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Remembering Richard Brak ...

* Met at conferences in North America early 90’s via Stu Whittington -
“Critical Phenomena in Polymer Physics” (Peterborough)

* Friendly Informal Workshop on Monte Carlo Simulation and Related Topics.
June 20-24, 1994 Saskatoon

* Hosted me during first sabbatical 1995 Sept-Dec Melbourne
Inspired me to pursue “solvable” problems

Learned about the beauty of Australia and saw koalas in the wild with Richard’s family and Mireille

On anisotropic spiral self-avoiding walks, R Brak, A L Owczarek and C E Soteros 1998 J. Phys. A: Math.

Gen. 31 4851

* During same sabbatical learned about Alm and Janson ftransfer-matrix results
for SAWs in lattice tubes ... led to my talk today

Richard provided great support to me and my career over the decades. From
invitations to and discussions/talks at conferences as well as providing advice
and listening to me gripe about academic politics.




DNA in Nano-channels and Nano-pores
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Snapshot of a ring confined in a rectangular channel.

Z Benkovd, P Namera and P Cifraa (Soft Matter, 2016, 12, 8425), moleclular dynamics
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J Zhou, et al (Nature Comm., 8, 807 (2017)), A-phage DNA electrokinetically driven into nanochannel;
fluorescence images of DNA stained with an intercalating dye.



The DNA (non-equilibrium) experiments point to Open Questions about
the “characteristics” of knots and links at equilibrium in
nanopore/nanochannel confinement:

» What is the typical “size” of the knotted/linked part relative to the
length of the polymer?

Leads to mathematical questions:
How does one measure knot or link ‘“size”?

Are the knots/links “localized” and to what extent?

. . . m . “ - "
For knot size m in a length n polymer, if — — 0 as n — oo, knot is “localized”.
n

If as n — oo, m ~ ¢, “strongly localized”, while if m ~ cnt, 0 < t < 1, knot is
“weakly localized” .

» Can one distinguish between different “modes” of knotting/linking
and are some modes more probable than others?

Leads to mathematical questions such as how to detect or define different
geometrical configurations of knots/links.

We have been using lattice polygon models confined to tubular
sublattices of the simple cubic lattice and transfer-matrix methods to
address these questions both rigorously and via Monte Carlo simulations.



Simplest Case: Each SAP of size n (number of edges) is considered equally likely.
Pn - # of distinct (up to translation) n-edge SAPs in Z3

pn(gb) - # of distinct (up to translation) n-edge UNKNOTTED SAPs in Z°> b, (0)
pn(K) - # of distinct (up to translation) n-edge knot type K SAPs in Z*

As n — oo Sumners and Whittington (1988) (JPA 21, 1689-04) =

Prob. Of K’I’LOtt?,TLg: 1 — pn(¢) -1 — e—(ﬁ—no)n—l—o(n)

Pn

Soteros, Sumners and Whittington (1992) (MathProcCambPhilSoc 111 75) =>
pn (K)

n

— 0

Prob. of Knot-type K=

Orlandini et al (1998) (IMA Vol.Math.Appl. 103 9; JPA 31 5953) Monte Carlo evidence consistent with

pn(K) ~ AgnfotiK gron

¢

fx - # prime knots in K's knot decomp.

(%) PaleD

A Bonato, E Orlandini, SG Whittington, Asymptotics of multicomponent linked polygons. J. Phys. A: Math. Theor. 54, 235002 (2021).



Modelling Equilibrium Properties: Polygons in tubes and confined polymers

TimMm=T={(xy,2):0<y<L0<z<M}=7Zx{0,...,L} x{0,..., M}

e ;
(=== L.

A SAP with span s = 6

Polygons represent polymer configurations and in simplest model assume each polygon
of the same “size” is equally Iikely

For size=span, probability = , Pr(s): # of span s SAPs in (L, M)-tube

()

/’/] Z\Lyx

Hamiltonian Polygons: densely packed proteins (Kloczkowski and Jernigan 1998 JCP 109 p5134;p5147)
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Applying Transfer Matrices to SAPs in Tubes.

@ The main tool used to study SAPs and 2SAPs was transfer
matrices.
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Transfer Matrix Example

: i & F % d
“ITx2 0 x* 0 0 O
10 x2 0 x° x2 0
il 0 x2 0 x3 x3 O
rlx3 0 x3 0 0 O
10 0 0 0O 0 x3
10 x3 0 x3 x2 0
1 0 0 0 0 0 «x°

Figure: The 2 x 0 tube transfer matrix
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Modelling Equilibrium Properties: Polygons in tubes and confined polymers

Tim=T={(xyz2):0<y<L0<z<M}=27x{0,..L} x{0,..., M}
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A SAP with span s = 6
Grand Canonical Partition Function for polygons in (L, M)-Tube

HOcy) = 3 3 pralel’y* = 3 3 prafs)ese® =

Z Z [B(x) (1 +y6(x) + y*G*(x) + y*G3(x) + ...) C(x)]; ; o o _1yG(X))

pr,n(s): # of n-edge, span s polygons in (L, M)-tube
G(x): Transfer-Matrix

Two possible models depending on what is used for polygon “size” -
edges n or span s



Table A.1 The approximate amount of resources required to create the transfer matrices
for SAPs in each of the above cases. Cases larger than the 2 x 2 tube were run on Compute
Canada’s Graham and Cedar clusters. The amount of time required for generating each set
of sampled SAPs at different spans is also available upon request.

