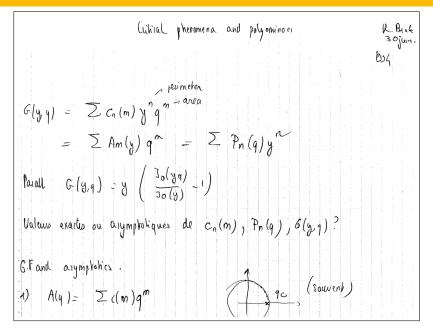
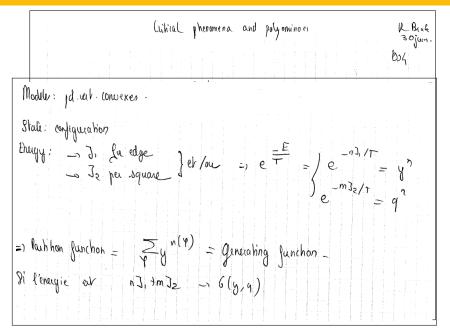
A tour of combinatorics and statistical mechanics: In memory of Richard Brak

Bordeaux, June 1994



Bordeaux, June 1994



1995: a Melbourne spring

- lattice walks, polyominoes and polygons
- exclusion processes
- osculating walks and alternating sign matrices
- percolation

• ...

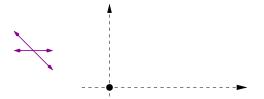
Counting walks in a cone: a mini-survey

Mireille Bousquet-Mélou, CNRS, Bordeaux, France

A typical question (in two dimensions)

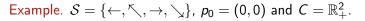
Let S be a finite subset of \mathbb{Z}^2 (set of steps) and $p_0 \in \mathbb{Z}^2$ (starting point).

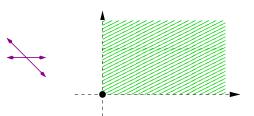
Example. $S = \{\leftarrow, \nwarrow, \rightarrow, \searrow\}, p_0 = (0, 0)$



A typical question (in two dimensions)

Let S be a finite subset of \mathbb{Z}^2 (set of steps) and $p_0 \in \mathbb{Z}^2$ (starting point). Let C be a cone of \mathbb{R}^2 .





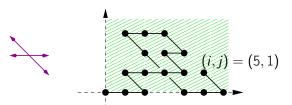
A typical question (in two dimensions)

Let S be a finite subset of \mathbb{Z}^2 (set of steps) and $p_0 \in \mathbb{Z}^2$ (starting point). Let C be a cone of \mathbb{R}^2 .

Questions

- What is the number a(n) of n-step walks starting at p₀ and contained in C?
- For (i, j) ∈ C, what is the number a(i, j; n) of such walks that end at (i, j)?

Example. $S = \{\leftarrow, \nwarrow, \rightarrow, \searrow\}$, $p_0 = (0, 0)$ and $C = \mathbb{R}^2_+$.



An attractive topic with a long history

- Many discrete objects can be encoded in that way:
 - in combinatorics, statistical physics...
 - in (discrete) probability theory: random walks, queuing theory...

 $\triangleleft \, \triangleleft \, \diamond \, \triangleright \, \triangleright$

An attractive topic with a long history

- Many discrete objects can be encoded in that way:
 - in combinatorics, statistical physics...
 - in (discrete) probability theory: random walks, queuing theory...

 $\triangleleft \ \lhd \ \diamond \ \triangleright \ \diamond$

• Melbourne, FPSAC 2002...

Enumeration of solid 2-trees#13 M. Bousquet, C. Lamathe
Walks in the quarter plane: a functional equation approach#14 M. Bousquet-Mélou
On the equivalence problem for succession rules#15 S. Brlek, E. Duchi, E. Perqola, S. Rinaldi
Words restricted by patterns with at most 2 distinct letters

• A Melbourne topic!

