Higher spin fields: Cubic and Quartic interactions

Mirian Tsulaia
Department of Education, Science, Technology and Mathematics University of Canberra
Australian and New Zealand Association of Mathematical Physics Mooloolaba, 28 November 2013

Plan of the talk

- Motivation
- BRST Approach
- Solutions for cubic and quartic vertices
- Consistency checks for massless and massive fields
- Conclusions

Based on

- I.L.Buchbinder, P.Dempster, M.T: 1308.5539 (Nucl.Phys.B 877, 260, 2013) and also
- P.Dempster, M.T: 1203.5597 (Nucl.Phys.B 865, 353, 2012)
- A.Fotopoulos, M.T: 1009.0727 (JHEP 1011, 086, 2010)

Motivation

- Massless spin 1 and spin 2 field can propagate on any gravitational background.
- Free higher spin theory is usually formulated on a constant curvature background: flat, de Sitter, Anti- de Sitter - one has a sufficient abelian gauge invariance of a free action for a field with $s \geq 3$.
- Interacting theory of massless higher spin fields: for AdS is consistent: M.A.Vasiliev PLB 285 225, 1992; One needs an infinite number of fields.
- Coleman-Mandula argument is not applicable: No S-Matrix on $A d S$.
- Interacting theory for massless and massive higher spin fields on a flat backgrounds. We can build cubic, quartic etc interaction vertices. Is it enough for consistency?

BRST Approach

- A higher spin field (either massless or massive) can be described by rank s tensor field $\phi_{\mu_{1} \mu_{2} \ldots \mu_{s}}(x)$.
- On-shell it should obey mass-shell and transversality conditions

$$
\square \phi_{\mu_{1} \mu_{2} \ldots \mu_{s}}(x)=\partial^{\mu_{1}} \phi_{\mu_{1} \mu_{2} \ldots \mu_{s}}(x)=0 .
$$

- For massive fields

$$
\left(\square-m^{2}\right) \phi_{\mu_{1} \mu_{2} \ldots \mu_{s}}(x)=\partial^{\mu_{1}} \phi_{\mu_{1} \mu_{2} \ldots \mu_{s}}(x)=0 .
$$

- Introduce an auxiliary Fock space

$$
\left[\alpha_{\mu}, \alpha_{\nu}^{+}\right]=\eta_{\mu \nu}, \quad \alpha_{\mu}|0\rangle=0
$$

and operators $l_{0}=-\square, l=-i \alpha \cdot \partial$ (divergence), $l^{+}=-i \alpha^{+} \cdot \partial$

$$
l_{0}=\left[l, l^{+}\right] .
$$

BRST approach

- Ghost variables c_{0}, c, c^{+}, (with the ghost number +1) conjugate momenta b_{0}, b^{+}, b (with the ghost number -1)

$$
\left\{c_{0}, b_{0}\right\}=\left\{c^{+}, b\right\}=\left\{c, b^{+}\right\}=1
$$

- Nilpotent BRST charge is

$$
Q=c_{0} l_{0}+c l^{+}+c^{+} l-c^{+} c b_{0} .
$$

- The higher spin field $|\Phi\rangle(|\phi\rangle$ is physical, $|C\rangle$ and $|D\rangle$ are auxiliary):

$$
|\Phi\rangle=|\phi\rangle+c^{+} b^{+}|C\rangle+c_{0} b^{+}|D\rangle .
$$

- "Massive" BRST charge: dimensional reduction from the massless one

$$
Q=c_{0}\left(l_{0}+m^{2}\right)+c\left(l^{+}+m \alpha_{D}^{+}\right)+c^{+}\left(l+m \alpha_{D}\right)-c^{+} c b_{0} .
$$

BRST approach

- The free Lagrangian has a form

$$
L=\int d c_{0}\langle\Phi \mid Q \| \Phi\rangle
$$

- It is invariant under gauge transformations

$$
\delta|\phi\rangle=Q|\Lambda\rangle, \quad|\Lambda\rangle=b^{+}|\lambda\rangle \quad \text { since } \quad Q^{2}=0
$$

since $Q^{2}=0$.

