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The question(s)

e How does topology influence geometry?

e What does a trefoil look like?
e Which trefolil?

So just”
e Define a probability measure on the set of closed curves in RS

e Use that to study a typical trefoll
How hard could it be?
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My favourite two measures
e Self-avoiding polygons (SAP) in 73

= embedding of simple loop into lattice
= each embedding of length nn equally likely
e Equilateral random polygons (ERP) in RS

= each edge has unit length
» edge direction chosen uniformly on .S 2 conditioned to close
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Analytic results are very hard

e Work by Whittington, Sumners, Millett, Soteros, van Rensburg, Orlandini, Deguchi, Cantarella,
Micheletti, Grosberg, ...

e Please see this excellent review with a much more complete list

Resort to random sampling instead

e Sample a superset and then sieve out the ones you want, or
e Sample only curves of the given fixed topology
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Sample superset then sieve #1

Exact random sampling of ERP — Cantarella et al (2015)
Time O(n°/?) to produce an completely independent ERP

Sample superset then sieve #2

Pivot algorithm on SAP of fixed length — Lai (1969), Madras & Sokal (1988), Madras et al (1990)
Clisby (2010) implementation — O(log n) to sample statistically "independent" walk
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Topological testing

Unknot identification is hard — Hass et al (1999)
Knot invariants are slow to compute

Polygons of given topology become exponentially rare as length grows
— Sumners & Whittington (1988), Pippenger (1989)

|dentification is the bottleneck when sampling long polygons

= long polygon — many crossings — hardto |ID

Aside — how can we measure the trefoilness of a larger knot?
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Sample only fixed topology #1

e Markov chain on SAPs of fixed topology — B.F. AC.F. (1981, 1983)
* No topological testing needed — strand passage not possible
e Ergodic on knot type van Rensburg & Whittington (1991), van Rensburg & R (2011)

e Start with small conformation — deform with local moves
e Tune sothat grow/shrink moves equally likely to succeed
e Random walk on polygon length — long time to sample "independent” long polygons
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Fixed topology #2 — restricted pivots

o e

e Pivot with excluded area algorithm Zhao & Ferrari (2012)
e Attempt pivot segment & — P’
e Pivot fails if edge crosses surface bordered by & U ¢’

e Computationally intensive — only allowed short segment |®| < 5
e Probably "okay" for moderate size polygons — but not ergodic Madras & Sokal (1987)



So what can we do to speed things up?
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Revisit pivots again — reduce computation
e Change how we think of pivots to simplify topology checking

= need not "literally” pivot the segment about the axis
= 3 pivot will be a continuous deformation
e Use Clisby method for O(log n) pivots

= Store polygon and symmetries in binary tree
= Lazy evaluation of observables — don't write down the polygon

e Aside — thisis actually not so far from Cantarellean encoding of polygons via triangulations
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Inner pivot

e Pick pivot segment and rotation angle
* Topology checking
= Each pivot edge maps out a twisted quadrilateral

= Check intersection of fixed edges with triangulation of those quadrilaterals
» Use ray-tracing methods — eg Moller-Trumbore (1997)
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Outer pivot

""""""

* Pick the pivot segment and an orthogonal drag direction

= drag the segment to infinity
= pivot the segment at infinity
= drag the segment back from infinity

e Topology checking

= drag to/from infinity — segment overlap in projection
= pivot at infinity — check intersection with drag lines
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= pick pivot vertices: O(1) on R?
= inner pivot: naive O(n?), but maybe as fast as O(n logn)?
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Simple implementation of inner and outer pivots
« Computation timeis O(n?) or O(nlogn):
= pick pivot vertices: O(1) on R*
= inner pivot: naive O(n?), but maybe as fast as O(n logn)?
= drag to infinity: naive O(n?), or Shamos-Hoey (1976) O(nlogn)
= pivot at infinity: naive O(n)
= write down new polygon O(n)

 When pivot fails it fails quickly
* When it succeeds makes a big change to the conformation

e Autocorrelation time?
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Clishification by analogy

o Consider the product g = z%y"2°
= Numbers x, y, z € R changed rarely
= Numbersa, b, c € N changed often
= How should you compute the product?
e Standard sneaky logarithmic trick
= When y changes, pre-compute y2, y*, v, y1° ...
= Then find 4° as product of pre-computed powers

e Careful precomputation and lazy evaluation



Clishification

e Successful pivot in O(log n) time
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* Write polygon as symmetries actingone = (1,0, 0)
e Position of vertexn is

n—1
X0 = (q01-

k=0



Store polygon in a tree

%/\ AN
AANANAN

e Leaf k stores symmetry g; and a position ﬁk = qr€

e Internal nodes stores q,, = q¢q, and a position ﬁn — ﬁg + Q'g.ﬁf-



Store polygon in a tree
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e Leaf k stores symmetry g; and a position ﬁk = qr€

e Internal nodes stores q,, = q¢q, and a position 15’“ — ﬁg + Q'g.ﬁ,.-

e Compute polygon vertex positions using q,,, P,
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Compute a position

e Position of vertex 4 = end of 3rd polygon edge
« Xy = (g0 + qo1 + dor2 + Qoa23) €
- }Ei = (g0 + qo1) € + qo1 (g2€ + q2(gs€))
« X, = Py, + qdo1 (132 T (%163))

e Already computed qy; and Py, Ps, Ps.
e Requires O(tree-depth) = O(logn) operations
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Compute another position
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e Position of vertex 6 = end of 5th polygon edge

= X = (g0 + qo1 + 9012 + Qo123 + Q01234 + Qo12345) €




Compute another position
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e Position of vertex 6 = end of 5th polygon edge