N. Beaton, R. Brak, A. Elvey Price, A. Owczarek, A. Rechnitzer, R. Xu...

Generating functions

• Our original question:

$$a(n) = ? \qquad a(i,j;n) = ?$$

• Generating functions:

$$A(t) = \sum_{n \ge 0} a(n)t^n, \qquad A(x, y; t) = \sum_{i, j, n} a(i, j; n)x^i y^j t^n$$
$$= \sum_{w \text{ walk}} x^{i(w)} y^{j(w)} t^{|w|}$$

Generating functions

• Our original question:

$$a(n) = ?$$
 $a(i, j; n) = ?$

• Generating functions:

$$A(t) = \sum_{n \ge 0} a(n)t^n, \qquad A(x, y; t) = \sum_{i,j,n} a(i, j; n)x^i y^j t^n$$
$$= \sum_{w \text{ walk}} x^{i(w)} y^{j(w)} t^{|w|}$$

Remarks

•
$$A(1,1;t) = A(t)$$

• if $C \subset \mathbb{R}_+ \times \mathbb{R}$, then A(0, y; t) counts walks ending on the y-axis

Generating functions

• Our original question:

$$a(n) = ? \qquad a(i, j; n) = ?$$

• Generating functions:

$$A(t) = \sum_{n \ge 0} a(n)t^n, \qquad A(x, y; t) = \sum_{i,j,n} a(i, j; n)x^i y^j t^n$$
$$= \sum_{w \text{ walk}} x^{i(w)} y^{j(w)} t^{|w|}$$

Remarks

•
$$A(1,1;t) = A(t)$$

• if $C \subset \mathbb{R}_+ \times \mathbb{R}$, then A(0, y; t) counts walks ending on the y-axis

Can one express these series? What is their nature?

A hierarchy of formal power series

• Rational series

$$A(t) = \frac{1-t}{1-t-t^2}$$

• Algebraic series

$$1 - A(t) + tA(t)^2 = 0$$

• Differentially finite series (D-finite)

t(1-16t)A''(t) + (1-32t)A'(t) - 4A(t) = 0

• D-algebraic series

(2t+5A(t)-3tA'(t))A''(t)=48t

A hierarchy of formal power series

• Rational series

$$A(t) = \frac{1-t}{1-t-t^2}$$

• Algebraic series

$$1 - A(t) + tA(t)^2 = 0$$

• Differentially finite series (D-finite)

t(1-16t)A''(t) + (1-32t)A'(t) - 4A(t) = 0

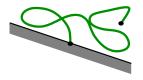
• D-algebraic series

(2t + 5A(t) - 3tA'(t))A''(t) = 48t

• Full space: rational series

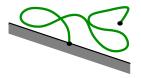
• Full space: rational series

• Half-space: algebraic series

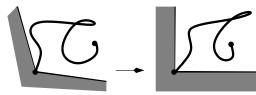


• Full space: rational series

• Half-space: algebraic series

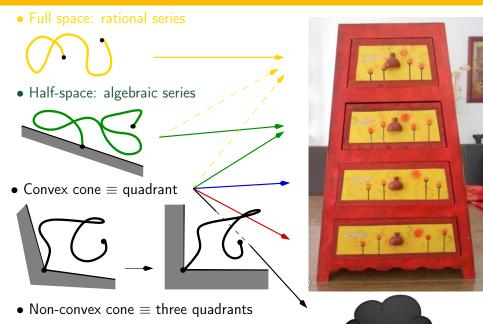


• Convex cone \equiv quadrant



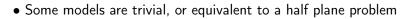
 \bullet Non-convex cone \equiv three quadrants

- Full space: rational series • Half-space: algebraic series • Convex cone \equiv quadrant
 - \bullet Non-convex cone \equiv three quadrants

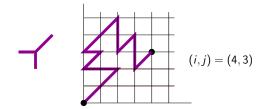


Focus: quadrant walks with small steps

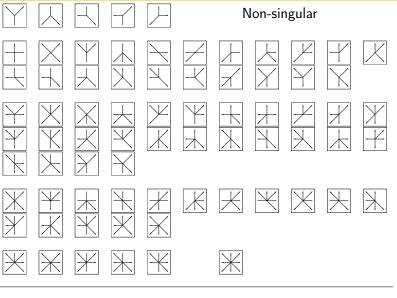
• Small steps: $\mathcal{S} \subset \{-1,0,1\}^2 \setminus \{(0,0)\}.$ Only 2^8 models.