- Equation of motion (massless):

$$
l_{0}|\Phi\rangle=l^{+}|C\rangle, \quad l_{0}|D\rangle=l|C\rangle, \quad|C\rangle=l|\phi\rangle-l^{+}|D\rangle .
$$

- Gauge transformations

$$
\delta|\phi\rangle=l^{+}|\lambda\rangle, \quad \delta|C\rangle=l_{0}|\lambda\rangle, \quad \delta|D\rangle=l|\lambda\rangle .
$$

- We can gauge away $|C\rangle$ and $|D\rangle$.

BRST Approach

To build quartic interactions we take four copies of Fock spaces introduced above. The Lagrangian

$$
\begin{aligned}
L= & \sum_{i=1}^{4} \int d c_{0}^{i}\left\langle\Phi_{i}\right| Q_{i}\left|\Phi_{i}\right\rangle+g\left(\int d c_{0}^{1} d c_{0}^{2} d c_{0}^{3}\left\langle\Phi_{1}\right|\left\langle\Phi_{2}\right|\left\langle\Phi_{3}\right|\left|V_{3}\right\rangle+c y c .+h . c\right) \\
& +g^{2}\left(\int d c_{0}^{1} d c_{0}^{2} d c_{0}^{3} d c_{0}^{4}\left\langle\Phi_{1}\right|\left\langle\Phi_{2}\right|\left\langle\Phi_{3}\right|\left\langle\Phi_{4}\right|\left|V_{4}\right\rangle+h . c\right)
\end{aligned}
$$

Gauge transformations

$$
\begin{aligned}
\delta\left|\Phi_{i}\right\rangle= & Q_{i}\left|\Lambda_{i}\right\rangle-g\left(\int d c_{0}^{i+1} d c_{0}^{i+2}\left(\left\langle\Phi_{i+1}\right|\left\langle\Lambda_{i+2}\right|+\left\langle\Phi_{i+2}\right|\left\langle\Lambda_{i+1}\right|\right)\left|V_{3}\right\rangle+c y c .\right) \\
& +(-1)^{i} g^{2} \int d c_{0}^{i+1} d c_{0}^{i+2} d c_{0}^{i+3}\left[\left\langle\Phi_{i+1}\right|\left\langle\Phi_{i+2}\right|\left\langle\Lambda_{i+3}\right|\left|V_{4}\right\rangle+c y c .\right] .
\end{aligned}
$$

Here g is a coupling constant, $\left|V_{3}\right\rangle$ and $\left|V_{4}\right\rangle$ are cubic and quartic vertices.

BRST Approach

The invariance of the Lagrangian under the gauge transformations imposes constraints on $\left|V_{3}\right\rangle$ and $\left|V_{4}\right\rangle$.

- Invariance in the zeroth order in g guaranteed by $Q_{i}^{2}=0$.
- Invariance in the first order in g requires

$$
\left(Q_{i}+Q_{j}+Q_{k}\right)\left|V_{3}\right\rangle_{i, j, k}=0, \quad i \neq j \neq k
$$

- Invariance in the second order in g requires

$$
\begin{align*}
\frac{1}{3} \sum_{i=1}^{4} Q_{i}\left|V_{4}\right\rangle_{a, b, \alpha, \beta}= & (\mathcal{V}(a, b ; \alpha, \beta)+\mathcal{V}(b, \alpha ; a, \beta)-(a \leftrightarrow b)) \\
& +(\mathcal{V}(\alpha, a ; b, \beta)-(a \leftrightarrow \alpha)) \tag{1}
\end{align*}
$$

where

$$
\int d c_{0}^{i}{ }_{a, b, i}\left\langle V_{3} \| V_{3}\right\rangle_{\alpha, \beta, i}=\mathcal{V}(a, b ; \alpha, \beta),
$$

Solutions for Cubic and Quartic vertices

- Massless flat (the ghost completion is omitted) cubic vertices

$$
V_{3}=F\left(\Delta_{1}\right) R\left(\Delta_{2}\right) