Matrix elements of the Lie superalgebra $g /(m \mid n)$

Jason L. Werry

Centre for Mathematical Physics, The University of Queensland, Australia.

Under the supervision of :
Prof. Mark Gould and
A/Prof. Phillip Isaac

ANZAMP 2013

November 27, 2013

A comment about Representation Theory...

A comment about Representation Theory

From

$$
\left[E_{a b}, E_{c d}\right]=\delta_{b c} E_{a d}-(-1)^{((a)+(b))((c)+(d))} \delta_{a d} E_{c b},
$$

to

$$
\begin{aligned}
\left(N_{r}^{p}\right)^{2} & =\prod_{k \neq r=1}^{m}\left(\frac{\left(\alpha_{k, p}-\alpha_{r, p}-(-1)^{(r)}\right)\left(\alpha_{k, p}-\alpha_{r, p}+1-(-1)^{(r)}\right)}{\left(\alpha_{k, p-1}-\alpha_{r, p}-(-1)^{(r)}\right)\left(\alpha_{k, p+1}-\alpha_{r, p}+1-(-1)^{(r)}\right)}\right) \\
& \times\left(\frac{\prod_{k=m+1}^{p-1}\left(\alpha_{k, p-1}-\alpha_{r, p}-1-(-1)^{(r)}\right)}{\prod_{k \neq r=m+1}^{p}\left(\alpha_{r, p}-\alpha_{k, p}+(-1)^{(r)}\right)}\right) \\
& \times\left(\frac{\prod_{k=m+1}^{p+1}\left(\alpha_{k, p+1}-\alpha_{r, p}-(-1)^{(r)}\right)}{\prod_{k \neq r=m+1}^{p}\left(\alpha_{r, p}-\alpha_{k, p}+(-1)^{(r)}\right)}\right)
\end{aligned}
$$

Historical background (1976-)

Preliminaries
The Lie Superalgebra $g /(m \mid n)$.
The Gelfand-Tsetlin basis
Action of the $g l(m \mid n)$ generators.

The Formalism
The characteristic identity
Projection operators
Shift operators
Wigner coefficients

The matrix element formula

Future work

Scheunert, Nahm \& Rittenberg (1976) Complete reducibility of star (generalized Hermitian) representations

Kac (1978) - Classifications

Molev, Palev, Stoilova \& Van der Jeugt (1987-2011) Matrix element formulae for certain classes of representations

And in parallel with the above...

Bracken, Jarvis, Green \& Gould (70s and 80s) - characteristic (polynomial) identities

Gould \& R.B.Zhang (1990) - Classification of f.d. unitary representations of $g l(m \mid n)$ into type 1 and type 2 (which are in fact dual).

Gradings

- The general linear Lie superalgebra $g l(m \mid n)$ is a \mathbb{Z}_{2} graded algebra with a graded operation (graded commutator)

$$
[X, Y]=X Y-(-1)^{(X)(Y)} Y X
$$

- This grading extends to all objects - morphisms, vectors etc.
- We define a grading (or parity) on indices to be $(a)=0,1 \leq a \leq m$ and (a) $=1, m+1 \leq a \leq m+n$.
- For an object X we have $(X)=0,1$ if X is even/odd respectively.

Define the graded commutator to be

$$
[X, Y]=X Y-(-1)^{(X)(Y)} Y X
$$

Lie Superalgebras

The superalgebra $g l(m \mid n)$ is the complex Lie algebra with basis (generators, operators) $E_{p q}(1 \leq p, q \leq m+n)$ that satisfy the commutation relations

$$
\left[E_{p q}, E_{r s}\right]=\delta_{q r} E_{p s}-(-1)^{((p)+(q))((r)+(s))} \delta_{p s} E_{r q}
$$

where the commutator is given by

$$
[X, Y]=X Y-(-1)^{(X)(Y)} Y X
$$

where the parity of a generator is given by

$$
\left(E_{p q}\right)=(p)+(q)
$$

Generators

It is convenient to place the generators in a matrix. For example, the $g /(2 \mid 3)$ generators are...

$$
\left(\begin{array}{ccccc}
E_{11} & E_{12} & E_{13} & E_{14} & E_{15} \\
E_{21} & E_{22} & E_{23} & E_{24} & E_{25} \\
-- & -- & -- & -- & -- \\
E_{31} & E_{32} & E_{33} & E_{34} & E_{35} \\
E_{41} & E_{42} & E_{43} & E_{44} & E_{45} \\
E_{51} & E_{52} & E_{53} & E_{54} & E_{55}
\end{array}\right)
$$

Note that we have the subalgebra chain

$$
g l(m \mid n) \supset g l(m \mid n-1) \supset \ldots \supset g \prime(m \mid 1) \supset g l(m) \supset \ldots \supset g l(1)
$$

The Gelfand-Tsetlin basis for $g /(n)$

A Gelfand-Tsetlin basis of a $g /(n)$ module $V(\Lambda)$ is given by all possible triangular arrays $\left(\lambda_{i, j}\right)_{n \geqslant i \geqslant j \geqslant 1}$ of integers

$$
\begin{array}{ccccccccc}
\lambda_{n, 1} & & \lambda_{n, 2} & & \ldots & & \lambda_{n, n-1} & & \lambda_{n, n} \\
& \lambda_{n-1,1} & & \lambda_{n-1,2} & & \ldots & & \lambda_{n-1, n-1} & \\
& & \ldots & & \ldots & & \ldots & \\
& & & \lambda_{2,1} & & \lambda_{2,2} & & \\
& & & & \lambda_{1,1} & & & &
\end{array}
$$

where the top row is fixed $\left\{\lambda_{n, 1}, \lambda_{n, 2}, \ldots, \lambda_{n, n}\right\}=\Lambda$, each row obeys lexicality, and the lower rows are subject to the betweeness conditions

$$
\lambda_{i+1, j} \leqslant \lambda_{i, j} \leqslant x_{i+1, j+1}
$$

The Gelfand-Tsetlin basis for $g /(2 \mid 3)$

A Super Gelfand-Tsetlin basis of a $g /(m \mid n)$ module $V(\Lambda)$ is given by a triangular array $\left(\lambda_{p, i}\right) \quad 1 \leq i \leq p \leq m+n$ of integers

where the top row is fixed $\left\{\lambda_{m+n, 1}, \lambda_{m+n, 2}, \ldots, \lambda_{m+n, m+n}\right\}=\Lambda$. The even labels have the same branching conditions as the $g l(m)$ case. The odd labels are subject to the super branching conditions

$$
\lambda_{p+1, i}-\lambda_{p, i} \in\{0,1\} .
$$

Our goal

To calculate the matrix elements $\langle p| E_{i j}|q\rangle$ for all $g /(m \mid n)$ generators $E_{i j}$ and all GT basis states $\langle p|$ and $|q\rangle$ we will take these steps

- Construct a matrix composed of the generators
- Notice that this matrix satisfies a polynomial identity.
- This identity allows us to define a set of projection operators.
- We then construct a vector operator ψ using the $g l(m \mid n)$ generators.
- Each component ψ^{i} of this vector operator can be projected out into 'shift components' via the use of the projection operators.

The adjoint matrix

Consider a matrix whose elements are generators of $g /(m \mid n)$.
We will call this the $g /(m \mid n)$ adjoint matrix:

$$
\mathcal{A}_{\alpha}^{\beta}=-(-1)^{(\alpha)(\beta)} E_{\beta \alpha} .
$$

\mathcal{A} may be regarded as an operator on the tensor product representation $V_{\epsilon_{1}} \otimes V(\Lambda)$ where $V_{\epsilon_{1}}$ is the vector rep. Note that we have

$$
V_{\epsilon_{1}} \otimes V(\Lambda)=\oplus_{i=1}^{m+n} V\left(\Lambda+\epsilon_{i}\right)
$$

Characteristic identities

Theorem (Gould,1987): The adjoint matrix \mathcal{A} satisfies the characteristic identity

$$
\begin{equation*}
\prod_{i=1}^{m}\left(\mathcal{A}-\alpha_{i}\right) \prod_{\mu=1}^{n}\left(\mathcal{A}-\alpha_{\mu}\right)=0 \tag{1}
\end{equation*}
$$

when acting on an irreducible $g /(m \mid n)$ module $V(\Lambda)$ where the even and odd adjoint roots are given by

$$
\alpha_{i}=i-1-\Lambda_{i} .
$$

and

$$
\alpha_{\mu}=\Lambda_{\mu}+m+1-\mu .
$$

Projection operators

Projection operators can be constructed using the characteristic identity

$$
P[a]=\prod_{k \neq a}^{m+n}\left(\frac{\mathcal{A}-\alpha_{k}}{\alpha_{a}-\alpha_{k}}\right)
$$

