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Hugging the Airey’s Inlet lighthouse
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Motivation

o Describe the stationary state of a Markov chain
@ Perron-Frobenius: elements are positive polynomials in the rates

o Give a combinatorial description of these polynomials

©

Can equilibrium stat-mech describe stationary non-equilibrium processes?
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Markov chain

P:(a): probability to find a process in configuration a at time t.

The Markov chain equation reads

%Pt(a) = Z (rath(b) - rban(a))

b#a

In matrix form:

d
S IPY=MIP), [P = Pa)la),

where M is the transition matrix with off-diagonal elements M,, = rap > 0 and whose columns
add up to zero.
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Stationary state

Stationary state
|Poo) = lim |P:) satisfies M|Ps) = 0.
t—o00

The eigenvalue equation is solved by the cofactors X (b, b) of M,
M|Py=0 <« P(b) = X(b,b).

Proof:
0=detM= Z MapX(a, b) = Z M.pX (b, b),
b b

This solution fixes a particular normalisation of the eigenvector. Probability P(b) is written as

n

(n)
Poo(b) = @, Z,,:Zx(b, b).
b=1

where n is the size of the system.
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Normalisation vs Partition function

[Matrix tree theorem] Z, is a homogeneous polynomial in the rates r.p with positive coefficients

Generalized Boltzmann weights rap = zap: think of Z,({zap}) as a generalised partition sum for
nonequilibrium systems.

The “free energy”
Fn=—logZn

is a convex function in all its arguments z,p with “particle numbers” Np,

, Nap ~ V(n)pap as n— oo,
b
V/(n) is the “volume” and p,p are the “densities”.

The “particle numbers” are not necessarily extensive quantities. This implies that in the
parameter space the p,p might diverge and we have to change the definition of the factor V/(n)
(special surface transitions).
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Asymmetric exclusion process

a B
TN VR

e oeeoooeoo |

TASEP configuration. Particles enter the system from the left with rate o and leave from the right with
rate 8. Particles hop in the bulk from left to right with rate 1.

TASEP stationary probabilities are given by

n
1
Poo(7i, - 7a) = > (W] ﬂ(T,D 1 (1—m)E)V),
i=1
with Z, is given by
Z, = (W|(D+ E)"|V),
and the matrices D and E, and the vectors (W| and |V) are a representation of the so-called
DEHP algebra,
1 1
DE =D+ E, D|V>:E|V> (W|E = —(W|
o
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Reformulation as walks model

The matrices D and E can be interpreted as transfer matrices (Brak and Essam).

-1 1 2n+1

An example of an RSOS path starting at (0, 0) and ending at (2n, 0) crossing the x-axis only once.

o Paths start at (0,0) and end at (2n,0), can only move in the North-East (NE) or in the
South-East (SE) direction and cross the x-axis exactly once.

@ Associate weights @~! and B! to the returns (or contact points) of the path above and
below the x-axis respectively.
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Partition function

The partition function of the one-transit model is simply given by

Zn(cr, B) = (o, B)"Zn(cx, B),

where
n P
Zo(@,B) =) Bunpy o 9P
p=0 q=0

and Bp p are Ballot numbers,

B :B(2n—p—1>:p(2n—p—1)!
P n—1 nl(n—p)

Alternatively

n
Zo(e,B) = (@.B)" Y _ Zp(et,00)Zn—p(c0, B).
p=0
This formula shows that we can also interpret the model as the combination of two contact

models with a movable but impenetrable wall in between them at a random position, each
position being equally probable.
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Thermodynamics

Asymptotically

z 4 >1/2
_ =z
(1 —22)2 \/7n3/2
z 4
"(Z' OO) ~ W zZ = 1/2
1-2z 1 <1/2
—_ z .
1—z z"(1—2z)"
The grand canonical partition function
1
w=— lim —logZ,.
n—oo n
and contact averages are given by
Ow Ow
a=1+oa—, b=1+B8—.
Oa ﬁaﬁ

Relationship to TASEP curren J and density p
2p—1
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Phase diagram
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Canonical free energy

The canonical free energy per site for given values of a and b can be calculated from the grand
potential w(e, B),

f(a, b) = sug((l —a)loga+ (1 —b)log B+ w(a, B)),

from which we find, using r =a+ b and d = a— b,

f(a,b):(l—r)log(l—%'d» —(2—r)|og(2—%|d|).
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Canonical free energy

The canonical free energy per site for given values of a and b can be calculated from the grand
potential w(e, B),

f(a, b) = sup((1 — a) log o + (1 — b) log B + w(e, B)),
ap
from which we find, using r =a+ b and d = a— b,

f(a,b):(l—r)log(l—%'d» —(2—r)|og(2—%|d|>.

Farewell Richard
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