Geometric structure of percolation clusters

Eric Zhou

School of Mathematical Sciences Monash University

2013.11.27 ANZAMP 2013

Collaborators

- Tim Garoni (Monash University)
- Youjin Deng (USTC, China)
- Junfeng Wang (USTC, China)
- Xiao Xu (USTC, China)

Fractal structure of percolation clusters

Our results

Fractal structure of percolation clusters

Our results

Fractal structure of percolation clusters

Our results

Fractal structure of percolation clusters

Our results

Our results

Conclusion

Percolation

 Bond percolation on L × L square lattice

Percolation

Bond percolation on L × L square lattice

- Bond percolation on L × L square lattice
- Edges are independently occupied with probability p

- Bond percolation on L × L square lattice
- Edges are independently occupied with probability p

- ► Bond percolation on L × L square lattice
- Edges are independently occupied with probability p
- Phase transition

- ► Bond percolation on L × L square lattice
- Edges are independently occupied with probability p
- Phase transition

▶
$$p_c = 1/2$$

Percolation

- ► Bond percolation on L × L square lattice
- Edges are independently occupied with probability p
- Phase transition

▶
$$p_c = 1/2$$

► P_∞- origin belongs to infinite cluster

- ► Bond percolation on L × L square lattice
- Edges are independently occupied with probability p
- Phase transition
- ► $p_c = 1/2$
- ► P_∞- origin belongs to infinite cluster

•
$$P_{\infty} \sim (p - p_c)^{\beta}$$
 for $p \rightarrow p_c^+$

- ► Bond percolation on L × L square lattice
- Edges are independently occupied with probability p
- Phase transition
- ► $p_c = 1/2$
- ► P_∞- origin belongs to infinite cluster
- $P_{\infty} \sim (p p_c)^{\beta}$ for $p \rightarrow p_c^+$
- Correlation length $\xi \sim |p-p_c|^{-\nu}$

- ► Bond percolation on L × L square lattice
- Edges are independently occupied with probability p
- Phase transition
- $\blacktriangleright \ p_c = 1/2$
- ► P_∞- origin belongs to infinite cluster
- $P_{\infty} \sim (p p_c)^{\beta}$ for $p \rightarrow p_c^+$
- Correlation length $\xi \sim |p p_c|^{-\nu}$

▶
$$\beta = 5/36, \nu = 4/3$$

- Mean size of the largest cluster $\sim L^{d_{\rm F}}$, $d_{\rm F} = 91/48$
- Backbone
- Mean size of backbone $\sim L^{d_{\rm B}}, d_{\rm B} = 1.64336(10)$
- Red bond
- Mean number of red bonds $\sim L^{d_{\mathrm{R}}}, d_{\mathrm{R}} = 3/4$

- ▶ Mean size of the largest cluster $\sim L^{d_{\rm F}}$, $d_{\rm F} = 91/48$
- Backbone
- Mean size of backbone $\sim L^{d_{\rm B}}, d_{\rm B} = 1.64336(10)$
- Red bond
- Mean number of red bonds $\sim L^{d_{\mathrm{R}}}, d_{\mathrm{R}} = 3/4$

- ► Mean size of the largest cluster ~ L^d_F, d_F = 91/48
- Backbone
- Mean size of backbone $\sim L^{d_{\rm B}}$, $d_{\rm B} = 1.64336(10)$
- Red bond
- Mean number of red bonds $\sim L^{d_{\mathrm{R}}}, d_{\mathrm{R}} = 3/4$

- ► Mean size of the largest cluster ~ L^{d_F}, d_F = 91/48
- Backbone
- Mean size of backbone $\sim L^{d_{\rm B}}, d_{\rm B} = 1.64336(10)$
- Red bond
- Mean number of red bonds $\sim L^{d_{\mathrm{R}}}$, $d_{\mathrm{R}} = 3/4$

- ► Mean size of the largest cluster ~ L^{d_F}, d_F = 91/48
- Backbone
- Mean size of backbone $\sim L^{d_{\rm B}}, d_{\rm B} = 1.64336(10)$
- Red bond
- Mean number of red bonds $\sim L^{d_{\mathrm{R}}}$, $d_{\mathrm{R}} = 3/4$