 \Rightarrow 79 really interesting and distinct models [mbm-Mishna 10]



Focus: quadrant walks with small steps



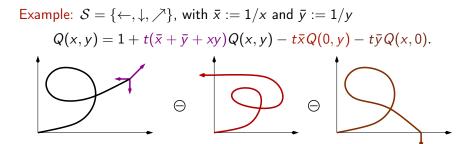
Singular

A systematic approach

- One can always write a recurrence relation for the numbers q(i, j; n)
- or equivalently, a linear functional equation for $Q(x, y; t) \equiv Q(x, y)$

A systematic approach

One can always write a recurrence relation for the numbers q(i, j; n)
or equivalently, a linear functional equation for Q(x, y; t) = Q(x, y)



A systematic approach

One can always write a recurrence relation for the numbers q(i, j; n)
or equivalently, a linear functional equation for Q(x, y; t) = Q(x, y)

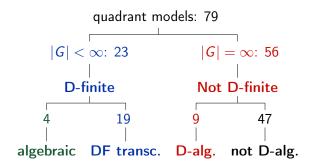
Example:
$$S = \{\leftarrow, \downarrow, \nearrow\}$$
, with $\bar{x} := 1/x$ and $\bar{y} := 1/y$
 $Q(x, y) = 1 + t(\bar{x} + \bar{y} + xy)Q(x, y) - t\bar{x}Q(0, y) - t\bar{y}Q(x, 0)$.
Equivalently,

$$(1-t(\bar{x}+\bar{y}+xy))xyQ(x,y)=xy-tyQ(0,y)-txQ(x,0)$$

The (Laurent) polynomial $S(x, y) := \bar{x} + \bar{y} + xy$ is the step polynomial of this model, and $K(x, y) := 1 - t(\bar{x} + \bar{y} + xy)$ is the kernel.

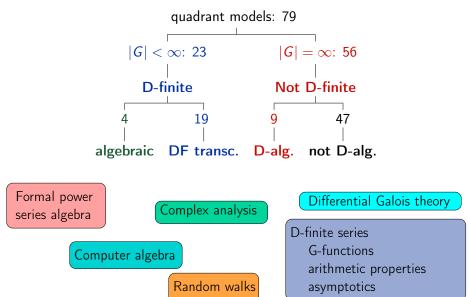
Twenty years later: classification of quadrant walks

(small steps)

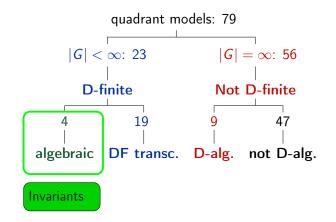


Twenty years later: classification of quadrant walks

(small steps)



Invariants



Invariants: a notion introduced by W. Tutte to count properly coloured planar triangulations (1973-1984)

• A pair of series (I(x), J(y)) in t with coefficients in $\mathbb{Q}(x)$ and $\mathbb{Q}(y)$ (respectively) is a pair of invariants if

$$I(x) - J(y) = (1 - tS(x, y))H(x, y)$$

where H(x, y) has poles of bounded order at x = 0 and y = 0.

• A pair of series (I(x), J(y)) in t with coefficients in $\mathbb{Q}(x)$ and $\mathbb{Q}(y)$ (respectively) is a pair of invariants if

$$I(x) - J(y) = (1 - tS(x, y))H(x, y)$$

where H(x, y) has poles of bounded order at x = 0 and y = 0. By this, we mean that there exists i, j such that

$$x^{i}y^{j}H(x,y) = \sum_{n} \frac{p_{n}(x,y)}{d_{n}(x)d_{n}'(y)}t^{n}$$

where $d_n(0) \neq 0$ and $d'_n(0) \neq 0$.

