Towards N = 2 Minimal Models

Tianshu Liu

School of Mathematics and Statistics,

The University of Melbourne

tianshul@student.unimelb.edu.au

January 31, 2017

Conformal Transformations

conformal: angle-perserving

Mercator projection

Conformal Field Theory (CFT)

Applications: string theory, critical statistical model, pure mathematics...

Virasoro Algebra (Vir)

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3-m)\delta_{m+n,0}$$

where $c \in \mathbb{C}$ is the 'central charge'.

Virasoro Minimal Models – $\mathcal{M}(p,q)$:

- $p, q \ge 2$, coprime
- a finite number of irreducible Virasoro representations
- unitary |p-q|=1, e.g., Ising model $\mathcal{M}(3,4)$
- non-unitary $|p-q| \neq 1$, e.g., Yang-Lee singularity $\mathcal{M}(2,5)$

conformal dimension for $\mathcal{M}(p,q)$

$$h_{r,s} = \frac{(qr - ps)^2 - (p - q)^2}{4pq},$$

where
$$1 \le r \le p-1$$
 and $1 \le s \le q-1$

Kac table for $\mathcal{M}(4,5)$

r	1	2	3	4
1	0	1/10	3/5	3/2
2	7/16	3/80	3/80	7/16
3	3/2	3/5	1/10	0

N = 2 Super Conformal Field Theory

Motivation: Calabi-Yau manifold, Ashkin-Teller model, etc.

Operators: L_n , G_r^+ , G_r^- and J_n

$$N = 2$$
 super conformal algebra

$$[L_{m}, L_{n}] = (m-n)L_{m+n} + \frac{c}{12}(m^{3}-m)\delta_{m+n,0}$$

$$[L_{m}, J_{n}] = -nJ_{m+n}$$

$$[L_{n}, G_{r}^{\pm}] = (\frac{n}{2} - r)G_{n+r}^{\pm}$$

$$[J_{n}, G_{r}^{\pm}] = \pm G_{n+r}^{\pm}$$

$$\{G_{r}^{+}, G_{s}^{-}\} = 2L_{r+s} + (r-s)J_{r+s} + \frac{c}{3}(r^{2} - \frac{1}{4})\delta_{r+s,0}$$

$$[J_{m}, J_{n}] = \frac{mc}{3}\delta_{m+n,0}$$

$$\{G_{r}^{+}, G_{s}^{+}\} = \{G_{r}^{-}, G_{s}^{-}\} = 0$$

Representations

N=2 minimal models $\mathcal{M}^{N=2}(k)$:

• unitary: $k \in \mathbb{Z}_{\geq 0}$

$$j_{\lambda}^{m} = \frac{m}{k+2} + \frac{1}{4} \left(1 - (-1)^{\lambda+m} \right)$$

$$L_0$$
-E.V. $h_{\lambda}^m = \frac{\lambda(\lambda+2) - m^2}{4(k+2)} + \frac{1}{16} \left(1 - (-1)^{\lambda+m}\right)$

where
$$\lambda = 0, 1, ..., k$$
 and $m = -\lambda - 1, -\lambda, ..., \lambda$

• non-unitary: $k+2=\frac{u}{v}$, where $u,v\geq 2$, coprime

N = 2 Unitary Minimal Model Results

For $\mathcal{M}^{N=2}(k)$, number of irreps: (k+1)(k+2), in λ and m

N=2 Kac table

Automorphisms of the N=2 Algebra

Automorphisms cut down the complexity through symmetries.

spectral flow (σ) :

$$\sigma(L_n) = L_n - \frac{1}{2}J_n + \frac{c}{24}\delta_{n,0},$$

$$\sigma(J_n) = J_n - \frac{c}{6}\delta_{n,0}, \quad \sigma(G_s^{\pm}) = G_{s\pm \frac{1}{2}}^{\mp}$$

(k+1)(k+2) times cuts down to $\sim k/2$ times

Coset Construction

$$\mathcal{M}^{N=2}(k) = \frac{\hat{\mathfrak{sl}}(2)_k \otimes \hat{\mathfrak{bc}}}{\hat{\mathfrak{gl}}(1)}$$