- ► Mean size of the largest cluster ~ L^{d_F}, d_F = 91/48
- Backbone
- Mean size of backbone $\sim L^{d_{\rm B}}, d_{\rm B} = 1.64336(10)$
- Red bond
- Mean number of red bonds $\sim L^{d_{\mathrm{R}}}$, $d_{\mathrm{R}} = 3/4$

- ► Mean size of the largest cluster ~ L^{d_F}, d_F = 91/48
- Backbone
- Mean size of backbone $\sim L^{d_{\rm B}}$, $d_{\rm B} = 1.643\,36(10)$
- Red bond
- Mean number of red bonds $\sim L^{d_{\rm R}}, d_{\rm R} = 3/4$

- ► Mean size of the largest cluster ~ L^{d_F}, d_F = 91/48
- Backbone
- Mean size of backbone $\sim L^{d_{\rm B}}$, $d_{\rm B} = 1.643\,36(10)$
- Red bond
- Mean number of red bonds $\sim L^{d_{\rm R}}, d_{\rm R} = 3/4$

- ► Mean size of the largest cluster ~ L^{d_F}, d_F = 91/48
- Backbone
- Mean size of backbone $\sim L^{d_{\rm B}}$, $d_{\rm B} = 1.643\,36(10)$
- Red bond
- Mean number of red bonds $\sim L^{d_{\rm R}}, d_{\rm R} = 3/4$

Fractal structure of percolation clusters

Our results

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters
Bonds partition

Partition all bonds into branches, junctions and non-bridges

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters

Bonds partition

Partition all bonds into branches, junctions and non-bridges

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters

- \blacktriangleright Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_{\rm H}}$, with $d_{\rm H}=7/4$
- Accessible external perimeter $\sim L^{d_{\rm E}}$, with $d_{\rm E}=4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ₂

- \blacktriangleright Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_{\rm H}}$, with $d_{\rm H} = 7/4$
- Accessible external perimeter $\sim L^{d_{\rm E}}$, with $d_{\rm E}=4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ₂

- \blacktriangleright Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_{\rm H}}$, with $d_{\rm H} = 7/4$
- Accessible external perimeter $\sim L^{d_{\rm E}}$, with $d_{\rm E}=4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ₂

- \blacktriangleright Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_{\rm H}}$, with $d_{\rm H}=7/4$
- Accessible external perimeter $\sim L^{d_{\rm E}}$, with $d_{\rm E}=4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ₂

- Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_{\rm H}}$, with $d_{\rm H}=7/4$
- Accessible external perimeter $\sim L^{d_{\rm E}}$, with $d_{\rm E}=4/3$
- Bonds bounded by the same loop, density ρ₁
- Bonds bounded by distinct loops, density ρ₂

- Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_{\rm H}}$, with $d_{\rm H}=7/4$
- Accessible external perimeter $\sim L^{d_{\rm E}}$, with $d_{\rm E}=4/3$
- Bonds bounded by the same loop, density p₁
- Bonds bounded by distinct loops, density ρ₂

- Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_{\rm H}}$, with $d_{\rm H}=7/4$
- Accessible external perimeter $\sim L^{d_{\rm E}}$, with $d_{\rm E}=4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density p₂

- \blacktriangleright Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_{\rm H}}$, with $d_{\rm H}=7/4$
- Accessible external perimeter $\sim L^{d_{\rm E}}$, with $d_{\rm E}=4/3$
- Bonds bounded by the same loop, density p₁
- Bonds bounded by distinct loops, density p₂

For trivial topology

$$\blacktriangleright \ \rho_1 = \rho_g + \rho_j$$

$$\triangleright \ \rho_2 = \rho_n$$

Conclusion

Loop configuration

- \blacktriangleright Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_{\rm H}}$, with $d_{\rm H}=7/4$
- Accessible external perimeter $\sim L^{d_{\rm E}}$, with $d_{\rm E}=4/3$
- Bonds bounded by the same loop, density p₁
- Bonds bounded by distinct loops, density p₂

