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Remembering Richard Brak …
• Met at conferences in North America early 90’s via Stu Whittington -

“Critical Phenomena in Polymer Physics” (Peterborough)
• Friendly Informal Workshop on Monte Carlo Simulation and Related Topics. 

June 20-24, 1994 Saskatoon
• Hosted me during first sabbatical 1995 Sept-Dec Melbourne 
Inspired me to pursue “solvable” problems 
Learned about the beauty of Australia and saw koalas in the wild with Richard’s family and Mireille 
On anisotropic spiral self-avoiding walks, R Brak, A L Owczarek and C E Soteros 1998 J. Phys. A: Math. 
Gen. 31 4851
• During same sabbatical learned about Alm and Janson transfer-matrix results 

for SAWs in lattice tubes … led to my talk today 
Richard provided great support to me and my career over the decades. From 
invitations to and discussions/talks at conferences as well as providing advice 
and listening to me gripe about academic politics.



DNA in Nano-channels and Nano-pores

Z Benková, P Námera and P Cifraa (Soft Matter, 2016, 12, 8425), moleclular dynamics

J Zhou, et al (Nature Comm., 8, 807 (2017)), λ-phage DNA electrokinetically driven into nanochannel;

fluorescence images of DNA stained with an intercalating dye.



The DNA (non-equilibrium) experiments point to Open Questions about
the “characteristics” of knots and links at equilibrium in
nanopore/nanochannel confinement:

! What is the typical “size” of the knotted/linked part relative to the
length of the polymer?

Leads to mathematical questions:

How does one measure knot or link “size”?

Are the knots/links “localized” and to what extent?

For knot size m in a length n polymer, if
m

n
→ 0 as n → ∞, knot is “localized”.

If as n → ∞, m ∼ c, “strongly localized”, while if m ∼ cnt , 0 < t < 1, knot is
“weakly localized”.

! Can one distinguish between different “modes” of knotting/linking
and are some modes more probable than others?

Leads to mathematical questions such as how to detect or define different
geometrical configurations of knots/links.

We have been using lattice polygon models confined to tubular
sublattices of the simple cubic lattice and transfer-matrix methods to
address these questions both rigorously and via Monte Carlo simulations.



Simplest Case: Each SAP of size n (number of edges) is considered equally likely.

pn - # of distinct (up to translation) n-edge SAPs in Z3

pn(φ) - # of distinct (up to translation) n-edge UNKNOTTED SAPs in Z3

pn(K) - # of distinct (up to translation) n-edge knot type K SAPs in Z3

As n → ∞ Sumners and Whittington (1988) (JPA 21, 1689–94) ⇒

Prob. of Knotting= 1 −
pn(φ)

pn
= 1 − e−(κ−κo)n+o(n)

Soteros, Sumners and Whittington (1992) (MathProcCambPhilSoc 111 75) ⇒

Prob. of Knot-type K=
pn(K)

pn
→ 0

Orlandini et al (1998) (IMA Vol.Math.Appl. 103 9; JPA 31 5953) Monte Carlo evidence consistent with

pn(K) ∼ AKnθo+fK eκon

fK - # prime knots in K’s knot decomp.

A Bonato, E Orlandini, SG Whittington, Asymptotics of multicomponent linked polygons. J. Phys. A: Math. Theor. 54, 235002 (2021).



Modelling Equilibrium Properties: Polygons in tubes and confined polymers

TL,M ≡ T = {(x , y , z) : 0 ≤ y ≤ L, 0 ≤ z ≤ M} = Z× {0, ...,L} × {0, ...,M}

A SAP with span s = 6

Polygons represent polymer configurations and in simplest model assume each polygon
of the same “size” is equally likely.

For size=span, probability =
1

pT(s)
, pT(s): # of span s SAPs in (L,M)-tube

Hamiltonian Polygons: densely packed proteins (Kloczkowski and Jernigan 1998 JCP 109 p5134;p5147)



Applying Transfer Matrices to SAPs in Tubes.

The main tool used to study SAPs and 2SAPs was transfer 
matrices.
SAPs and 2SAPs in an L × M tube can be viewed as a sequence 
of connected “1-patterns” that “grow” in the + x-direction.

This allows for the use of transfer matrices.
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Transfer Matrix Example

Figure: The 2 × 0 tube transfer matrix
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Modelling Equilibrium Properties: Polygons in tubes and confined polymers

TL,M ≡ T = {(x , y , z) : 0 ≤ y ≤ L, 0 ≤ z ≤ M} = Z× {0, ...,L} × {0, ...,M}

A SAP with span s = 6

Grand Canonical Partition Function for polygons in (L,M)-Tube

H(x , y) =
∑

n

∑

s

pT,n(s)x
ny s =

∑

n

∑

s

pT,n(s)e
gnefs =

∑

i

∑

j

[

B(x)
(

I + yG(x) + y2G 2(x) + y3G 3(x) + ...
)

