0000000 00000 000000000 000 000 000 000	Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
	0000000	00000	000000000000	000	000	000

Accurate lower bounds on two-dimensional constraint capacities

Yao-ban Chan Andrew Rechnitzer

November 27, 2013

Introduction <pre>OOOOOOO</pre>	Models 00000	Calculating bounds	Results 000	Charge(3)/even 000	Conclusion 000
INTRODUCT	TION				

In the old days before cloud computing and flash drives...

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
•000000	00000		000	000	000
INTRODUCT	ION				

In the old days before cloud computing and flash drives... there was tape.

(Taken from laamc.wordpress.com)

Magnetic tape was (and is) a reliable means of data storage and backup.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
O●OOOOO	00000		000	000	000
TAPE					

Let's consider a very simple model of tape: magnetic spins which are aligned sequentially along the tape.

These spins can be 'pointed' in two 'directions' — \oplus or \oplus .

The data stored in the tape is encoded in the orientations of the spins.

Introduction	Models 00000	Calculating bounds	Results 000	Charge(3)/even 000	Conclusion 000
CONSTRAIN	ITS				

Due to hardware limitations, not all sequences of spins are available.

Here the tape head doesn't like having two adjacent \ominus spins.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	000
CAPACITY					

How much data can this tape store?

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	000
CAPACITY					

How much data can this tape store? In other words, how many valid configurations are there?

It is simple to show that the number of valid configurations on *N* spins is the (N + 1)th Fibonacci number, which grows asymptotically as $\left(\frac{1+\sqrt{5}}{2}\right)^N$. So the tape stores $\log_2\left(\frac{1+\sqrt{5}}{2}\right) \times N$ bits.

We call $\log_2\left(\frac{1+\sqrt{5}}{2}\right)$ the *capacity* of the constraint, while $\frac{1+\sqrt{5}}{2} = 1.618...$ is the *growth constant* (denoted κ).

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	000
TWO-DIMEN	ISIONAL CO	ONSTRAINTS			

Now imagine this constraint in two dimensions, where \ominus spins cannot be horizontally or vertically adjacent.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	000
TWO-DIMEN	ISIONAL CO	ONSTRAINTS			

Now imagine this constraint in two dimensions, where \ominus spins cannot be horizontally or vertically adjacent.

This is the hard squares lattice gas model.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	000
THE HARD S	QUARES M	ODEL			

What is the capacity of *this* constraint?

We can find the capacity by calculating the more general partition function:

 $Z_N = \sum_{\text{configurations on } N \text{ spins}} z^{\text{\# of } \ominus \text{ spins in the configuration}}.$

The growth constant follows from the evaluation of the partition function at z = 1:

$$\kappa = \lim_{N \to \infty} Z_N^{1/N} \big|_{z=1}.$$

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
000000●	00000		000	000	000
Bounding	THE CAPAC	CITY			

The previous best lower bound on hard squares was by Friedland, Lundow and Markström (2010):

 $\kappa \geq 1.503\,048\,082\,475\,332\,264\,3220\ldots$

We set out to improve this bound and bounds on the capacity of many other constraints!

Louidor and Marcus (2010) used Rayleigh quotients of transfer matrices on several of the models we analyse later.

Introduction 0000000	Models ●0000	Calculating bounds	Results 000	Charge(3)/even	Conclusion 000
EXCLUSION	MODELS				

The *exclusion* models forbid certain local arrangements of \ominus spins.

Hard squares

Read-write isolated memory

Non-attacking kings

Introduction 0000000	Models O●OOO	Calculating bounds	Results 000	Charge(3)/even	Conclusion 000
PARITY MOI	DELS				

The *parity* models read the spins across or down the lines of the lattice.

Look at the number of \oplus spins between every pair of \ominus spins. If this number is:

- always even, the configuration satisfies the *even* constraint;
- always odd, the configuration satisfies the *odd* constraint.

Louidor and Marcus (2010) showed that the odd model has growth constant exactly $\sqrt{2}$.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00●00		000	000	000
CHARGE MO	ODELS				

The charge(q) models also reads the spins across or down the lines of the lattice.

If the partial sum of the \oplus s and \oplus s always stays between 0 and *q*, then the configuration satisfies the charge(*q*) constraint.