For trivial topology

- $\blacktriangleright \ \rho_1 = \rho_g + \rho_j$
- $\blacktriangleright \rho_2 = \rho_n$

For non-trivial topology

Conclusion

Loop configuration

- Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_{\rm H}}$, with $d_{\rm H}=7/4$
- Accessible external perimeter $\sim L^{d_{\rm E}}$, with $d_{\rm E}=4/3$
- Bonds bounded by the same loop, density p₁
- Bonds bounded by distinct loops, density p₂

For trivial topology

- $\triangleright \ \rho_1 = \rho_g + \rho_j$
- $\blacktriangleright \rho_2 = \rho_n$

For non-trivial topology

- \blacktriangleright Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_{\rm H}}$, with $d_{\rm H}=7/4$
- Accessible external perimeter $\sim L^{d_{\rm E}}$, with $d_{\rm E}=4/3$
- Bonds bounded by the same loop, density p₁
- Bonds bounded by distinct loops, density p₂

For trivial topology

- $\blacktriangleright \ \rho_1 = \rho_g + \rho_j$
- $\blacktriangleright \ \rho_2 = \rho_n$

For non-trivial topology

pseudo-bridge

Conclusion

Loop configuration

- Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_{\rm H}}$, with $d_{\rm H}=7/4$
- Accessible external perimeter $\sim L^{d_{\rm E}}$, with $d_{\rm E}=4/3$
- Bonds bounded by the same loop, density p₁
- Bonds bounded by distinct loops, density p₂

For trivial topology

- $\blacktriangleright \ \rho_1 = \rho_g + \rho_j$
- $\blacktriangleright \ \rho_2 = \rho_n$

For non-trivial topology

- pseudo-bridge
- $\blacktriangleright \rho_1 > \rho_g + \rho_j$
- $\blacktriangleright \rho_2 < \rho_n$

- Denote the original graph and the dual graph as G and G^*
- $\blacktriangleright m = |E(G)| = |E(G^*)|$
- Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops

Findings Lemma:On the torus $\rho_1 = \rho_2 = 1/4$ at $p_c = 1/2$

- Denote the original graph and the dual graph as G and G^*
- ▶ $m = |E(G)| = |E(G^*)|$
- Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops

Lemma:On the torus $ho_1=
ho_2=1/4$ at $p_c=1/2$

- ▶ Denote the original graph and the dual graph as *G* and *G*^{*}
- ▶ $m = |E(G)| = |E(G^*)|$
- Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops

Lemma:On the torus $ho_1=
ho_2=1/4$ at $p_c=1/2$

- Denote the original graph and the dual graph as G and G^*
- ▶ $m = |E(G)| = |E(G^*)|$
- Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops

Lemma:On the torus $ho_1=
ho_2=1/4$ at $p_c=1/2$

• Denote the original graph and the dual graph as G and G^*

•
$$m = |E(G)| = |E(G^*)|$$

• Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$

- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops

Lemma:On the torus $\rho_1=\rho_2=1/4$ at $p_c=1/2$

• Denote the original graph and the dual graph as G and G^*

▶
$$m = |E(G)| = |E(G^*)|$$

- Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops

Lemma:On the torus $ho_1=
ho_2=1/4$ at $p_c=1/2$

▶ Denote the original graph and the dual graph as *G* and *G*^{*}

•
$$m = |E(G)| = |E(G^*)|$$

- ▶ Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops

Lemma:On the torus $\rho_1=\rho_2=1/4$ at $p_c=1/2$

▶ Denote the original graph and the dual graph as *G* and *G*^{*}

•
$$m = |E(G)| = |E(G^*)|$$

- ▶ Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops

Let |A| = a, $e \in A$, and $B^* = A^* \cup e^*$

Lemma:On the torus $\rho_1=\rho_2=1/4$ at $p_c=1/2$

▶ Denote the original graph and the dual graph as *G* and *G*^{*}

•
$$m = |E(G)| = |E(G^*)|$$

- ▶ Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- ▶ Let ℓ₂(e) be the event that e is bounded by distinct loops

