Towards $N=2$ Minimal Models

Tianshu Liu

School of Mathematics and Statistics,
The University of Melbourne
tianshul@student.unimelb.edu.au

$$
\text { January 31, } 2017
$$

Conformal Transformations

conformal: angle-perserving

translation

rotation

Mercator projection

Conformal Field Theory (CFT)

Applications: string theory, critical statistical model, pure mathematics...

Virasoro Algebra (VJir)

$$
\begin{aligned}
& {\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}} \\
& \text { where } c \in \mathbb{C} \text { is the 'central charge'. }
\end{aligned}
$$

Virasoro Minimal Models $-\mathcal{M}(p, q)$:

- $p, q \geq 2$, coprime
- a finite number of irreducible Virasoro representations
- unitary $|p-q|=1$, e.g., Ising model $\mathcal{M}(3,4)$
- non-unitary $|p-q| \neq 1$, e.g., Yang-Lee singularity $\mathcal{M}(2,5)$
conformal dimension for $\mathcal{M}(p, q)$

$$
h_{r, s}=\frac{(q r-p s)^{2}-(p-q)^{2}}{4 p q}
$$

$$
\text { where } 1 \leq r \leq p-1 \text { and } 1 \leq s \leq q-1
$$

Kac table for $\mathcal{M}(4,5)$

s	r	1	2	3
4				
1	0	$1 / 10$	$3 / 5$	$3 / 2$
2		$7 / 16$	$3 / 80$	$3 / 80$
3		$3 / 2$	$3 / 5$	$1 / 10$

$N=2$ Super Conformal Field Theory

Motivation: Calabi-Yau manifold, Ashkin-Teller model, etc.
Operators: $L_{n}, G_{r}^{+}, G_{r}^{-}$and J_{n}
$N=2$ super conformal algebra

$$
\begin{aligned}
& {\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}} \\
& {\left[L_{m}, J_{n}\right]=-n J_{m+n}} \\
& {\left[L_{n}, G_{r}^{ \pm}\right]=\left(\frac{n}{2}-r\right) G_{n+r}^{ \pm}} \\
& {\left[J_{n}, G_{r}^{ \pm}\right]= \pm G_{n+r}^{ \pm}} \\
& \left\{G_{r}^{+}, G_{s}^{-}\right\}=2 L_{r+s}+(r-s) J_{r+s}+\frac{c}{3}\left(r^{2}-\frac{1}{4}\right) \delta_{r+s, 0} \\
& {\left[J_{m}, J_{n}\right]=\frac{m c}{3} \delta_{m+n, 0}} \\
& \left\{G_{r}^{+}, G_{s}^{+}\right\}=\left\{G_{r}^{-}, G_{s}^{-}\right\}=0
\end{aligned}
$$

Representations

fermionic fields: $G^{ \pm}\left(z e^{2 \pi i}\right)= \begin{cases}G^{ \pm}(z) & \rightarrow \mathrm{NS} \rightarrow G_{r \in \mathbb{Z}+\frac{1}{2}}^{ \pm} \\ -G^{ \pm}(z) & \rightarrow \mathrm{R} \rightarrow G_{r \in \mathbb{Z}}^{ \pm}\end{cases}$
$N=2$ minimal models $\mathcal{M}^{N=2}(k)$:

- unitary: $k \in \mathbb{Z}_{\geq 0}$

$$
\begin{aligned}
& J_{0} \text {-E.V. } \quad j_{\lambda}^{m}=\frac{m}{k+2}+\frac{1}{4}\left(1-(-1)^{\lambda+m}\right) \\
& L_{0} \text {-E.V. } \quad h_{\lambda}^{m}=\frac{\lambda(\lambda+2)-m^{2}}{4(k+2)}+\frac{1}{16}\left(1-(-1)^{\lambda+m}\right) \\
& \text { where } \lambda=0,1, \ldots, k \text { and } m=-\lambda-1,-\lambda, \ldots, \lambda
\end{aligned}
$$

- non-unitary: $k+2=\frac{u}{v}$, where $u, v \geq 2$, coprime

$N=2$ Unitary Minimal Model Results

For $\mathcal{M}^{N=2}(k)$, number of irreps: $(k+1)(k+2)$, in λ and m $N=2$ Kac table

Automorphisms of the $N=2$ Algebra

Automorphisms cut down the complexity through symmetries. spectral flow (σ) :

$$
\begin{gathered}
\sigma\left(L_{n}\right)=L_{n}-\frac{1}{2} J_{n}+\frac{c}{24} \delta_{n, 0} \\
\sigma\left(J_{n}\right)=J_{n}-\frac{c}{6} \delta_{n, 0}, \quad \sigma\left(G_{s}^{ \pm}\right)=G_{s \mp \frac{1}{2}}^{\mp}
\end{gathered}
$$