- Charge(1) is trivial;
- Louidor and Marcus showed that charge(2) has growth constant 2^{2^{-d}} in *d* dimensions;
- We look at charge(3).

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000	00000000000	000	000	000
$C_{\rm IIADCE}(2)$	AND EVEN	MODELC			

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	0000●		000	000	000
COLOURING	G MODELS				

The *q*-colouring models label spins from 0 to q - 1 (for integer *q*). No two adjacent spins can have the same label (*colour*).

- 2-colouring is trivial (there are exactly 2 possibilities);
- 3-colouring is known to have an exact growth constant of $(4/3)^{3/2} = 1.5396...$, proved by Lieb (1967);
- We look at 4- and 5-colouring.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000	•00000000000	000	000	000
CORNER TR	ANSFER MA	ATRIX FORMALIS	М		

We use corner transfer matrix formalism to calculate lower bounds on the growth constant. This formalism was created by Baxter (1968).

It can be (and was) used to numerically estimate physical properties of a variety of models (including hard squares).

Baxter also used it to generate series coefficients of these properties.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	000
TRANSFER M	MATRICES				

Earlier bound-finding techniques used column transfer matrices.

The growth constant follows immediately from the largest eigenvalue of the transfer matrix:

$$\kappa = \lim_{m \to \infty} \Lambda_m^{1/m}.$$

Finding the largest eigenvalue of the transfer matrix can be reformulated as a maximisation problem:

$$\Lambda = \max_{\psi} \frac{\psi^T V \psi}{\psi^T \psi},$$

and so if we choose *any* ψ we obtain a lower bound for Λ .

Here we use Baxter's Ansatz and choose a ψ which satisfies

$$\psi(\sigma_1,\ldots,\sigma_m)=\operatorname{Tr} \left[F(\sigma_1,\sigma_2)F(\sigma_2,\sigma_3)\ldots F(\sigma_m,\sigma_1)\right]$$

for a set of $n \times n$ matrices F(a, b).

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	000
BAXTER'S A	NSATZ				

F represents the transfer matrix of half a row, while ψ is a half-plane partition function.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	000
FURTHER R	EFORMULA	TION			

We can re-write the expression for Λ by means of

$$\psi^T \psi = \operatorname{Tr} R^m,$$

$$\psi^T V \psi = \operatorname{Tr} S^m,$$

where *R* and *S* are full-row transfer matrices of different sizes.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	000
FURTHER RE	FORMULAT	TION			

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	000
FURTHER RI	EFORMULA	TION			

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	000
CTM EQUA	TIONS				

In the thermodynamic limit, the right-hand sides depend only on the dominant eigenvalues of *R* and *S*, denoted ξ and η .

The eigenvalue equations can be reformulated in terms of *F* and the eigenvectors contained in the matrix families *X* and *Y*:

$$\sum_{b} F(a,b)X(b)F(b,a) = \xi X(a),$$
$$\sum_{a,b,c,d} \omega \begin{pmatrix} a & b \\ c & d \end{pmatrix} F(a,c)Y(c,d)F(d,b) = \eta Y(a,b).$$

(ω is 1 if the face is valid and 0 otherwise.)

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	000
CTM EOI	UATIONS				

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	000
Obtaining	A LOWER	BOUND			

To obtain a lower bound, we first find an appropriate set of *F*s. Then we use the power method implicitly, iterating the CTM equations to calculate ξ and η .

The lower bound is

$$\kappa \geq \lim_{m \to \infty} \left(\frac{\psi^T V \psi}{\psi^T \psi} \right)^{1/m} = \lim_{m \to \infty} \left(\frac{\operatorname{Tr} S^m}{\operatorname{Tr} R^m} \right)^{1/m} = \frac{\eta}{\xi}.$$

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000	000000000●0	000	000	000
THE CORNEL	R TRANSEE	R MATRIX RENOR		N CROUP MET	нор

In order to obtain good *Fs*, we use a heuristic known as the corner transfer matrix renormalisation group method, devised by Nishino and Okunishi (1996).

This method makes the finite-size *F*s as close to the infinite-size transfer matrices as possible.