Embeddings: $\partial \varphi(z) = H(z) + 2 : bc : (z)$,

$$J(z) = \cdots, G^{\pm}(z) = \cdots, T(z) = \cdots$$

Theorem [Creutzig-Kanade-Linshaw-Ridout]

An irreducible $\hat{\mathfrak{sl}}(2)_k \otimes \hat{\mathfrak{bc}}$ representation decomposes into $\hat{\mathfrak{gl}}(1) \otimes \mathcal{M}^{N=2}(k)$ representations as

$$igoplus_{\mu} \mathcal{F}_{\mu} \otimes \mathcal{C}_{\mu}$$

where C_{μ} are the **irreducible** representations of $\mathcal{M}^{N=2}(k)$.

Unitary N = 2 minimal models

Results

- ullet Complete irreducibility o branching rules
- Character and supercharacter of the N=2
- Modular transformations and Verlinde Formula
- Fusion rules with parities

Non-unitary N = 2 minimal models

$$\mathcal{M}^{\mathcal{N}=2}(k)$$
, where $k+2=rac{u}{v}.$ Example, $k=-rac{1}{2},$ $c=-1$

$$\mathcal{M}^{\textit{N}=2}(-\frac{1}{2}) = \frac{\hat{\mathfrak{sl}}(2)_{-\frac{1}{2}} \otimes \hat{\mathfrak{bc}}}{\hat{\mathfrak{gl}}(1)}$$

$\hat{\mathfrak{sl}}(2)_{-\frac{1}{2}}$ modules:

L-type (irred. h.w. modules)

 ${\mathcal E}$ -type (relaxed modules, $\lambda \in (-1,1]$, irred. for $\lambda
eq \pm \frac{1}{2}$)

Non-unitary N = 2 minimal models

representation decomposition \rightarrow infinite N=2 representations

$$\hat{\mathfrak{sl}}(2)_{-\frac{1}{2}}\otimes\hat{\mathfrak{bc}}$$
 $\mathcal{M}^{N=2}(-\frac{1}{2})\otimes\hat{\mathfrak{gl}}(1)$ $\mathcal{L}_{\lambda}^{(-\frac{1}{2})}$ \longrightarrow C_{λ}^{m} , where $\lambda\in\{0,1,-\frac{1}{2},-\frac{3}{2}\}$ and $m\in\mathbb{Z}$ $\mathcal{E}_{\lambda}^{(-\frac{1}{2})}$ \longrightarrow E_{λ}^{n} , where $\lambda\in(-1,1]$ and $n\in\mathbb{Z}$

Both are irreducible highest-weight modules.

Non-unitary N = 2 Results

character formulae:

E-type: from the component characters of its coset *C*-type: from the residue method, in terms of the *E*-type

• Branching rules, e.g.,

$$\mathcal{L}_0^{\left(-rac{1}{2}
ight)}\otimes \mathit{NS} = igoplus_{\mu \in 2\mathbb{Z}} \mathcal{F}_\mu \otimes \mathcal{C}_0^\mu$$

• Verlinde Formula, fusion rules, e.g.,

$$\begin{split} &C_{1}^{0}\times C_{1}^{0}=C_{0}^{0},\\ &C_{1}^{0}\times E_{\lambda}=E_{\lambda}\\ &E_{\lambda}\times E_{\mu}=E_{\lambda+\mu-\frac{3}{2}}\oplus E_{\lambda+\mu+\frac{3}{2}} \end{split}$$

• Repeated with $\mathcal{M}^{N=2}(-\frac{4}{3})$

Future Direction

- ullet Justify the $E_{\lambda} imes E_{\mu}$ fusion rules involving reducible rep. $E_{\pm rac{1}{2}}$
- Mock modular forms of the characters
- Generalisation to any k, with $k+2=\frac{u}{v}$, fusion rules
- Generalisation to more complicated coset Kazama-Suzuki models
- The string theory compactified on Calabi-Yau manifold