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Richard’s maths

lattice walks, polyominoes and polygons
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A typical question (in two dimensions)

Let S be a finite subset of Z2 (set of steps) and p0 ∈ Z2 (starting point).

Let C be a cone of R2.

Questions
What is the number a(n) of n-step walks starting at p0 and
contained in C?
For (i , j) ∈ C , what is the number a(i , j ; n) of such walks that end at
(i , j)?

Example. S = {←,↖,→,↘}, p0 = (0, 0)

and C = R2
+.
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(i , j) = (5, 1)



An attractive topic with a long history

• Many discrete objects can be encoded in that way:
in combinatorics, statistical physics...
in (discrete) probability theory: random walks, queuing theory...

/ C � B .

• Melbourne, FPSAC 2002...

• A Melbourne topic!
N. Beaton, R. Brak, A. Elvey Price, A. Owczarek, A. Rechnitzer, R. Xu...
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Generating functions

• Our original question:
a(n) = ? a(i , j ; n) = ?

• Generating functions:

A(t) =
∑
n≥0

a(n)tn, A(x , y ; t) =
∑
i ,j ,n

a(i , j ; n)x iy j tn

=
∑

w walk
x i(w)y j(w)t |w |

Remarks
A(1, 1; t) = A(t)
if C ⊂ R+ × R, then A(0, y ; t) counts walks ending on the y -axis



Generating functions

• Our original question:
a(n) = ? a(i , j ; n) = ?

• Generating functions:

A(t) =
∑
n≥0

a(n)tn, A(x , y ; t) =
∑
i ,j ,n

a(i , j ; n)x iy j tn

=
∑

w walk
x i(w)y j(w)t |w |

Remarks
A(1, 1; t) = A(t)
if C ⊂ R+ × R, then A(0, y ; t) counts walks ending on the y -axis



Generating functions

• Our original question:
a(n) = ? a(i , j ; n) = ?

• Generating functions:

A(t) =
∑
n≥0

a(n)tn, A(x , y ; t) =
∑
i ,j ,n

a(i , j ; n)x iy j tn

=
∑

w walk
x i(w)y j(w)t |w |

Remarks
A(1, 1; t) = A(t)
if C ⊂ R+ × R, then A(0, y ; t) counts walks ending on the y -axis

Can one express these series? What is their nature?



A hierarchy of formal power series

• Rational series

A(t) =
1− t

1− t − t2

• Algebraic series

1− A(t) + tA(t)2 = 0

• Differentially finite series (D-finite)

t(1− 16t)A′′(t) + (1− 32t)A′(t)− 4A(t) = 0

• D-algebraic series

(2t + 5A(t)− 3tA′(t))A′′(t) = 48t
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Focus: quadrant walks with small steps

• Small steps: S ⊂ {−1, 0, 1}2 \ {(0, 0)}. Only 28 models.

• Some models are trivial, or equivalent to a half plane problem

⇒ 79 really interesting and distinct models [mbm-Mishna 10]

(i , j) = (4, 3)



Focus: quadrant walks with small steps
Non-singular

Singular



A systematic approach

One can always write a recurrence relation for the numbers q(i , j ; n)
or equivalently, a linear functional equation for Q(x , y ; t) ≡ Q(x , y)

Equivalently,

(
1− t(x̄ + ȳ + xy)

)
xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)

The (Laurent) polynomial S(x , y) := x̄ + ȳ + xy is the step polynomial of
this model, and K (x , y) := 1− t(x̄ + ȳ + xy) is the kernel.
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Twenty years later: classification of quadrant walks

(small steps)

quadrant models: 79

|G | <∞: 23

D-finite

4

algebraic

19

DF transc.

|G | =∞: 56

Not D-finite

9

D-alg.

47

not D-alg.
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Computer algebra

Formal power
series algebra

Differential Galois theory

in probability
Random walks

Complex analysis

arithmetic properties
asymptotics

D-finite series
G-functions



Invariants
quadrant models: 79

|G | <∞: 23

D-finite

4

algebraic

19

DF transc.

|G | =∞: 56

Not D-finite

9

D-alg.

47

not D-alg.

Invariants

Invariants: a notion introduced by W. Tutte to count properly coloured
planar triangulations (1973-1984)



What are invariants?

Fix a step set S, with step polynomial S(x , y).

• A pair of series (I (x), J(y)) in t with coefficients in Q(x) and Q(y)
(respectively) is a pair of invariants if

I (x)− J(y) = (1− tS(x , y))H(x , y)

where H(x , y) has poles of bounded order at x = 0 and y = 0.

By this, we mean that there exists i , j such that

x iy jH(x , y) =
∑
n

pn(x , y)

dn(x)d ′n(y)
tn

where dn(0) 6= 0 and d ′n(0) 6= 0.