We can immediately see that they are orthogonal

$$
P[a] P[b]=0 \text { for } a \neq b
$$

and in fact

$$
P[a] P[b]=\delta_{a b} P[a]
$$

also

$$
\sum_{a} P[a]=1
$$

Vector operators

In the superalgebra setting, a general vector operator ψ is defined as a set of operators $\psi^{r}(1 \leq r \leq m+n)$ that obey

$$
\begin{aligned}
{\left[E_{p q}, \psi^{r}\right] } & =(-1)^{(\psi)((p)+(q))} \pi_{\varepsilon_{1}}\left(E_{p q}\right)_{s r} \psi^{s} \\
& =(-1)^{(\psi)((p)+(q))} \delta_{q}^{r} \psi^{p}
\end{aligned}
$$

Conveniently, the right hand column of the adjoint matrix defined earlier forms a vector operator ψ

$$
\psi^{p}=(-1)^{(p)} E_{p, m+n+1}
$$

Shift operators

Each component of ψ can be resolved into shift components

$$
\psi^{p}=\sum_{i=1}^{m} \psi[i]^{p}+\sum_{\mu=1}^{n} \psi[\mu]^{p} .
$$

where

$$
\begin{equation*}
\psi[r]^{p}=\psi^{q} P[r]_{q}^{p} \quad 1 \leq a \leq m+n \tag{2}
\end{equation*}
$$

The shift components cause the following changes to the representation labels \wedge

$$
\begin{gathered}
\psi[i]: \Lambda_{j} \rightarrow \Lambda_{j}+\delta_{i j} \quad(1 \leq i, j \leq m), \\
\psi[\mu]: \Lambda_{\nu} \rightarrow \Lambda_{\nu}+\delta_{\nu \mu} \quad(1 \leq \mu, \nu \leq n) .
\end{gathered}
$$

Factorization of the matrix elements

With a little work we notice that

$$
\begin{aligned}
& \left\langle\binom{\Lambda}{s}\right| \psi^{\dagger}[a]^{\beta} \psi[a]^{\alpha}\left|\binom{\Lambda}{p}\right\rangle \\
& \left.\quad=\left|\left\langle\Lambda+\varepsilon_{a}\right|\right| \psi| | \Lambda\right\rangle\left.\right|^{2}\left\langle\binom{\Lambda}{s}\right| P[a]_{\beta}^{\alpha}\left|\binom{\Lambda}{p}\right\rangle
\end{aligned}
$$

And with more work (starting from the characteristic identity) we obtain...

The matrix element equation for elementary generators

$$
\begin{gathered}
E_{p, p+1}|\mu\rangle=\sum_{r=1}^{p} N_{p}^{r}|\mu\rangle_{r p} . \\
\left(N_{p}^{r}\right)^{2}=\prod_{k \neq r=1}^{m}\left(\frac{\left(\alpha_{k, p}-\alpha_{r, p}-[r]\right)\left(\alpha_{k, p}-\alpha_{r, p}+1-[r]\right)}{\left(\alpha_{k, p-1}-\alpha_{r, p}-[r]\right)\left(\alpha_{k, p+1}-\alpha_{r, p}+1-[r]\right)}\right) \\
\times\left(\frac{\prod_{k=m+1}^{p-1}\left(\alpha_{k, p-1}-\alpha_{r, p}-1-[r]\right) \prod_{k=m+1}^{p+1}\left(\alpha_{k, p+1}-\alpha_{r, p}-[r]\right)}{\prod_{k \neq r=m+1}^{p}\left(\alpha_{k, p}-\alpha_{r, p}-1-[r]\right)\left(\alpha_{r, p}-\alpha_{k, p}+[r]\right)}\right)
\end{gathered}
$$

where

$$
\alpha_{i, p \pm 1}=i-1-\lambda_{i, p \pm 1}, \quad \alpha_{\mu, p \pm 1}=\lambda_{\mu, p \pm 1}+m+1-\mu
$$

and

$$
[r]=(-1)^{(r)} \in\{+1,-1\}
$$

The matrix element equation for the non-elementary generators

$$
\begin{equation*}
N\left[u_{p} u_{p-1} \ldots u_{l}\right]= \pm \prod_{r=l}^{p} N_{u_{r}}^{r} \prod_{s=l+1}^{p}\left[-\left(\bar{\beta}_{u_{s}}-\bar{\alpha}_{u_{s}-1}+1\right)^{-1}\left(\bar{\beta}_{u_{s}}-\bar{\alpha}_{u_{s-1}}\right)^{-1}\right]^{1 / 2} \tag{3}
\end{equation*}
$$

Future work

- Matrix elements of type 2 modules
- Generalizations to the quantized superalgebra $U_{q}(g /(m \mid n))$
- Generalizations to arbitary tensor products - the pattern calculus.

Future work

- Matrix elements of type 2 modules
- Generalizations to the quantized superalgebra $U_{q}(g /(m \mid n))$
- Generalizations to arbitary tensor products - the pattern calculus.

Thank You!