It does this by repeatedly expanding and reducing them in a way which preserves important characteristics.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion		
0000000	00000	0000000000●	000	000	000		
THE CODNER TRANSEER MATRIX REMORMALISATION CROUP METHOD							

$$A(a) = P^{T}(a)A_{l}(a)P(a)$$

$$F(a,b) = P^{T}(a)F_{l}(a,b)P(b)$$

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		●00	000	000
CONVERGE	NCE				

The method is (uniquely) claimed to be sub-exponential; more precisely that computing *n* digits requires $\exp(\alpha \sqrt{n})$ computing time.

This assertion can be tested empirically; the error in our estimates is given by the eigenvalue spectrum of $X^2(a)$.

Our results support the asymptotic form.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		O●O	000	000
CONVERGE	NCE				

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		00●	000	000
TABLE OF R	ESULTS				

Model	Matrix size	Lower bound on (and estimate of) κ
Hard squares	256	<u>1.503 048 082 475 332 264 322 0</u> 66 329 475
		553 689 385 781 038 610 305 062 028 101
		735 933 850 396 923 440 380 463 299 47 (65)
RWIM	128	<u>1.448 957 3</u> 71 775 608 489 872 231 406 108
		136 686 434 371 (7)
NAK	256	<u>1.342 643 951</u> 124 601 297 851 730 161 875
		740 395 719 438 196 938 393 943 434 885
		455 0 (1)
Even	128	<u>1.35</u> 7 587 502 184 123 (5)
Charge(3)	74	(<u>1.3</u> 57 587 50)
4-Colouring	96	2.336 056 641 041 133 656 814 01 (4)
5-Colouring	64	<u>3.250 404 923 16</u> 7 119 143 819 73 (6)

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	●○○	000
THE CHARG	GE(3) AND	EVEN MODELS			

Why do the charge(3) and even models have similar growth constants? Are they actually equal?

We can prove they are equal on a one-dimensional lattice by a 2-to-1 mapping of states.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	○●○	000
THE CHA	rge(3) an	D EVEN MODELS			

This mapping can be used in two dimensions to show that $cap(charge(3)) \ge cap(even)$.

If the parity of the N and W edges are identical and determined in every face then the mapping is a bijection.

However, it is possible to have faces where this doesn't happen, so this doesn't prove that they are equal.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
	(0)	000000000000000000000000000000000000000	000	000	000

We have non-rigorous arguments for the capacities being equal.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	●OO
Conclusio	ON				

- We use statistical mechanical techniques to examine a information theory problem.
- Using corner transfer matrix formalism, we derive very accurate lower bounds on the capacity of several models.
- Our lower bounds improve on all known proved lower bounds.
- They also match our estimates for all but the last one or two digits.
- This leads to a remarkable conjecture that the charge(3) and even constraints have the same capacity.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	O●O
FUTURE WO	ORK				

- We want to *prove* that the charge(3) and even constraints have the same capacity.
- We can apply this methodology to more models any model which can be expressed using a local face weight.
- We're looking for upper bounds of comparable quality. Linear algebra theorems which bound the error in an eigenvalue estimate may help.
- A recent extension to the CTMRG allows it to calculate series, including the generating function for self-avoiding polygons.

Introduction	Models	Calculating bounds	Results	Charge(3)/even	Conclusion
0000000	00000		000	000	00●
References					

- R. J. Baxter. Dimers on a rectangular lattice. J. Math. Phys. 9, 650–654, 1968.
- T. Nishino and K. Okunishi. Corner transfer matrix renormalization group method. J. Phys. Soc. Jpn. 65(4), 891–894, 1996.
- N. Calkin and H. Wilf. The number of independent sets in a grid graph. SIAM J. Disc. Math. 11(1), 54–60, 1998.
- E. Louidor and B. Marcus. Improved lower bounds on capacities of symmetric 2D constraints using Rayleigh quotients. *IEEE Trans. Inf. Theory* 56(4), 1624–1639, 2010.
- Y. Chan. Series expansions from the corner transfer matrix renormalization group method: the hard squares model. *J. Phys. A: Math. Theor.* 45, 085001, 2012.
- Y. Chan and A. Rechnitzer. Accurate lower bounds on two-dimensional constraint capacities from corner transfer matrices. Submitted to *IEEE Trans. Inf. Theory*.