• We say that I (x)− J(y) is divisible by K (x , y) = 1− tS(x , y).

Example: Trivial invariants: take I (x) = J(y) ∈ Q((t))
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Some non-trivial invariants

• Rational invariants: let I0(x) = x̄2 − x̄/t − x and J0(y) = I0(y). Then

I0(x)− J0(y) = (1− t(x̄ + ȳ + xy))
x − y

txy
= K (x , y)H0(x , y),

where H0(x , y) = (x − y)/(txy) has poles of bounded order at zero.

• Q-invariants: from the equation

K (x , y)xyQ(x , y) = xy − txQ(x , 0)− tyQ(0, y)

and the decoupling relation

xy = −x̄ − ȳ +
1
t
− 1

t
K (x , y),

one derives

K (x , y)

(
xyQ(x , y)− 1

t

)
=

(
1
2t
− x̄ − txQ(x , 0)

)
+

(
1
2t
− ȳ − tyQ(0, y)

)
.



Some non-trivial invariants

• Rational invariants: let I0(x) = x̄2 − x̄/t − x and J0(y) = I0(y). Then

I0(x)− J0(y) = (1− t(x̄ + ȳ + xy))
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A relation between (I1, J1) and the rational invariants (I0, J0)

We have two pairs of invariants:

I0(x) = x̄2 − x̄/t − x , J0(y) = I0(y),

I1(x) = x̄ − 1/(2t) + txQ(x , 0), J1(y) = −I1(y).

New invariants from old ones
The componentwise sum (resp. product) of two pairs of invariants
(I0(x), J0(y)), (I1(x), J1(y)) is another pair of invariants.

The invariant lemma
A pair of invariants with no pole at zero is trivial.

Observation: I1(x)2 − I0(x) has no pole!

Define

I (x) := I1(x)2 − I0(x) J(y) := J1(y)2 − J0(y).

Then (I (x), J(y)) is a pair of invariants with no pole at zero.
Hence I (x) = J(y) is a series in t only.
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A relation between (I1, J1) and the rational invariants (I0, J0)

The series

I (x) = I1(x)2 − I0(x) = (txQ(x , 0)− 1/(2t))2 + 2tQ(x , 0) + x

depends only on t. Thus, I (x) = I (0), that is,

(txQ(x , 0)− 1/(2t))2 + 2tQ(x , 0) + x = 1/(2t)2 + 2tQ(0, 0).

⇒ In addition, such equations can be solved in a systematic way, and
their solutions are always algebraic (via Brown’s quadratic method, or
[mbm-Jehanne 06])

GF of Kreweras’ walks in the quadrant
Let Z ≡ Z (t) be the only series in t such that Z = t(2 + Z 3). Then

Q(x , 0) =
1
tx

(
1
2t
− 1

x
−
(
1
Z
− 1

x

)√
1− xZ 2

)
.

[Kreweras 65], [Gessel 86], [mbm 05]...
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Revisiting the quadrant classification with invariants

The whole picture

quadrant models: 79

rat. invariants: 23

D-finite

Q-invariants: 4

algebraic

no Q-inv.: 19

DF transc.

no rat. inv.: 56

Not D-finite

Q-invariants: 9

D-alg.

no Q-inv.: 47

not D-alg.

[Bernardi-mbm-Raschel, Dreyfus-Hardouin-Roques-Singer]



Three quadrant problems with
small steps

The 5 singular models become trivial (rational GF).

Functional equation for the series C (x , y ; t)



Classification of three quadrant problems?

three quadrant models: 74

rat. invariants: 23

?

Q-invariants: 4

?

no Q-inv.: 19

?

no rat. inv.: 51

Not D-finite

Q-invariants: 9

?

no Q-inv.: 42

?

[Mustapha 19]



Classification of three quadrant problems?

three quadrant models: 74

rat. invariants: 23

?

Q-invariants: 4

?

no Q-inv.: 19

?

no rat. inv.: 51

Not D-finite

Q-invariants: 9

?

no Q-inv.: 42

?

[Mustapha 19]



Ten diagonally symmetric models

10 models

rat. invariants: 6

D-finite

Q-invariants: 3

algebraic

no Q-inv.: 3

DF transc.

no rat. inv.: 4

Not D-finite

Q-invariants: 1

D-alg.

no Q-inv.: 3

not D-alg.

[mbm, Wallner, Raschel, Trotignon, Mustapha, Dreyfus]

Elvey Price: same nature as the quadrant series, at least in x and y (in
preparation)
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preparation)



Beyond small steps in 2D

• Arbitrary steps in the quadrant ⇒ equivalence between D-finiteness and
finite “group”?

• Walks with small steps in N3: some non-D-finite models with a finite
group?
Example. The model {111, 1̄00, 01̄0, 001̄} has a finite group of order 24.
Is it D-finite? Most likely not...
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