• A pair of series (I(x), J(y)) in t with coefficients in $\mathbb{Q}(x)$ and $\mathbb{Q}(y)$ (respectively) is a pair of invariants if

$$I(x) - J(y) = (1 - tS(x, y))H(x, y)$$

where H(x, y) has poles of bounded order at x = 0 and y = 0. By this, we mean that there exists i, j such that

$$x^{i}y^{j}H(x,y) = \sum_{n} \frac{p_{n}(x,y)}{d_{n}(x)d_{n}'(y)}t^{n}$$

where $d_n(0) \neq 0$ and $d'_n(0) \neq 0$.

• We say that I(x) - J(y) is divisible by K(x, y) = 1 - tS(x, y).

• A pair of series (I(x), J(y)) in t with coefficients in $\mathbb{Q}(x)$ and $\mathbb{Q}(y)$ (respectively) is a pair of invariants if

$$I(x) - J(y) = (1 - tS(x, y))H(x, y)$$

where H(x, y) has poles of bounded order at x = 0 and y = 0. By this, we mean that there exists i, j such that

$$x^{i}y^{j}H(x,y) = \sum_{n} \frac{p_{n}(x,y)}{d_{n}(x)d_{n}'(y)}t^{n}$$

where $d_n(0) \neq 0$ and $d'_n(0) \neq 0$.

• We say that I(x) - J(y) is divisible by K(x, y) = 1 - tS(x, y).

Example: Trivial invariants: take $I(x) = J(y) \in \mathbb{Q}((t))$

Some non-trivial invariants

• Rational invariants: let $I_0(x) = \bar{x}^2 - \bar{x}/t - x$ and $J_0(y) = I_0(y)$. Then

$$I_0(x) - J_0(y) = (1 - t(\bar{x} + \bar{y} + xy))\frac{x - y}{txy} = K(x, y)H_0(x, y),$$

where $H_0(x, y) = (x - y)/(txy)$ has poles of bounded order at zero.

Some non-trivial invariants

• Rational invariants: let $I_0(x) = \bar{x}^2 - \bar{x}/t - x$ and $J_0(y) = I_0(y)$. Then

$$I_0(x) - J_0(y) = (1 - t(\bar{x} + \bar{y} + xy))\frac{x - y}{txy} = K(x, y)H_0(x, y),$$

where $H_0(x, y) = (x - y)/(txy)$ has poles of bounded order at zero.

• Q-invariants: from the equation

$$K(x,y)xyQ(x,y) = xy - txQ(x,0) - tyQ(0,y)$$

Some non-trivial invariants

• Rational invariants: let $I_0(x) = \bar{x}^2 - \bar{x}/t - x$ and $J_0(y) = I_0(y)$. Then

$$I_0(x) - J_0(y) = (1 - t(\bar{x} + \bar{y} + xy))\frac{x - y}{txy} = K(x, y)H_0(x, y),$$

where $H_0(x, y) = (x - y)/(txy)$ has poles of bounded order at zero.

• Q-invariants: from the equation

$$K(x, y)xyQ(x, y) = xy - txQ(x, 0) - tyQ(0, y)$$

and the decoupling relation

$$xy = -\bar{x} - \bar{y} + \frac{1}{t} - \frac{1}{t}K(x, y),$$

one derives

$$\mathcal{K}(x,y)\left(xyQ(x,y)-\frac{1}{t}\right)=\left(\frac{1}{2t}-\bar{x}-txQ(x,0)\right)+\left(\frac{1}{2t}-\bar{y}-tyQ(0,y)\right)$$

We have two pairs of invariants:

$$egin{aligned} &I_0(x) = ar{x}^2 - ar{x}/t - x, &J_0(y) = I_0(y), \ &I_1(x) = ar{x} - 1/(2t) + txQ(x,0), &J_1(y) = -I_1(y). \end{aligned}$$

We have two pairs of invariants:

$$\begin{split} I_0(x) &= \bar{x}^2 - \bar{x}/t - x, & J_0(y) = I_0(y), \\ I_1(x) &= \bar{x} - 1/(2t) + txQ(x,0), & J_1(y) = -I_1(y). \end{split}$$

New invariants from old ones

The componentwise sum (resp. product) of two pairs of invariants $(I_0(x), J_0(y)), (I_1(x), J_1(y))$ is another pair of invariants.

