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Percolation

I Bond percolation on L× L
square lattice

I Edges are independently
occupied with probability p

I Phase transition
I pc = 1/2

I P∞- origin belongs to infinite
cluster

I P∞ ∼ (p− pc)β for p→ p+c
I Correlation length
ξ ∼ |p− pc|−ν

I β = 5/36, ν = 4/3
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Fractal structure

I Mean size of the largest
cluster ∼ LdF , dF = 91/48

I Backbone
I Mean size of backbone
∼ LdB , dB = 1.643 36(10)

I Red bond
I Mean number of red bonds
∼ LdR , dR = 3/4
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Bonds partition

Partition all bonds into branches, junctions and non-bridges
I Branches: bridges and deletion of which produces trees (green)
I Junctions: bridges but not branches (red)
I Non-bridges: not bridges (black)

I Branch density ρg
I Junction density ρj
I Non-bridge density ρn

I Leaf-free clusters
I Bridge-free clusters
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Loop configuration

I Bond configuration→ loop configuration
I Loops drawn on medial graph
I Mean length of the largest loop ∼ LdH , with dH = 7/4

I Accessible external perimeter ∼ LdE , with dE = 4/3

I Bonds bounded by the same loop, density ρ1
I Bonds bounded by distinct loops, density ρ2

For trivial topology
I ρ1 = ρg + ρj
I ρ2 = ρn

For non-trivial topology
I pseudo-bridge

I ρ1 > ρg + ρj
I ρ2 < ρn



Fractal structure of percolation clusters Our results Conclusion

Loop configuration

I Bond configuration→ loop configuration
I Loops drawn on medial graph
I Mean length of the largest loop ∼ LdH , with dH = 7/4

I Accessible external perimeter ∼ LdE , with dE = 4/3

I Bonds bounded by the same loop, density ρ1
I Bonds bounded by distinct loops, density ρ2

For trivial topology
I ρ1 = ρg + ρj
I ρ2 = ρn

For non-trivial topology
I pseudo-bridge

I ρ1 > ρg + ρj
I ρ2 < ρn



Fractal structure of percolation clusters Our results Conclusion

Loop configuration

I Bond configuration→ loop configuration
I Loops drawn on medial graph
I Mean length of the largest loop ∼ LdH , with dH = 7/4

I Accessible external perimeter ∼ LdE , with dE = 4/3

I Bonds bounded by the same loop, density ρ1
I Bonds bounded by distinct loops, density ρ2

For trivial topology
I ρ1 = ρg + ρj
I ρ2 = ρn

For non-trivial topology
I pseudo-bridge

I ρ1 > ρg + ρj
I ρ2 < ρn



Fractal structure of percolation clusters Our results Conclusion

Loop configuration

I Bond configuration→ loop configuration
I Loops drawn on medial graph
I Mean length of the largest loop ∼ LdH , with dH = 7/4

I Accessible external perimeter ∼ LdE , with dE = 4/3

I Bonds bounded by the same loop, density ρ1
I Bonds bounded by distinct loops, density ρ2

For trivial topology
I ρ1 = ρg + ρj
I ρ2 = ρn

For non-trivial topology
I pseudo-bridge

I ρ1 > ρg + ρj
I ρ2 < ρn



Fractal structure of percolation clusters Our results Conclusion

Loop configuration

I Bond configuration→ loop configuration
I Loops drawn on medial graph
I Mean length of the largest loop ∼ LdH , with dH = 7/4

I Accessible external perimeter ∼ LdE , with dE = 4/3

I Bonds bounded by the same loop, density ρ1
I Bonds bounded by distinct loops, density ρ2

For trivial topology
I ρ1 = ρg + ρj
I ρ2 = ρn

For non-trivial topology
I pseudo-bridge

I ρ1 > ρg + ρj
I ρ2 < ρn



Fractal structure of percolation clusters Our results Conclusion

Loop configuration

I Bond configuration→ loop configuration
I Loops drawn on medial graph
I Mean length of the largest loop ∼ LdH , with dH = 7/4

I Accessible external perimeter ∼ LdE , with dE = 4/3

I Bonds bounded by the same loop, density ρ1
I Bonds bounded by distinct loops, density ρ2

For trivial topology
I ρ1 = ρg + ρj
I ρ2 = ρn

For non-trivial topology
I pseudo-bridge

I ρ1 > ρg + ρj
I ρ2 < ρn



Fractal structure of percolation clusters Our results Conclusion

Loop configuration

I Bond configuration→ loop configuration
I Loops drawn on medial graph
I Mean length of the largest loop ∼ LdH , with dH = 7/4

I Accessible external perimeter ∼ LdE , with dE = 4/3

I Bonds bounded by the same loop, density ρ1
I Bonds bounded by distinct loops, density ρ2