Type Tube CPU Time (dd:hh:mm) RAM

SAP 2x1 00:00:02 <1 GB
SAP 3x1 00:00:11 <1 GB
SAP 2x2 00:00:24 <1 GB
SAP 4x1 00:04:00 5 GB
SAP ox1 05:22:52 350 GB
SAP 3x2 06:21:35 400 GB
Ham. SAP 2x1 00:00:02 <1 GB
Ham. SAP 3x1 00:00:05 <1 GB
Ham. SAP 2x2 00:00:07 <1 GB
Ham. SAP 4x1 00:01:00 2 GB
Ham. SAP 5x1 02:01:13 110 GB
Ham. SAP 3x2 02:06:30 150 GB

Jeremy Eng PhD Thesis 2020 https://harvest.usask.ca/handle/10388/13022



https://harvest.usask.ca/handle/10388/13022

New Result for 2 x 1 Tube: (M Atapour (CapilanoU), NR Beaton (UMelbourne), JW Eng
(USaskatchewan), K Ishihara (YamaguchiU), K Shimokawa (SaitamaU), CE Soteros (USaskatchewan), M Vazquez
(UCDavis)) Let L be any non-split link embeddable in T* and let pr= ,(L) be the
number of m-edge embeddings in T* with link type L. Then, for non-trivial L there
exist positive constants € € (0,1), b, € R,d; € Z, e, € Z (independent of n) and an
integer N . > 0 such that for any n > N; ., we have lower and upper bounds on the
number of n-edge embeddings of L in T* as follows:

% (Le(n f—L eL)J)PT*,n—eL(Ol) < pr+.n(L)

. (1)
< bL( )P’[[‘*,n+dL(01)-
fL
Furthermore, there exist constants C; and C; such that for all sufficiently large n
Cintpr n(01) < pr+,n(L) < Gontpr= o(01). (2)
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) o WER. BounN D —NEW PATTERN THESREN



* New Knot Theory —a 4-braid word can be determined
from a minimal diagram of the link that can be used
to unknot any diagram of the link upon insertion of
the word — a type of unknotting operation

 New Pattern Theorem for Unknots — use exact counts
of unknot polygons and calculated bounds from the
transfer matrix to proved that all but exponentially
few sufficiently long unknot polygons contain a
positive density of “2-sections” — from this can prove
a general pattern theorem for unknot polygons



Pattern Theorems for unknots and fixed link-type 2 x 1 Tube:
Let pr+ n(01, < k) be the number of unknots of length n in T* which contain at most
k 2-sections. Then there exists an € > 0 such that

lim sup — Iog pr*.n(01, <en) < lim Iog pr+,n(01) = KT* 0, -
n

n—oo N n—-0o
Proof:
Delete all patterns corresponding to 2-sections from transfer matrix, standard upper
bound for the spectral radius of a matrix, 7y < ||[M¥||*/* for any k > 1, where ||-|| is

the maximum absolute row sum —

1 1 N
limsup — log pr* (01,0) = A= (01) < I|m Iog pr*.n(0) = AT+ < 0.446287.
n

n—- o0

Concatenation = log pr* ,—6(01) superadditive —-

1 1
kr* (01) = nlmm log pr* ,n—6(01) = Si% — log pr+ n—6(01).
n

Exact enumeration pr= 24(01) = 119,796, 593

fr+ (01) < R+ < 0.446287 < 0.620044 < rop+ (01) (3)

— Unknots without 2-sections are exponentially rare amongst unknot polygons.

pre (01, < k) = ZPT* (01, 1) < sz( 2) pre s£(01.0) (4)

for a constant E — a density of 2-sections in unknot polygons.



Equilibrium lattice model predicts two “modes” of knots
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Equilibrium small tube sizes: Beaton et al Soft Matter, 2018,14, 5775
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Two modes of the Hopf link: the two polygon mode (top) appears to require more edges than the one polygon mode (bottom).



Summary of Results for SAPs in Tubes:

1. FWD Holds: All but exponentially few large SAPs are knotted (CS 1998).

2. Knot Identification Simplified in Tubes:

Breaking at 2-sections gives connect summands. Useful for knot id/ knot pattern def”.
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3. Knot Localization and Knot Statistics of Polygons in T p:

n
pr,n(K) ~ mr,n(Ol)(fK) ~ pr,n(01)n' ~ g, n'%

Monte Carlo Evidence: Beaton N, Eng J, Soteros C, (2019) JPhysA, 52(14): 144003.
Proof in 1 X 2 tube: Atapour, Beaton, Eng, Ishihara, Shimokawa, Soteros, Vazquez in prep)

Two Modes Identified: Beaton, Eng, Ishihara, Shimokawa, Soteros, Soft Matter, 2018, 14, 5775

Hamiltonian P(3_1*NL | 3_1)




2SAPs: Pairs of SAPs which “Span” T

qr,s - the number of pairs of mutually avoiding SAPs in T which have the same
left-most and right-most planes and span s.

P

Linked 2SAP in (2,1)-tube with span 3

A 2SAP in (1,4)-tube with span 50