Let |A| = a, $e \in A$, and $B^* = A^* \cup e^*$ One-to-one correspondence between (A, e) and (B^*, e^*) such that

$$\mathbf{1}_{\ell_1(e)}(A) = 1 \Longleftrightarrow \mathbf{1}_{\ell_2(e^*)}(B^*) = 1.$$

Lemma:On the torus $\rho_1 = \rho_2 = 1/4$ at $p_c = 1/2$

- Denote the original graph and the dual graph as G and G^*

•
$$m = |E(G)| = |E(G^*)|$$

- ▶ Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- ► Let ℓ₂(e) be the event that e is bounded by distinct loops

Let |A| = a, $e \in A$, and $B^* = A^* \cup e^*$ One-to-one correspondence between (A, e) and (B^*, e^*) such that

$$\mathbf{1}_{\ell_1(e)}(A) = 1 \Longleftrightarrow \mathbf{1}_{\ell_2(e^*)}(B^*) = 1.$$

► This gives $\sum_{\substack{A \subseteq E \\ |A|=a}} \sum_{e \in A} \mathbf{1}_{\ell_1(e)}(A) = \sum_{\substack{B^* \subseteq E^* \\ |B^*|=m+1-a}} \sum_{e^* \in B^*} \mathbf{1}_{\ell_2(e^*)}(B^*)$

Summing over all a and dividing by ¹/_{m2^m} implies ρ₁ = ρ₂
 Since ρ₁ + ρ₂ = 1/2, we have ρ₁ = ρ₂ = 1/4

$$\sum_{A \subseteq E \atop |A| = a} \sum_{e \in A} \mathbf{1}_{\ell_1(e)}(A) = \sum_{B^* \subseteq E^* \atop |B^*| = m+1-a} \sum_{e^* \in B^*} \mathbf{1}_{\ell_2(e^*)}(B^*)$$

Summing over all a and dividing by ¹/_{m2^m} implies ρ₁ = ρ₂
 Since ρ₁ + ρ₂ = 1/2, we have ρ₁ = ρ₂ = 1/4

This gives

$$\sum_{\substack{A \subseteq E \\ |A| = a}} \sum_{e \in A} \mathbf{1}_{\ell_1(e)}(A) = \sum_{\substack{B^* \subseteq E^* \\ |B^*| = m+1-a}} \sum_{e^* \in B^*} \mathbf{1}_{\ell_2(e^*)}(B^*)$$

- Summing over all a and dividing by $\frac{1}{m2^m}$ implies $\rho_1=\rho_2$
- Since $\rho_1 + \rho_2 = 1/2$, we have $\rho_1 = \rho_2 = 1/4$

On the torus, we expect:

$$ho_{
m n}
ightarrow
ho_2 = 1/4$$
, as $L
ightarrow \infty$.

For finite L, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

- ▶ $\rho_{n,0} = 0.250\,000\,1(2)$
- ▶ $y_1 = -1.250(1)$
- y_1 consistent with $d_R 2 = -5/4$
- ► Number of pseudobridges $L^2(\rho_{\rm n}-\rho_2) \sim L^{d_{\rm R}}$

Non-bridge density $\rho_{\rm n}$

On the torus, we expect:

$$ho_{
m n}
ightarrow
ho_2 = 1/4$$
, as $L
ightarrow \infty$.

For finite L, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

- ▶ $\rho_{n,0} = 0.250\,000\,1(2)$
- ▶ $y_1 = -1.250(1)$
- y_1 consistent with $d_{\rm R} 2 = -5/4$
- Number of pseudobridges $L^2(\rho_{\rm n}-\rho_2)\sim L^{d_{\rm R}}$

Non-bridge density ρ_n

On the torus, we expect:

$$ho_{
m n}
ightarrow
ho_2 = 1/4$$
, as $L
ightarrow \infty$.

For finite L, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

- ▶ $\rho_{n,0} = 0.250\,000\,1(2)$
- ▶ $y_1 = -1.250(1)$
- y_1 consistent with $d_{\rm R} 2 = -5/4$
- Number of pseudobridges $L^2(\rho_{\rm n}-\rho_2)\sim L^{d_{\rm R}}$

Non-bridge density ρ_n

On the torus, we expect:

$$ho_{
m n}
ightarrow
ho_2 = 1/4$$
, as $L
ightarrow \infty$.