 $(I_0(x) + I_1(x), J_0(y) + J_1(y)),$ $(I_0(x)I_1(x), J_0(y)J_1(y))$

We have two pairs of invariants:

$$\begin{split} I_0(x) &= \bar{x}^2 - \bar{x}/t - x, & J_0(y) = I_0(y), \\ I_1(x) &= \bar{x} - 1/(2t) + t x Q(x,0), & J_1(y) = -I_1(y). \end{split}$$

New invariants from old ones

The componentwise sum (resp. product) of two pairs of invariants $(I_0(x), J_0(y)), (I_1(x), J_1(y))$ is another pair of invariants.

The invariant lemma

A pair of invariants with no pole at zero is trivial.

We have two pairs of invariants:

$$\begin{split} I_0(x) &= \bar{x}^2 - \bar{x}/t - x, & J_0(y) = I_0(y), \\ I_1(x) &= \bar{x} - 1/(2t) + txQ(x,0), & J_1(y) = -I_1(y). \end{split}$$

New invariants from old ones

The componentwise sum (resp. product) of two pairs of invariants $(I_0(x), J_0(y)), (I_1(x), J_1(y))$ is another pair of invariants.

The invariant lemma

A pair of invariants with no pole at zero is trivial.

Observation: $I_1(x)^2 - I_0(x)$ has no pole!

We have two pairs of invariants:

$$\begin{split} I_0(x) &= \bar{x}^2 - \bar{x}/t - x, & J_0(y) = I_0(y), \\ I_1(x) &= \bar{x} - 1/(2t) + t x Q(x,0), & J_1(y) = -I_1(y). \end{split}$$

New invariants from old ones

The componentwise sum (resp. product) of two pairs of invariants $(I_0(x), J_0(y)), (I_1(x), J_1(y))$ is another pair of invariants.

The invariant lemma

A pair of invariants with no pole at zero is trivial.

Observation: $I_1(x)^2 - I_0(x)$ has no pole! Define

$$I(x) := I_1(x)^2 - I_0(x)$$
 $J(y) := J_1(y)^2 - J_0(y).$

Then (I(x), J(y)) is a pair of invariants with no pole at zero. Hence I(x) = J(y) is a series in t only.

The series

$$I(x) = I_1(x)^2 - I_0(x) = (txQ(x,0) - 1/(2t))^2 + 2tQ(x,0) + x$$

depends only on t. Thus, I(x) = I(0), that is,

The series

$$I(x) = I_1(x)^2 - I_0(x) = (t \times Q(x, 0) - 1/(2t))^2 + 2tQ(x, 0) + x$$

depends only on t. Thus, I(x) = I(0), that is,

$$(t \times Q(x, 0) - 1/(2t))^2 + 2tQ(x, 0) + x = 1/(2t)^2 + 2tQ(0, 0).$$

Summary: starting from an equation between

$$Q(x,y),$$
 $Q(x,0),$ and $Q(0,y),$

we have obtained an equation between

$$Q(x,0)$$
 and $Q(0,0)$.

One less variable.

The series

$$I(x) = I_1(x)^2 - I_0(x) = (txQ(x,0) - 1/(2t))^2 + 2tQ(x,0) + x$$

depends only on t. Thus, I(x) = I(0), that is,

$$(txQ(x,0) - 1/(2t))^2 + 2tQ(x,0) + x = 1/(2t)^2 + 2tQ(0,0).$$

 \Rightarrow In addition, such equations can be solved in a systematic way, and their solutions are always algebraic (via Brown's quadratic method, or [mbm-Jehanne 06])

