Preserving topology while sampling

Trials and tribulations

Preserving topology while sampling

Trials and tribulations

Andrew Rechnitzer Nick Beaton Nathan Clisby

February 2022 — Richard Brak

The question(s)

- How does topology influence geometry?
- What does a trefoil look like?
- Which trefoil?

The question(s)

- How does topology influence geometry?
- What does a trefoil look like?
- Which trefoil?

So "just"

- Define a probability measure on the set of closed curves in \mathbb{R}^3
- Use that to study a typical trefoil

The question(s)

- How does topology influence geometry?
- What does a trefoil look like?
- Which trefoil?

So "just"

- Define a probability measure on the set of closed curves in $\ensuremath{\mathbb{R}}^3$
- Use that to study a typical trefoil

How hard could it be?

My favourite two measures

My favourite two measures

- Self-avoiding polygons (SAP) in $\ensuremath{\mathbb{Z}}^3$
 - embedding of simple loop into lattice
 - ullet each embedding of length n equally likely

My favourite two measures

- Self-avoiding polygons (SAP) in \mathbb{Z}^3
 - embedding of simple loop into lattice
 - each embedding of length n equally likely
- Equilateral random polygons (ERP) in \mathbb{R}^3
 - each edge has unit length
 - edge direction chosen uniformly on S^2 , conditioned to close

- Work by Whittington, Sumners, Millett, Soteros, van Rensburg, Orlandini, Deguchi, Cantarella, Micheletti, Grosberg, ...
- Please see this excellent review with a much more complete list

- Work by Whittington, Sumners, Millett, Soteros, van Rensburg, Orlandini, Deguchi, Cantarella, Micheletti, Grosberg, ...
- Please see this excellent review with a much more complete list

Resort to random sampling instead

- Work by Whittington, Sumners, Millett, Soteros, van Rensburg, Orlandini, Deguchi, Cantarella, Micheletti, Grosberg, ...
- Please see this excellent review with a much more complete list

Resort to random sampling instead

Sample a superset and then sieve out the ones you want, or

- Work by Whittington, Sumners, Millett, Soteros, van Rensburg, Orlandini, Deguchi, Cantarella, Micheletti, Grosberg, ...
- Please see this excellent review with a much more complete list

Resort to random sampling instead

- Sample a superset and then sieve out the ones you want, or
- Sample only curves of the given fixed topology

Sample superset then sieve #1

- Exact random sampling of ERP Cantarella et al (2015)
- $\bullet \ \ {\rm Time} \ O(n^{5/2})$ to produce an completely independent ERP

Sample superset then sieve #1

- Exact random sampling of ERP Cantarella et al (2015)
- ullet Time $O(n^{5/2})$ to produce an completely independent ERP

Sample superset then sieve #2

- Pivot algorithm on SAP of fixed length Lai (1969), Madras & Sokal (1988), Madras et al (1990)
- Clisby (2010) implementation $-O(\log n)$ to sample statistically "independent" walk

- Unknot identification is hard Hass et al (1999)
- Knot invariants are slow to compute

- Unknot identification is hard Hass et al (1999)
- Knot invariants are slow to compute
- Polygons of given topology become exponentially rare as length grows
 - Sumners & Whittington (1988), Pippenger (1989)

- Unknot identification is hard Hass et al (1999)
- Knot invariants are slow to compute
- Polygons of given topology become exponentially rare as length grows
 - Sumners & Whittington (1988), Pippenger (1989)
- Identification is the bottleneck when sampling long polygons
 - long polygon \Longrightarrow many crossings \Longrightarrow hard to ID

- Unknot identification is hard Hass et al (1999)
- Knot invariants are slow to compute
- Polygons of given topology become exponentially rare as length grows
 - Sumners & Whittington (1988), Pippenger (1989)
- Identification is the bottleneck when sampling long polygons
 - long polygon \Longrightarrow many crossings \Longrightarrow hard to ID
- Aside how can we measure the trefoilness of a larger knot?