• For finite
$$L$$
, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

▶ $\rho_{n,0} = 0.250\,000\,1(2)$

▶
$$y_1 = -1.250(1)$$

- y_1 consistent with $d_{\rm R} 2 = -5/4$
- ► Number of pseudobridges $L^2(\rho_{\rm n}-\rho_2) \sim L^{d_{\rm R}}$

Non-bridge density ρ_n

On the torus, we expect:

$$ho_{
m n}
ightarrow
ho_2 = 1/4$$
, as $L
ightarrow \infty$.

• For finite
$$L$$
, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

- ▶ $\rho_{n,0} = 0.250\,000\,1(2)$
- ▶ $y_1 = -1.250(1)$
- y_1 consistent with $d_R 2 = -5/4$
- Number of pseudobridges $L^2(\rho_{\rm n}-\rho_2)\sim L^{d_{\rm R}}$

Non-bridge density ρ_n

On the torus, we expect:

$$ho_{
m n}
ightarrow
ho_2 = 1/4$$
, as $L
ightarrow \infty$.

• For finite
$$L$$
, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

▶ $\rho_{n,0} = 0.250\,000\,1(2)$

▶
$$y_1 = -1.250(1)$$

- y_1 consistent with $d_{\rm R} 2 = -5/4$
- ► Number of pseudobridges $L^2(\rho_{\rm n}-\rho_2) \sim L^{d_{\rm R}}$

Non-bridge density ρ_n

On the torus, we expect:

$$ho_{
m n}
ightarrow
ho_2 = 1/4$$
, as $L
ightarrow \infty$.

• For finite
$$L$$
, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

- ▶ $\rho_{n,0} = 0.250\,000\,1(2)$
- ▶ $y_1 = -1.250(1)$
- y_1 consistent with $d_R 2 = -5/4$
- ► Number of pseudobridges $L^2(\rho_{\rm n}-\rho_2) \sim L^{d_{\rm R}}$

Non-bridge density ρ_n

On the torus, we expect:

$$ho_{
m n}
ightarrow
ho_2 = 1/4$$
, as $L
ightarrow \infty$.

• For finite
$$L$$
, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

▶ $\rho_{n,0} = 0.250\,000\,1(2)$

▶
$$y_1 = -1.250(1)$$

- y_1 consistent with $d_{\rm R} 2 = -5/4$
- ▶ Number of pseudobridges $L^2(\rho_{\rm n}-\rho_2)\sim L^{d_{\rm R}}$
Findings

Non-bridge density ρ_n

On the torus, we expect:

$$ho_{
m n}
ightarrow
ho_2 = 1/4$$
, as $L
ightarrow \infty$.

• For finite
$$L$$
, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

▶ $\rho_{n,0} = 0.250\,000\,1(2)$

$$y_1 = -1.250(1)$$

- y_1 consistent with $d_{\rm R} 2 = -5/4$
- ▶ Number of pseudobridges $L^2(\rho_{\rm n}-\rho_2)\sim L^{d_{\rm R}}$

On the torus, we expect:

$$ho_{
m g}+
ho_{
m j}
ightarrow
ho_{
m 1}=1/4$$
, as $L
ightarrow\infty$.

- $\triangleright \rho_{j,0} = 0.035\,949\,79(8)$
- ▶ $\rho_{g,0} = 0.214\,050\,18(5)$

►
$$y_1 = -1.2500(5)$$

Branch density $\rho_{\rm g}$ and junction density $\rho_{\rm j}$

• On the torus, we expect:

 $ho_{
m g}+
ho_{
m j}
ightarrow
ho_1=1/4$, as $L
ightarrow\infty.$

- ▶ $\rho_{j,0} = 0.035\,949\,79(8)$
- ▶ $\rho_{\rm g,0} = 0.214\,050\,18(5)$

▶
$$y_1 = -1.2500(5)$$

Findings

Branch density $\rho_{\rm g}$ and junction density $\rho_{\rm j}$

On the torus, we expect:

$$ho_{\rm g} +
ho_{\rm j}
ightarrow
ho_1 = 1/4$$
, as $L
ightarrow \infty$.