The series

$$I(x) = I_1(x)^2 - I_0(x) = (txQ(x,0) - 1/(2t))^2 + 2tQ(x,0) + x$$

depends only on t. Thus, I(x) = I(0), that is,

$$(txQ(x,0) - 1/(2t))^2 + 2tQ(x,0) + x = 1/(2t)^2 + 2tQ(0,0).$$

 \Rightarrow In addition, such equations can be solved in a systematic way, and their solutions are always algebraic (via Brown's quadratic method, or [mbm-Jehanne 06])

GF of Kreweras' walks in the quadrant

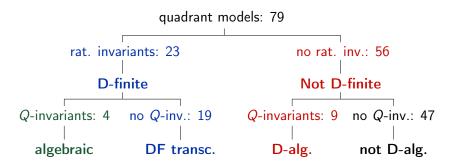
Let $Z \equiv Z(t)$ be the only series in t such that $Z = t(2 + Z^3)$. Then

$$Q(x,0) = rac{1}{tx} \left(rac{1}{2t} - rac{1}{x} - \left(rac{1}{Z} - rac{1}{x}
ight) \sqrt{1 - xZ^2}
ight)$$

[Kreweras 65], [Gessel 86], [mbm 05]...

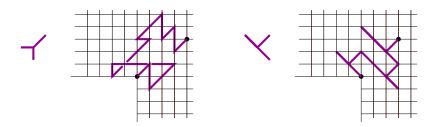
Revisiting the quadrant classification with invariants

The whole picture



[Bernardi-mbm-Raschel, Dreyfus-Hardouin-Roques-Singer]

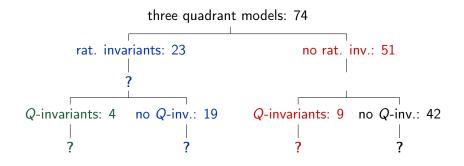
Three quadrant problems with small steps



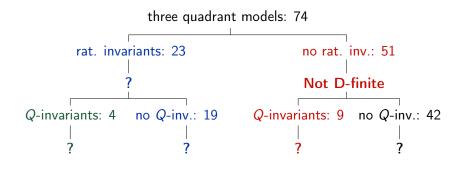
The 5 singular models become trivial (rational GF).

Functional equation for the series C(x, y; t)

Classification of three quadrant problems?

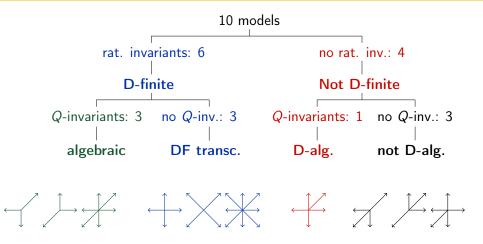


Classification of three quadrant problems?



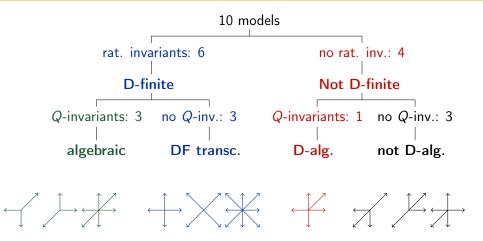
[Mustapha 19]

Ten diagonally symmetric models



[mbm, Wallner, Raschel, Trotignon, Mustapha, Dreyfus]

Ten diagonally symmetric models

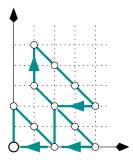


[mbm, Wallner, Raschel, Trotignon, Mustapha, Dreyfus]

Elvey Price: same nature as the quadrant series, at least in x and y (in preparation)

Beyond small steps in 2D

• Arbitrary steps in the quadrant \Rightarrow equivalence between D-finiteness and finite "group"?



Beyond small steps in 2D

 \bullet Arbitrary steps in the quadrant \Rightarrow equivalence between D-finiteness and finite "group"?

• Walks with small steps in \mathbb{N}^3 : some non-D-finite models with a finite group?

Example. The model $\{111, \overline{1}00, 0\overline{1}0, 00\overline{1}\}$ has a finite group of order 24. Is it D-finite? Most likely not...