Sample only fixed topology #1

- Markov chain on SAPs of fixed topology B.F. A.C.F. (1981, 1983)
- No topological testing needed strand passage not possible
- Ergodic on knot type van Rensburg & Whittington (1991), van Rensburg & R (2011)

Sample only fixed topology #1

- Markov chain on SAPs of fixed topology B.F. A.C.F. (1981, 1983)
- No topological testing needed strand passage not possible
- Ergodic on knot type van Rensburg & Whittington (1991), van Rensburg & R (2011)

- Start with small conformation deform with local moves
- Tune so that grow/shrink moves equally likely to succeed

Sample only fixed topology #1

- Markov chain on SAPs of fixed topology B.F. A.C.F. (1981, 1983)
- No topological testing needed strand passage not possible
- Ergodic on knot type van Rensburg & Whittington (1991), van Rensburg & R (2011)

- Start with small conformation deform with local moves
- Tune so that grow/shrink moves equally likely to succeed
- Random walk on polygon length long time to sample "independent" long polygons

Fixed topology #2 — restricted pivots

- Pivot with excluded area algorithm Zhao & Ferrari (2012)
- ullet Attempt pivot segment $\Phi \mapsto \Phi'$
- Pivot fails if edge crosses surface bordered by $\Phi \cup \Phi'$

Fixed topology #2 — restricted pivots

- Pivot with excluded area algorithm Zhao & Ferrari (2012)
- Attempt pivot segment $\Phi \mapsto \Phi'$
- Pivot fails if edge crosses surface bordered by $\Phi \cup \Phi'$
- ullet Computationally intensive only allowed short segment $|\Phi| \leq 5$
- Probably "okay" for moderate size polygons but not ergodic Madras & Sokal (1987)

So what can we do to speed things up?

- Change how we think of pivots to simplify topology checking
 - need not "literally" pivot the segment about the axis
 - a pivot will be a continuous deformation

- Change how we think of pivots to simplify topology checking
 - need not "literally" pivot the segment about the axis
 - a pivot will be a continuous deformation
- Use Clisby method for $O(\log n)$ pivots
 - Store polygon and symmetries in binary tree
 - Lazy evaluation of observables don't write down the polygon

- Change how we think of pivots to simplify topology checking
 - need not "literally" pivot the segment about the axis
 - a pivot will be a continuous deformation
- Use Clisby method for $O(\log n)$ pivots
 - Store polygon and symmetries in binary tree
 - Lazy evaluation of observables don't write down the polygon
- Aside this is actually not so far from Cantarellean encoding of polygons via triangulations

Inner pivot

• Pick pivot segment and rotation angle

Inner pivot

- Pick pivot segment and rotation angle
- Topology checking
 - Each pivot edge maps out a twisted quadrilateral
 - Check intersection of fixed edges with triangulation of those quadrilaterals
 - Use ray-tracing methods eg Möller-Trumbore (1997)

Outer pivot

• Pick the pivot segment and an orthogonal drag direction

Outer pivot

- Pick the pivot segment and an orthogonal drag direction
 - drag the segment to infinity
 - pivot the segment at infinity
 - drag the segment back from infinity

Outer pivot

- Pick the pivot segment and an orthogonal drag direction
 - drag the segment to infinity
 - pivot the segment at infinity
 - drag the segment back from infinity
- Topology checking
 - drag to/from infinity → segment overlap in projection
 - pivot at infinity → check intersection with drag lines

Simple implementation of inner and outer pivots

- Computation time is $O(n^2)$ or $O(n \log n)$:
 - pick pivot vertices: O(1) on \mathbb{R}^3
 - inner pivot: naive $O(n^2)$, but maybe as fast as $O(n \log n)$?
 - drag to infinity: naive $O(n^2)$, or Shamos-Hoey (1976) $O(n \log n)$
 - pivot at infinity: naive O(n)
 - write down new polygon O(n)

Simple implementation of inner and outer pivots

- Computation time is $O(n^2)$ or $O(n \log n)$:
 - pick pivot vertices: O(1) on \mathbb{R}^3
 - inner pivot: naive $O(n^2)$, but maybe as fast as $O(n \log n)$?
 - drag to infinity: naive $O(n^2)$, or Shamos-Hoey (1976) $O(n \log n)$
 - pivot at infinity: naive O(n)
 - write down new polygon O(n)
- When pivot fails it fails quickly

Simple implementation of inner and outer pivots

- Computation time is $O(n^2)$ or $O(n \log n)$:
 - pick pivot vertices: O(1) on \mathbb{R}^3
 - inner pivot: naive $O(n^2)$, but maybe as fast as $O(n \log n)$?
 - drag to infinity: naive $O(n^2)$, or Shamos-Hoey (1976) $O(n \log n)$
 - pivot at infinity: naive O(n)
 - write down new polygon O(n)
- When pivot fails it fails quickly
- When it succeeds makes a big change to the conformation

Simple implementation of inner and outer pivots

- Computation time is $O(n^2)$ or $O(n \log n)$:
 - pick pivot vertices: O(1) on \mathbb{R}^3
 - inner pivot: naive $O(n^2)$, but maybe as fast as $O(n \log n)$?
 - drag to infinity: naive $O(n^2)$, or Shamos-Hoey (1976) $O(n \log n)$
 - pivot at infinity: naive O(n)
 - write down new polygon O(n)
- When pivot fails it fails quickly
- When it succeeds makes a big change to the conformation
- Autocorrelation time?