- ▶ $\rho_{j,0} = 0.035\,949\,79(8)$
- $\blacktriangleright \ \rho_{\rm g,0} = 0.214\,050\,18(5)$
- ▶ $y_1 = -1.2500(5)$

Findings

Branch density $\rho_{\rm g}$ and junction density $\rho_{\rm j}$

On the torus, we expect:

$$ho_{\mathrm{g}} +
ho_{\mathrm{j}}
ightarrow
ho_{\mathrm{1}} = 1/4$$
, as $L
ightarrow \infty$.

- ▶ $\rho_{j,0} = 0.035\,949\,79(8)$
- ▶ $\rho_{g,0} = 0.21405018(5)$

►
$$y_1 = -1.2500(5)$$

Findings

Branch density $\rho_{\rm g}$ and junction density $\rho_{\rm j}$

On the torus, we expect:

$$ho_{\mathrm{g}} +
ho_{\mathrm{j}}
ightarrow
ho_{\mathrm{1}} = 1/4$$
, as $L
ightarrow \infty$.

- ▶ $\rho_{j,0} = 0.035\,949\,79(8)$
- ▶ $\rho_{g,0} = 0.214\,050\,18(5)$

►
$$y_1 = -1.2500(5)$$

Findings

Branch density $\rho_{\rm g}$ and junction density $\rho_{\rm j}$

On the torus, we expect:

$$ho_{\rm g} +
ho_{\rm j}
ightarrow
ho_1 = 1/4$$
, as $L
ightarrow \infty$.

- ▶ $\rho_{j,0} = 0.035\,949\,79(8)$
- ▶ $\rho_{g,0} = 0.214\,050\,18(5)$
- ► $y_1 = -1.2500(5)$

Findings

Branch density $\rho_{\rm g}$ and junction density $\rho_{\rm j}$

On the torus, we expect:

$$ho_{\mathrm{g}} +
ho_{\mathrm{j}}
ightarrow
ho_{\mathrm{1}} = 1/4$$
, as $L
ightarrow \infty$.

• For finite *L*, $\rho_{g}(\rho_{j}) = \rho_{g,0}(\rho_{j,0}) - b_{1}L^{y_{1}}$.

▶ $\rho_{j,0} = 0.035\,949\,79(8)$

$$\bullet \ \rho_{\rm g,0} = 0.214\,050\,18(5)$$

▶
$$y_1 = -1.2500(5)$$

Findings

Branch density $\rho_{\rm g}$ and junction density $\rho_{\rm j}$

On the torus, we expect:

For leaf-free clusters

- fractal dimension for clusters is $d_{\rm F} = 91/48$
- fractal dimension for loops is $d_{\rm H} = 7/4$

For bridge-free clusters

- fractal dimension for clusters is $d_{\rm B} = 1.64336(10)$
- fractal dimension for loops is $d_{
 m E}=4/3$

- ► For leaf-free clusters
 - fractal dimension for clusters is d_F = 91/48
 - fractal dimension for loops is $d_{\rm H} = 7/4$
- For bridge-free clusters
 - fractal dimension for clusters is $d_{\rm B} = 1.64336(10)$
 - fractal dimension for loops is $d_{\rm E}=4/3$

Fractal dimension

For leaf-free clusters

- fractal dimension for clusters is $d_{\rm F} = 91/48$
- fractal dimension for loops is $d_{\rm H}=7/4$
- For bridge-free clusters
 - fractal dimension for clusters is $d_{\rm B} = 1.64336(10)$
 - fractal dimension for loops is $d_{\rm E}=4/3$

- For leaf-free clusters
 - fractal dimension for clusters is $d_{\rm F} = 91/48$
 - fractal dimension for loops is $d_{\rm H} = 7/4$
- For bridge-free clusters
 - fractal dimension for clusters is $d_{\rm B} = 1.64336(10)$
 - fractal dimension for loops is $d_{\rm E}=4/3$

