(2 + Z3). Then

[Kreweras 65], [Gessel 86], [mbm 05]...



Revisiting the quadrant classification with invariants

The whole picture

quadrant models: 79

\
rat. invariants: 23

|
D-finite
\
\ \

Q-invariants: 4 no Q-inv.: 19

| |

algebraic

DF transc.

\
no rat. inv.: 56

Not D-finite
\

\ |
Q-invariants: 9 no Q-inv.: 47
| |

D-alg. not D-alg.

[Bernardi-mbm-Raschel, Dreyfus-Hardouin-Roques-Singer]



ad X

The 5 singular models become trivial (rational GF).

Functional equation for the series C(x, y; t)



three quadrant models: 74

|
I !

rat. invariants: 23 no rat. inv.: 51
| |
?

| |
[ [

\ |
Q-invariants: 4 no Q-inv.: 19 Q-invariants: 9 no Q-inv.: 42

? ? ? ?




three quadrant models: 74

rat. invariants: 23 no rat. inv.: b1
'I’ Not Drfinite
Q-invar‘iants: 4  no Q-in\‘/.: 19 Q-invar‘iants: 9 no Q-i‘nv.: 42
: : : :

[Mustapha 19]



10 m‘odels
rat. inv;riants: 6 no rat.‘inv.: 4
D-finite Not D-finite
Q—invar‘iants: 3 no Q—in‘v.: 3 Q—invar‘iants: 1 no Q—‘inv.: 3
algebraic DF tr‘ansc. D-alg. not D-alg.

A XK A A A

[mbm, Wallner, Raschel, Trotignon, Mustapha, Dreyfus]



Ten diagonally symmetric models

10 m‘odels
rat. invz;riants: 6 no rat.‘inv.: 4
D-finite Not D-finite
Q—invar‘iants: 3 no Q—in‘v.: 3 Q—invar‘iants: 1 no Q—‘inv.: 3
algebraic DF tr‘ansc. D-alg. not D-alg.

A XK A A A

[mbm, Wallner, Raschel, Trotignon, Mustapha, Dreyfus]

Elvey Price: same nature as the quadrant series, at least in x and y (in
preparation)



e Arbitrary steps in the quadrant = equivalence between D-finiteness and
finite “group”?




Beyond small steps in 2D

e Arbitrary steps in the quadrant = equivalence between D-finiteness and
finite “group”?

e Walks with small steps in N3: some non-D-finite models with a finite
group?

Example. The model {111,100, 010,001} has a finite group of order 24.
Is it D-finite? Most likely not...