C(x)
]

i,j
∝

1

det(I − yG(x))

pT,n(s): # of n-edge, span s polygons in (L,M)-tube
G (x): Transfer-Matrix
Two possible models depending on what is used for polygon “size” -
edges n or span s



Jeremy Eng PhD Thesis 2020 https://harvest.usask.ca/handle/10388/13022

https://harvest.usask.ca/handle/10388/13022


New Result for 2 x 1 Tube: (M Atapour (CapilanoU), NR Beaton (UMelbourne), JW Eng

(USaskatchewan), K Ishihara (YamaguchiU), K Shimokawa (SaitamaU), CE Soteros (USaskatchewan), M Vazquez

(UCDavis)) Let L be any non-split link embeddable in T∗ and let pT∗,m(L) be the
number of m-edge embeddings in T∗ with link type L. Then, for non-trivial L there
exist positive constants ε ∈ (0, 1), bL ∈ R, dL ∈ Z, eL ∈ Z (independent of n) and an
integer NL,ε > 0 such that for any n ≥ NL,ε, we have lower and upper bounds on the
number of n-edge embeddings of L in T∗ as follows:

1

2

(#ε(n − eL)%

fL

)

pT∗,n−eL(01) ≤ pT∗,n(L)

≤ bL

(n

fL

)

pT∗,n+dL (01).
(1)

Furthermore, there exist constants C1 and C2 such that for all sufficiently large n

C1n
fLpT∗,n(01) ≤ pT∗,n(L) ≤ C2n

fLpT∗,n(01). (2)







• New Knot Theory – a 4-braid word can be determined 
from a minimal diagram of the link that can be used 
to unknot any diagram of the link upon insertion of 
the word – a type of unknotting operation

• New Pattern Theorem for Unknots – use exact counts 
of unknot polygons and calculated bounds from the 
transfer matrix to proved that all but exponentially 
few sufficiently long unknot polygons contain a 
positive density of “2-sections” – from this can prove 
a general pattern theorem for unknot polygons 



Pattern Theorems for unknots and fixed link-type 2 x 1 Tube:
Let pT∗,n(01,≤k) be the number of unknots of length n in T∗ which contain at most
k 2-sections. Then there exists an ε > 0 such that

lim sup
n→∞

1

n
log pT∗,n(01,≤εn) < lim

n→∞

1

n
log pT∗,n(01) ≡ κT∗,01 .

Proof:
Delete all patterns corresponding to 2-sections from transfer matrix, standard upper
bound for the spectral radius of a matrix, τM ≤ ‖Mk‖1/k for any k ≥ 1, where ‖·‖ is
the maximum absolute row sum =⇒

lim sup
n→∞

1

n
log pT∗,n(01, 0) = κ̂T∗ (01) ≤ lim

n→∞

1

n
log pT∗,n(0) = κ̂T∗ < 0.446287.

Concatenation =⇒ log pT∗,n−6(01) superadditive =⇒

κT∗ (01) = lim
n→∞

1

n
log pT∗,n−6(01) = sup

n≥0

1

n
log pT∗,n−6(01).

Exact enumeration pT∗,24(01) = 119, 796, 593

κ̂T∗ (01) ≤ κ̂T∗ < 0.446287 < 0.620044 ≤ κT∗ (01) (3)

=⇒ Unknots without 2-sections are exponentially rare amongst unknot polygons.

pT∗,n(01,≤k) =
k

∑

t=0

pT∗,n(01, t) ≤
k

∑

t=0

2t
( n

2

t

)

pT∗,n+Et(01, 0) (4)

for a constant E =⇒ a density of 2-sections in unknot polygons.



Equilibrium lattice model predicts two “modes” of knots

Non-local 

Local

A

C



Lattice Model Results
Equilibrium small tube sizes: Beaton et al Soft Matter, 2018,14, 5775





Summary of Results for SAPs in Tubes:
1. FWD Holds: All but exponentially few large SAPs are knotted (CS 1998).
2. Knot Identification Simplified in Tubes:
Breaking at 2-sections gives connect summands. Useful for knot id/ knot pattern defn.

3. Knot Localization and Knot Statistics of Polygons in TL,M:

pT,n(K) ∼ pT,n(01)
( n

fK

)

∼ pT,n(01)n
fK ∼ µn

01
nfK

Monte Carlo Evidence: Beaton N, Eng J, Soteros C, (2019) JPhysA, 52(14): 144003.

Proof in 1 × 2 tube: Atapour, Beaton, Eng, Ishihara, Shimokawa, Soteros, Vazquez in prep)

Two Modes Identified: Beaton, Eng, Ishihara, Shimokawa, Soteros, Soft Matter, 2018, 14, 5775



2SAPs: Pairs of SAPs which “Span” T

qT,s - the number of pairs of mutually avoiding SAPs in T which have the same
left-most and right-most planes and span s.

Linked 2SAP in (2,1)-tube with span 3

A 2SAP in (1,4)-tube with span 50