- For leaf-free clusters
 - fractal dimension for clusters is $d_{\rm F} = 91/48$
 - fractal dimension for loops is $d_{\rm H} = 7/4$
- For bridge-free clusters
 - fractal dimension for clusters is $d_{\rm B} = 1.64336(10)$
 - fractal dimension for loops is $d_{\rm E}=4/3$

- For leaf-free clusters
 - fractal dimension for clusters is $d_{\rm F} = 91/48$
 - fractal dimension for loops is $d_{\rm H} = 7/4$
- For bridge-free clusters
 - fractal dimension for clusters is $d_{\rm B} = 1.64336(10)$
 - fractal dimension for loops is $d_{\rm E}=4/3$

- For leaf-free clusters
 - fractal dimension for clusters is $d_{\rm F} = 91/48$
 - fractal dimension for loops is $d_{\rm H} = 7/4$
- For bridge-free clusters
 - fractal dimension for clusters is $d_{\rm B} = 1.64336(10)$
 - fractal dimension for loops is $d_{\rm E} = 4/3$

- For leaf-free clusters
 - fractal dimension for clusters is $d_{\rm F} = 91/48$
 - fractal dimension for loops is $d_{\rm H} = 7/4$
- For bridge-free clusters
 - fractal dimension for clusters is $d_{\rm B} = 1.64336(10)$
 - fractal dimension for loops is $d_{\rm E}=4/3$

- For leaf-free clusters
 - fractal dimension for clusters is $d_{\rm F} = 91/48$
 - fractal dimension for loops is $d_{\rm H} = 7/4$
- For bridge-free clusters
 - fractal dimension for clusters is $d_{\rm B} = 1.64336(10)$
 - fractal dimension for loops is $d_{\rm E} = 4/3$

Our results

Outline

Fractal structure of percolation clusters

Our results

- Partition bonds into branches, junctions and non-bridges
- $\blacktriangleright \rho_1 = \rho_2$
- \blacktriangleright Number of pseudo-bridges scales as $L^{d_{\rm R}}$
- Leaf-free clusters
- Bridge-free clusters
- ▶ arXiv:1309.7244 (2013)

Partition bonds into branches, junctions and non-bridges

- $\blacktriangleright \ \rho_1 = \rho_2$
- ▶ Number of pseudo-bridges scales as L^{d_R}
- Leaf-free clusters
- Bridge-free clusters
- ▶ arXiv:1309.7244 (2013)

Partition bonds into branches, junctions and non-bridges

$\blacktriangleright \ \rho_1 = \rho_2$

- ▶ Number of pseudo-bridges scales as L^{d_R}
- Leaf-free clusters
- Bridge-free clusters
- arXiv:1309.7244 (2013)

- Partition bonds into branches, junctions and non-bridges
- $\blacktriangleright \ \rho_1 = \rho_2$
- ► Number of pseudo-bridges scales as L^{d_R}
- Leaf-free clusters
- Bridge-free clusters
- arXiv:1309.7244 (2013)

- Partition bonds into branches, junctions and non-bridges
- $\triangleright \ \rho_1 = \rho_2$
- \blacktriangleright Number of pseudo-bridges scales as $L^{d_{\rm R}}$
- Leaf-free clusters
- Bridge-free clusters
- arXiv:1309.7244 (2013)

- Partition bonds into branches, junctions and non-bridges
- $\blacktriangleright \ \rho_1 = \rho_2$
- ► Number of pseudo-bridges scales as L^{d_R}
- Leaf-free clusters
- Bridge-free clusters
- arXiv:1309.7244 (2013)

- Partition bonds into branches, junctions and non-bridges
- $\blacktriangleright \ \rho_1 = \rho_2$
- ► Number of pseudo-bridges scales as L^{d_R}
- Leaf-free clusters
- Bridge-free clusters
- arXiv:1309.7244 (2013)

- Partition bonds into branches, junctions and non-bridges
- $\blacktriangleright \ \rho_1 = \rho_2$
- ► Number of pseudo-bridges scales as L^{d_R}
- Leaf-free clusters
- Bridge-free clusters
- arXiv:1309.7244 (2013)

What happens for the general Fortuin-Kasteleyn random-cluster model?

Many thanks for your attention!

Many thanks for your attention!