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INTRODUCTION

In the old days before cloud computing and flash drives...

there was tape.

(Taken from laamc.wordpress.com)

Magnetic tape was (and is) a reliable means of data storage and backup.
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TAPE

Let’s consider a very simple model of tape: magnetic spins which are aligned
sequentially along the tape.

These spins can be ‘pointed’ in two ‘directions’ — ⊕ or 	.

The data stored in the tape is encoded in the orientations of the spins.
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CONSTRAINTS

Due to hardware limitations, not all sequences of spins are available.

Here the tape head doesn’t like having two adjacent 	 spins.
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CAPACITY

How much data can this tape store?

In other words, how many valid
configurations are there?

It is simple to show that the number of valid configurations on N spins is the

(N + 1)th Fibonacci number, which grows asymptotically as
(

1+
√

5
2

)N
. So the

tape stores log2

(
1+

√
5

2

)
×N bits.

We call log2

(
1+

√
5

2

)
the capacity of the constraint, while 1+

√
5

2 = 1.618 . . . is
the growth constant (denoted κ).
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TWO-DIMENSIONAL CONSTRAINTS

Now imagine this constraint in two dimensions, where 	 spins cannot be
horizontally or vertically adjacent.

This is the hard squares lattice gas model.
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THE HARD SQUARES MODEL

What is the capacity of this constraint?

We can find the capacity by calculating the more general partition function:

ZN =
∑

configurations on N spins
z# of 	 spins in the configuration.

The growth constant follows from the evaluation of the partition function at
z = 1:

κ = lim
N→∞

Z1/N
N

∣∣
z=1.
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BOUNDING THE CAPACITY

The previous best lower bound on hard squares was by Friedland, Lundow
and Markström (2010):

κ ≥ 1.503 048 082 475 332 264 3220 . . . .

We set out to improve this bound and bounds on the capacity of many other
constraints!

Louidor and Marcus (2010) used Rayleigh quotients of transfer matrices on
several of the models we analyse later.
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EXCLUSION MODELS

The exclusion models forbid certain local arrangements of 	 spins.

Hard squares Read-write
isolated memory

Non-attacking kings
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PARITY MODELS

The parity models read the spins across or down the lines of the lattice.

Look at the number of ⊕ spins between every pair of 	 spins. If this number
is:

• always even, the configuration satisfies the even constraint;
• always odd, the configuration satisfies the odd constraint.

Louidor and Marcus (2010) showed that the odd model has growth constant
exactly

√
2.
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CHARGE MODELS

The charge(q) models also reads the spins across or down the lines of the
lattice.

If the partial sum of the ⊕s and 	s always stays between 0 and q, then the
configuration satisfies the charge(q) constraint.

• Charge(1) is trivial;

• Louidor and Marcus showed that charge(2) has growth constant 22−d
in

d dimensions;
• We look at charge(3).
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CHARGE(3) AND EVEN MODELS
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COLOURING MODELS

The q-colouring models label spins from 0 to q− 1 (for integer q). No two
adjacent spins can have the same label (colour).

• 2-colouring is trivial (there are exactly 2 possibilities);
• 3-colouring is known to have an exact growth constant of

(4/3)3/2 = 1.5396 . . ., proved by Lieb (1967);
• We look at 4- and 5-colouring.
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CORNER TRANSFER MATRIX FORMALISM

We use corner transfer matrix formalism to calculate lower bounds on the
growth constant. This formalism was created by Baxter (1968).

It can be (and was) used to numerically estimate physical properties of a
variety of models (including hard squares).

Baxter also used it to generate series coefficients of these properties.
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TRANSFER MATRICES

Earlier bound-finding techniques used column transfer matrices.

The growth constant follows immediately from the largest eigenvalue of the
transfer matrix:

κ = lim
m→∞

Λ
1/m
m .
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REFORMULATING THE EIGENVALUE PROBLEM

Finding the largest eigenvalue of the transfer matrix can be reformulated as a
maximisation problem:

Λ = max
ψ

ψTVψ
ψTψ

,

and so if we choose any ψ we obtain a lower bound for Λ.