= X¢ = (qo + qo1 + qo12 + Qo123 + Q01234 + Go12345) €
= X6 = (qo + 901 + Qo012 + Q0123) € + Qo123 (q4€ + q4(g5€))




Compute another position

e Position of vertex 6 = end of 5th polygon edge
= X = (g0 + qo1 + 9012 + Qo123 + Q01234 + Qo12345) €
= X6 = (qo + go1 + go12 + qo123) € + qo123 (qa€ + g4(gs€))

. . . —
" X¢ = Po123 + Qo123 (P4 + Q4P5)

e Already computed qg103 and Py1a3, Py, Ps.
e Requires O(tree-depth) = O(log n) operations




Update after pivot at vertices 3 and ©
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e Move up the tree from leaves 3 and 6
e Recomputing data at each node requires O(tree-depth) = O(log n) operations
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Update after pivot at vertices 3 and ©
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Move up the tree from leaves 3 and 6
Recomputing data at each node requires O(tree-depth) = O(log n) operations
Very fast Markov chain sampling of ERP (no topology checks)

= Auto-correlationtime for R,(n) =~ O(logn)
= ERP sampling in sublinear time
= Takes longer to write down than to sample!

Harder on lattice — must pick pairs carefully to stay on lattice
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For topology checks

e |ots of basic vector and quaternion manipulation
 Bounding sphere construction

e Sphere intersects sphere-capped-cylinder test

e Segment intersects quadrilateral test = Mdller-Trumbore
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Fast intersection checks via bounding sphere refinements
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Fast intersection checks via bounding sphere refinements
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Fast intersection checks via bounding sphere refinements




Fast intersection checks via bounding sphere refinements
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e Check segment-quadrilateral intersection via Moller-Trumbore
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Does it work? Is topology conserved?

e 1024 edge square after ~ 250k pivots
e Still an unknot
e Important aside — the topoly library is extremely helpful!



Does it work? Compare R, histograms
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e Generate 2!? length 256 unknots with the topoly library

e Generate 2'* length 256 unknots by pivots
e Close agreement
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H



Does it work? |s it fast? Autocorrelation is everything

Warning: research still in progress

e Had great difficulty computing reliable autocorrelation time estimates



Does it work? |s it fast? Autocorrelation is everything

Warning: research still in progress

e Had great difficulty computing reliable autocorrelation time estimates

= Windowing method via EMCEE python module
= Log-binning method Wallerberger (2018)



Does it work? |s it fast? Autocorrelation is everything

Warning: research still in progress

e Had great difficulty computing reliable autocorrelation time estimates

= Windowing method via EMCEE python module
= Log-binning method Wallerberger (2018)

e Huh? What is going on



Plot evolution of Rg with iterations

Ay

e Unknot length 256, every 256th iteration shown

e |Looks okay, but those "canyons” are worrying
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Plot evolution of Rg with iterations

loglRE)

Iterations (every 10.24)

e Unknot length 256, every 1024th iteration shown
e Now "canyons" are very worrying



Possibility 1
bugs in my code
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Compact conformations are not so rare

Hard to pivot away from compact conformations



Possibility 2

Compact conformations are not so rare

Hard to pivot away from compact conformations
Does not exclude Possibility 1



s topological swelling to blame?



s topological swelling to blame?
e Metric scaling of ERP and ERUnkots are different
1

= ERP are compact —random walk universality class v = 3

= Believe that unknotted ERP swell — self-avoiding walk universality class v =~ 0.6




s topological swelling to blame?
e Metric scaling of ERP and ERUnkots are different
1

= ERP are compact —random walk universality class v = 3

= Believe that unknotted ERP swell — self-avoiding walk universality class v =~ 0.6

e By contrast — Metric scaling of SAP and SAUnkots are same
= All SAP and unknotted SAPS have v =~ 0.6



s topological swelling to blame?
Metric scaling of ERP and ERUnkots are different
1

= ERP are compact —random walk universality class v = 3

= Believe that unknotted ERP swell — self-avoiding walk universality class v =~ 0.6

By contrast — Metric scaling of SAP and SAUnkots are same
= All SAP and unknotted SAPS have v =~ 0.6

Conformations in the ambient ERP space are typically more compact
Does topology preservation restrict diffusion-via-pivots to a quasi-ergodic subspace?



s topological swelling to blame?
e Metric scaling of ERP and ERUnkots are different
1

= ERP are compact —random walk universality class v = 3

= Believe that unknotted ERP swell — self-avoiding walk universality class v =~ 0.6

e By contrast — Metric scaling of SAP and SAUnkots are same
= All SAP and unknotted SAPS have v =~ 0.6

 Conformations inthe ambient ERP space are typically more compact
e Does topology preservation restrict diffusion-via-pivots to a quasi-ergodic subspace?
e Are these just from bugsin my code?
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What now?

e Much debugging and sweartrg more debugging — in (punctuated) progress
 Nathan and/or Nick code up algorithm independently

e Alternate / better encoding of polygon (a la Cantarella?)
e Consider mixing BFACF moves with pivots

= triangle <+ quadrilateral moves

= much fun with data structures and lazy evaluation

e Volume exclusion version of algorithm, on or off lattice
= picking valid pairs of vertices on lattice is not O(1)
e Allow reversals of segments — requires very careful tree & data-structure hackery

e Work continues (slowly)
Many thanks to the organisers for today
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Richard

e Took a course in asymptotics with him around 1994(?)

e Coauthored 10 papers with him, including my first paper in 1996/7

e | learned much about bijections, constant terms, generating functions, graphic-design, ...
e Also much about teaching proof & logic

 We always enjoyed a good grumble

e Drank many coffees (and some beers)

 He made a big impact on my mathematics; how | do it, how | present it, and how | teach it