Clisbification by analogy

- ullet Consider the product $q=x^ay^bz^c$
 - Numbers $x,y,z\in\mathbb{R}$ changed rarely
 - Numbers $a,b,c \in \mathbb{N}$ changed often
 - How should you compute the product?

Clisbification by analogy

- Consider the product $q=x^ay^bz^c$
 - Numbers $x,y,z\in\mathbb{R}$ changed rarely
 - Numbers $a,b,c \in \mathbb{N}$ changed often
 - How should you compute the product?
- Standard sneaky logarithmic trick
 - When y changes, pre-compute $y^2, y^4, y^8, y^{16}, \dots$
 - ullet Then find y^b as product of pre-computed powers

Clisbification by analogy

- Consider the product $q=x^ay^bz^c$
 - Numbers $x, y, z \in \mathbb{R}$ changed rarely
 - Numbers $a,b,c \in \mathbb{N}$ changed often
 - How should you compute the product?
- Standard sneaky logarithmic trick
 - When y changes, pre-compute $y^2, y^4, y^8, y^{16}, \dots$
 - Then find y^b as product of pre-computed powers
- Careful precomputation and lazy evaluation

Clisbification

• Successful pivot in $O(\log n)$ time

- ullet Write polygon as symmetries acting on ec e=(1,0,0)
- Position of vertex n is

$$ec{X}_n = \sum_{k=0}^{n-1} \left(q_0 q_1 \cdots q_k
ight) ec{e}$$

Store polygon in a tree

- ullet Leaf k stores symmetry q_k and a position $ec{P}_k = q_k ec{e}$
- ullet Internal nodes stores $q_n=q_\ell q_r$ and a position $ec{P}_n=ec{P}_\ell+q_\ellec{P}_r$

Store polygon in a tree

- ullet Leaf k stores symmetry q_k and a position $ec{P}_k = q_k ec{e}$
- ullet Internal nodes stores $q_n = q_\ell q_r$ and a position $ec{P}_n = ec{P}_\ell + q_\ell ec{P}_r$
- ullet Compute polygon vertex positions using $q_n, ec{P}_n$

• Position of vertex $4 \equiv \text{end}$ of 3rd polygon edge

- Position of vertex $4 \equiv \text{end}$ of 3rd polygon edge
 - $lacksquare X_4 = (q_0 + q_{01} + q_{012} + q_{0123})\,ec e$

- Position of vertex $4 \equiv \text{end}$ of 3rd polygon edge
 - $lacksquare \vec{X}_4 = \left(q_0 + q_{01} + q_{012} + q_{0123}
 ight) ec{e}$
 - $lacksquare X_4 = (q_0 + q_{01})\,ec e + q_{01}\,(q_2ec e + q_2(q_3ec e))$

- Position of vertex $4 \equiv \text{end of 3rd polygon edge}$
 - $lacksquare X_4 = (q_0 + q_{01} + q_{012} + q_{0123})\,ec e$
 - $lacksquare X_4 = (q_0 + q_{01})\,ec e + q_{01}\,(q_2ec e + q_2(q_3ec e))$
 - $lacksquare ec{X}_4 = ec{P}_{01} + q_{01} \left(ec{P}_2 + (q_2 ec{P}_3)
 ight)$
- Already computed q_{01} and P_{01}, P_2, P_3 .
- Requires $O(\text{tree-depth}) = O(\log n)$ operations

• Position of vertex $6 \equiv \text{end of 5th polygon edge}$

- Position of vertex $6 \equiv \text{end of 5th polygon edge}$
 - $ec{X}_6 = \left(q_0 + q_{01} + q_{012} + q_{0123} + q_{01234} + q_{012345}
 ight)ec{e}$

- Position of vertex $6 \equiv \text{end of 5th polygon edge}$
 - $ec{X}_6 = \left(q_0 + q_{01} + q_{012} + q_{0123} + q_{01234} + q_{012345}
 ight)ec{e}$
 - $lacksquare X_6 = (q_0 + q_{01} + q_{012} + q_{0123})\,ec e + q_{0123}\,(q_4ec e + q_4(q_5ec e))$