$(k+1)(k+2)$ times cuts down to $\sim k / 2$ times

Coset Construction

$$
\mathcal{M}^{N=2}(k)=\frac{\hat{\mathfrak{s l}}(2)_{k} \otimes \hat{\mathfrak{b}}}{\hat{\mathfrak{g l}}(1)}
$$

Embeddings: $\partial \varphi(z)=H(z)+2: b c:(z)$,

$$
J(z)=\cdots, G^{ \pm}(z)=\cdots, T(z)=\cdots
$$

Theorem [Creutzig-Kanade-Linshaw-Ridout]
An irreducible $\hat{\mathfrak{s} l}(2)_{k} \otimes \hat{\mathfrak{b}}$ representation decomposes into $\hat{\mathfrak{g l}}(1) \otimes \mathcal{M}^{N=2}(k)$ representations as

$$
\bigoplus_{\mu} \mathcal{F}_{\mu} \otimes C_{\mu}
$$

where C_{μ} are the irreducible representations of $\mathcal{M}^{N=2}(k)$.

Unitary $N=2$ minimal models

Results

- Complete irreducibility \rightarrow branching rules
- Character and supercharacter of the $N=2$
- Modular transformations and Verlinde Formula
- Fusion rules with parities

Non-unitary $N=2$ minimal models

$\mathcal{M}^{N=2}(k)$, where $k+2=\frac{u}{v}$. Example, $k=-\frac{1}{2}, c=-1$

$$
\mathcal{M}^{N=2}\left(-\frac{1}{2}\right)=\frac{\hat{\mathfrak{s} l(2)_{-\frac{1}{2}} \otimes \hat{\mathfrak{b}}}}{\hat{\mathfrak{g} l}(1)}
$$

$\hat{\mathfrak{s l}(2)_{-\frac{1}{2}}}$ modules:
\mathcal{L}-type (irred. h.w. modules)

\mathcal{E}-type (relaxed modules, $\lambda \in(-1,1]$, irred. for $\lambda \neq \pm \frac{1}{2}$)

Non-unitary $N=2$ minimal models

representation decomposition \rightarrow infinite $N=2$ representations

$$
\begin{array}{lll}
\hat{\mathfrak{s l}}(2)_{-\frac{1}{2}} \otimes \hat{\mathfrak{b}} & \mathcal{M}^{N=2}\left(-\frac{1}{2}\right) \otimes \hat{\mathfrak{g l}}(1) \\
\mathcal{L}_{\lambda}^{\left(-\frac{1}{2}\right)} & \longrightarrow & C_{\lambda}^{m}, \text { where } \lambda \in\left\{0,1,-\frac{1}{2},-\frac{3}{2}\right\} \text { and } m \in \mathbb{Z} \\
\mathcal{E}_{\lambda}^{\left(-\frac{1}{2}\right)} & \longrightarrow & E_{\lambda}^{n}, \text { where } \lambda \in(-1,1] \text { and } n \in \mathbb{Z}
\end{array}
$$

Both are irreducible highest-weight modules.

Non-unitary $N=2$ Results

- character formulae:

E-type: from the component characters of its coset
C-type: from the residue method, in terms of the E-type

- Branching rules, e.g.,

$$
\mathcal{L}_{0}^{\left(-\frac{1}{2}\right)} \otimes N S=\bigoplus_{\mu \in 2 \mathbb{Z}} \mathcal{F}_{\mu} \otimes C_{0}^{\mu}
$$

- Verlinde Formula, fusion rules, e.g.,

$$
\begin{aligned}
& C_{1}^{0} \times C_{1}^{0}=C_{0}^{0} \\
& C_{1}^{0} \times E_{\lambda}=E_{\lambda} \\
& E_{\lambda} \times E_{\mu}=E_{\lambda+\mu-\frac{3}{2}} \oplus E_{\lambda+\mu+\frac{3}{2}}
\end{aligned}
$$

- Repeated with $\mathcal{M}^{N=2}\left(-\frac{4}{3}\right)$

Future Direction

- Justify the $E_{\lambda} \times E_{\mu}$ fusion rules involving reducible rep. $E_{ \pm \frac{1}{2}}$
- Mock modular forms of the characters
- Generalisation to any k, with $k+2=\frac{u}{v}$, fusion rules
- Generalisation to more complicated coset - Kazama-Suzuki models
- The string theory compactified on Calabi-Yau manifold