Here we use Baxter’s Ansatz and choose a ψ which satisfies

ψ(σ1, . . . , σm) = Tr [F(σ1, σ2)F(σ2, σ3) . . . F(σm, σ1)]

for a set of n× n matrices F(a, b).
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BAXTER’S ANSATZ

F represents the transfer matrix of half a row, while ψ is a half-plane partition
function.
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FURTHER REFORMULATION

We can re-write the expression for Λ by means of

ψTψ = Tr Rm,

ψTVψ = Tr Sm,

where R and S are full-row transfer matrices of different sizes.
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CTM EQUATIONS

In the thermodynamic limit, the right-hand sides depend only on the
dominant eigenvalues of R and S, denoted ξ and η.

The eigenvalue equations can be reformulated in terms of F and the
eigenvectors contained in the matrix families X and Y:

∑
b

F(a, b)X(b)F(b, a) = ξX(a),

∑
a,b,c,d

ω

(
a b
c d

)
F(a, c)Y(c, d)F(d, b) = ηY(a, b).

(ω is 1 if the face is valid and 0 otherwise.)
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CTM EQUATIONS
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OBTAINING A LOWER BOUND

To obtain a lower bound, we first find an appropriate set of Fs. Then we use
the power method implicitly, iterating the CTM equations to calculate ξ and
η.

The lower bound is

κ ≥ lim
m→∞

(
ψTVψ
ψTψ

)1/m

= lim
m→∞

(
Tr Sm

Tr Rm

)1/m

=
η

ξ
.
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THE CORNER TRANSFER MATRIX RENORMALISATION GROUP METHOD

In order to obtain good Fs, we use a heuristic known as the corner transfer
matrix renormalisation group method, devised by Nishino and Okunishi
(1996).

This method makes the finite-size Fs as close to the infinite-size transfer
matrices as possible.

It does this by repeatedly expanding and reducing them in a way which
preserves important characteristics.
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THE CORNER TRANSFER MATRIX RENORMALISATION GROUP METHOD

A(a) = PT(a)Al(a)P(a)

F(a, b) = PT(a)Fl(a, b)P(b)
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CONVERGENCE

The method is (uniquely) claimed to be sub-exponential; more precisely that
computing n digits requires exp(α

√
n) computing time.

This assertion can be tested empirically; the error in our estimates is given by
the eigenvalue spectrum of X2(a).

Our results support the asymptotic form.
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CONVERGENCE
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TABLE OF RESULTS

Model Matrix size Lower bound on (and estimate of) κ
Hard squares 256 1.503 048 082 475 332 264 322 066 329 475

553 689 385 781 038 610 305 062 028 101
735 933 850 396 923 440 380 463 299 47 (65)

RWIM 128 1.448 957 371 775 608 489 872 231 406 108
136 686 434 371 (7)

NAK 256 1.342 643 951 124 601 297 851 730 161 875
740 395 719 438 196 938 393 943 434 885
455 0 (1)

Even 128 1.357 587 502 184 123 (5)

Charge(3) 74 (1.357 587 50)

4-Colouring 96 2.336 056 641 041 133 656 814 01 (4)

5-Colouring 64 3.250 404 923 167 119 143 819 73 (6)
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THE CHARGE(3) AND EVEN MODELS

Why do the charge(3) and even models have similar growth constants? Are
they actually equal?

We can prove they are equal on a one-dimensional lattice by a 2-to-1
mapping of states.
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THE CHARGE(3) AND EVEN MODELS

This mapping can be used in two dimensions to show that
cap(charge(3)) ≥ cap(even).

If the parity of the N and W edges are identical and determined in every face
then the mapping is a bijection.

However, it is possible to have faces where this doesn’t happen, so this
doesn’t prove that they are equal.
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THE CHARGE(3) AND EVEN MODELS

We have non-rigorous arguments for the capacities being equal.
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CONCLUSION

• We use statistical mechanical techniques to examine a information
theory problem.

• Using corner transfer matrix formalism, we derive very accurate lower
bounds on the capacity of several models.

• Our lower bounds improve on all known proved lower bounds.
• They also match our estimates for all but the last one or two digits.
• This leads to a remarkable conjecture that the charge(3) and even

constraints have the same capacity.

Accurate lower bounds on two-dimensional constraint capacities Yao-ban Chan



Introduction Models Calculating bounds Results Charge(3)/even Conclusion

FUTURE WORK

• We want to prove that the charge(3) and even constraints have the same
capacity.

• We can apply this methodology to more models — any model which can
be expressed using a local face weight.

• We’re looking for upper bounds of comparable quality. Linear algebra
theorems which bound the error in an eigenvalue estimate may help.

• A recent extension to the CTMRG allows it to calculate series, including
the generating function for self-avoiding polygons.
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