• Position of vertex $6 \equiv$ end of 5th polygon edge

$$lacksquare \vec{X}_6 = \left(q_0 + q_{01} + q_{012} + q_{0123} + q_{01234} + q_{012345}
ight) ec{e}$$

$$lacksymbol{\bar{X}}_6 = (q_0 + q_{01} + q_{012} + q_{0123})\,ec{e} + q_{0123}\,(q_4ec{e} + q_4(q_5ec{e}))$$

$$lacksquare ec{X}_6 = ec{P}_{0123} + q_{0123} \left(ec{P}_4 + q_4 \overrightarrow{P}_5
ight)$$

- Already computed q_{0123} and P_{0123}, P_4, P_5 .
- Requires $O(\text{tree-depth}) = O(\log n)$ operations

Update after pivot at vertices 3 and 6

- Move up the tree from leaves 3 and 6
- Recomputing data at each node requires $O(\text{tree-depth}) = O(\log n)$ operations

Update after pivot at vertices 3 and 6

- Move up the tree from leaves 3 and 6
- Recomputing data at each node requires $O(\text{tree-depth}) = O(\log n)$ operations
- Very fast Markov chain sampling of ERP (no topology checks)
 - lacksquare Auto-correlation time for $R_g(n) pprox O(\log n)$
 - ERP sampling in sublinear time
 - Takes longer to write down than to sample!

Update after pivot at vertices 3 and 6

- Move up the tree from leaves 3 and 6
- Recomputing data at each node requires $O(\text{tree-depth}) = O(\log n)$ operations
- Very fast Markov chain sampling of ERP (no topology checks)
 - Auto-correlation time for $R_g(n) pprox O(\log n)$
 - ERP sampling in sublinear time
 - Takes longer to write down than to sample!
- Harder on lattice must pick pairs carefully to stay on lattice

• Lots of basic vector and quaternion manipulation

- Lots of basic vector and quaternion manipulation
- Bounding sphere construction

- Lots of basic vector and quaternion manipulation
- Bounding sphere construction
- Sphere intersects sphere-capped-cylinder test

- Lots of basic vector and quaternion manipulation
- Bounding sphere construction
- Sphere intersects sphere-capped-cylinder test
- ullet Segment intersects quadrilateral test \equiv Möller-Trumbore

• Check segment-quadrilateral intersection via Möller-Trumbore

Does it work? Is topology conserved?

- 1024 edge square after \approx 250k pivots
- Still an unknot

Does it work? Is topology conserved?

- 1024 edge square after \approx 250k pivots
- Still an unknot
- Important aside the topoly library is extremely helpful!

Does it work? Compare R_g histograms

- ullet Generate 2^{12} length 256 unknots with the topoly library
- ullet Generate 2^{14} length 256 unknots by pivots
- Close agreement

Does it work? Is it fast? Autocorrelation is everything

Warning: research still in progress

• Had great difficulty computing reliable autocorrelation time estimates

Does it work? Is it fast? Autocorrelation is everything

Warning: research still in progress

- Had great difficulty computing reliable autocorrelation time estimates
 - Windowing method via EMCEE python module
 - Log-binning method Wallerberger (2018)

Does it work? Is it fast? Autocorrelation is everything

Warning: research still in progress

- Had great difficulty computing reliable autocorrelation time estimates
 - Windowing method via EMCEE python module
 - Log-binning method Wallerberger (2018)
- Huh? What is going on

Plot evolution of R_g with iterations

- Unknot length 256, every 256th iteration shown
- Looks okay, but those "canyons" are worrying

Plot evolution of R_g with iterations

- Unknot length 256, every 1024th iteration shown
- Now "canyons" are very worrying

Possibility 1 bugs in my code

Possibility 2

Compact conformations are not so rare

• Hard to pivot away from compact conformations

Possibility 2

Compact conformations are not so rare

• Hard to pivot away from compact conformations

Does not exclude Possibility 1

- Metric scaling of ERP and ERUnkots are different
 - ERP are compact random walk universality class $\nu = \frac{1}{2}$
 - lacktriangle Believe that unknotted ERP swell self-avoiding walk universality class upprox0.6

- Metric scaling of ERP and ERUnkots are different
 - ERP are compact random walk universality class $u = \frac{1}{2}$
 - lacktriangle Believe that unknotted ERP swell self-avoiding walk universality class upprox0.6
- By contrast Metric scaling of SAP and SAUnkots are same
 - All SAP and unknotted SAPS have $u \approx 0.6$

- Metric scaling of ERP and ERUnkots are different
 - ERP are compact random walk universality class $u = \frac{1}{2}$
 - lacktriangle Believe that unknotted ERP swell self-avoiding walk universality class upprox0.6
- By contrast Metric scaling of SAP and SAUnkots are same
 - All SAP and unknotted SAPS have $\nu \approx 0.6$
- Conformations in the ambient ERP space are typically more compact
- Does topology preservation restrict diffusion-via-pivots to a quasi-ergodic subspace?