For trivial topology
I ρ1 = ρg + ρj
I ρ2 = ρn

For non-trivial topology
I pseudo-bridge

I ρ1 > ρg + ρj
I ρ2 < ρn



Fractal structure of percolation clusters Our results Conclusion

Loop configuration

I Bond configuration→ loop configuration
I Loops drawn on medial graph
I Mean length of the largest loop ∼ LdH , with dH = 7/4

I Accessible external perimeter ∼ LdE , with dE = 4/3

I Bonds bounded by the same loop, density ρ1
I Bonds bounded by distinct loops, density ρ2

For trivial topology
I ρ1 = ρg + ρj
I ρ2 = ρn

For non-trivial topology
I pseudo-bridge

I ρ1 > ρg + ρj
I ρ2 < ρn



Fractal structure of percolation clusters Our results Conclusion

Loop configuration

I Bond configuration→ loop configuration
I Loops drawn on medial graph
I Mean length of the largest loop ∼ LdH , with dH = 7/4

I Accessible external perimeter ∼ LdE , with dE = 4/3

I Bonds bounded by the same loop, density ρ1
I Bonds bounded by distinct loops, density ρ2

For trivial topology
I ρ1 = ρg + ρj
I ρ2 = ρn

For non-trivial topology

I pseudo-bridge

I ρ1 > ρg + ρj
I ρ2 < ρn



Fractal structure of percolation clusters Our results Conclusion

Loop configuration

I Bond configuration→ loop configuration
I Loops drawn on medial graph
I Mean length of the largest loop ∼ LdH , with dH = 7/4

I Accessible external perimeter ∼ LdE , with dE = 4/3

I Bonds bounded by the same loop, density ρ1
I Bonds bounded by distinct loops, density ρ2

For trivial topology
I ρ1 = ρg + ρj
I ρ2 = ρn

For non-trivial topology

I pseudo-bridge

I ρ1 > ρg + ρj
I ρ2 < ρn



Fractal structure of percolation clusters Our results Conclusion

Loop configuration

I Bond configuration→ loop configuration
I Loops drawn on medial graph
I Mean length of the largest loop ∼ LdH , with dH = 7/4

I Accessible external perimeter ∼ LdE , with dE = 4/3

I Bonds bounded by the same loop, density ρ1
I Bonds bounded by distinct loops, density ρ2

For trivial topology
I ρ1 = ρg + ρj
I ρ2 = ρn

For non-trivial topology
I pseudo-bridge

I ρ1 > ρg + ρj
I ρ2 < ρn



Fractal structure of percolation clusters Our results Conclusion

Loop configuration

I Bond configuration→ loop configuration
I Loops drawn on medial graph
I Mean length of the largest loop ∼ LdH , with dH = 7/4

I Accessible external perimeter ∼ LdE , with dE = 4/3

I Bonds bounded by the same loop, density ρ1
I Bonds bounded by distinct loops, density ρ2

For trivial topology
I ρ1 = ρg + ρj
I ρ2 = ρn

For non-trivial topology
I pseudo-bridge

I ρ1 > ρg + ρj
I ρ2 < ρn



Fractal structure of percolation clusters Our results Conclusion

Findings

Lemma:On the torus ρ1 = ρ2 = 1/4 at pc = 1/2

I Denote the original graph and the dual graph as G and G∗

I m = |E(G)| = |E(G∗)|
I Let A ⊂ E(G) and define A∗ ⊂ E(G∗) via e∗ ∈ A∗ iff e 6∈ A
I Let `1(e) be the event that e is bounded by the same loop
I Let `2(e) be the event that e is bounded by distinct loops

Let |A| = a, e ∈ A, and B∗ = A∗ ∪ e∗
One-to-one correspondence between (A, e) and (B∗, e∗) such that

1`1(e)(A) = 1⇐⇒ 1`2(e∗)(B
∗) = 1.

e

e
∗

e

e
∗
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Findings

I This gives∑
A⊆E
|A|=a

∑
e∈A

1`1(e)(A) =
∑

B∗⊆E∗
|B∗|=m+1−a

∑
e∗∈B∗

1`2(e∗)(B
∗)

I Summing over all a and dividing by
1

m2m
implies ρ1 = ρ2

I Since ρ1 + ρ2 = 1/2, we have ρ1 = ρ2 = 1/4
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Non-bridge density ρn

I On the torus, we expect:

ρn → ρ2 = 1/4, as L→∞.

I For finite L, ρn = ρn,0 + b1L
y1 .
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Branch density ρg and junction density ρj

I On the torus, we expect:

ρg + ρj → ρ1 = 1/4, as L→∞.

I For finite L, ρg(ρj) = ρg,0(ρj,0)− b1Ly1 .
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Fractal dimension

I For leaf-free clusters
I fractal dimension for clusters is dF = 91/48
I fractal dimension for loops is dH = 7/4

I For bridge-free clusters
I fractal dimension for clusters is dB = 1.643 36(10)
I fractal dimension for loops is dE = 4/3
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