- Metric scaling of ERP and ERUnkots are different
 - ERP are compact random walk universality class $u = \frac{1}{2}$
 - lacktriangle Believe that unknotted ERP swell self-avoiding walk universality class upprox0.6
- By contrast Metric scaling of SAP and SAUnkots are same
 - All SAP and unknotted SAPS have $\nu \approx 0.6$
- Conformations in the ambient ERP space are typically more compact
- Does topology preservation restrict diffusion-via-pivots to a quasi-ergodic subspace?
- Are these just from bugs in my code?

• Much debugging and swearing more debugging — in (punctuated) progress

- Much debugging and swearing more debugging in (punctuated) progress
- Nathan and/or Nick code up algorithm independently

- Much debugging and swearing more debugging in (punctuated) progress
- Nathan and/or Nick code up algorithm independently
- Alternate / better encoding of polygon (à la Cantarella?)

- Much debugging and swearing more debugging in (punctuated) progress
- Nathan and/or Nick code up algorithm independently
- Alternate / better encoding of polygon (à la Cantarella?)
- Consider mixing BFACF moves with pivots
 - triangle ↔ quadrilateral moves
 - much fun with data structures and lazy evaluation

- Much debugging and swearing more debugging in (punctuated) progress
- Nathan and/or Nick code up algorithm independently
- Alternate / better encoding of polygon (à la Cantarella?)
- Consider mixing BFACF moves with pivots
 - triangle ↔ quadrilateral moves
 - much fun with data structures and lazy evaluation
- Volume exclusion version of algorithm, on or off lattice
 - picking valid pairs of vertices on lattice is not O(1)

- Much debugging and swearing more debugging in (punctuated) progress
- Nathan and/or Nick code up algorithm independently
- Alternate / better encoding of polygon (à la Cantarella?)
- Consider mixing BFACF moves with pivots
 - triangle ↔ quadrilateral moves
 - much fun with data structures and lazy evaluation
- Volume exclusion version of algorithm, on or off lattice
 - picking valid pairs of vertices on lattice is not O(1)
- Allow reversals of segments requires very careful tree & data-structure hackery

- Much debugging and swearing more debugging in (punctuated) progress
- Nathan and/or Nick code up algorithm independently
- Alternate / better encoding of polygon (à la Cantarella?)
- Consider mixing BFACF moves with pivots
 - triangle ↔ quadrilateral moves
 - much fun with data structures and lazy evaluation
- Volume exclusion version of algorithm, on or off lattice
 - picking valid pairs of vertices on lattice is not O(1)
- Allow reversals of segments requires very careful tree & data-structure hackery
- Work continues (slowly)

- Much debugging and swearing more debugging in (punctuated) progress
- Nathan and/or Nick code up algorithm independently
- Alternate / better encoding of polygon (à la Cantarella?)
- Consider mixing BFACF moves with pivots
 - triangle ↔ quadrilateral moves
 - much fun with data structures and lazy evaluation
- Volume exclusion version of algorithm, on or off lattice
 - picking valid pairs of vertices on lattice is not O(1)
- Allow reversals of segments requires very careful tree & data-structure hackery
- Work continues (slowly)

Many thanks to the organisers for today

- Took a course in asymptotics with him around 1994(?)
- Coauthored 10 papers with him, including my first paper in 1996/7
- I learned much about bijections, constant terms, generating functions, graphic-design, ...
- Also much about teaching proof & logic

- Took a course in asymptotics with him around 1994(?)
- Coauthored 10 papers with him, including my first paper in 1996/7
- I learned much about bijections, constant terms, generating functions, graphic-design, ...
- Also much about teaching proof & logic
- We always enjoyed a good grumble

YXE after cancelled flight June 2015

- Took a course in asymptotics with him around 1994(?)
- Coauthored 10 papers with him, including my first paper in 1996/7
- I learned much about bijections, constant terms, generating functions, graphic-design, ...
- Also much about teaching proof & logic
- We always enjoyed a good grumble
- Drank many coffees (and some beers)

- Took a course in asymptotics with him around 1994(?)
- Coauthored 10 papers with him, including my first paper in 1996/7
- I learned much about bijections, constant terms, generating functions, graphic-design, ...
- Also much about teaching proof & logic
- We always enjoyed a good grumble
- Drank many coffees (and some beers)
- He made a big impact on my mathematics; how I do it, how I present it, and how I teach it

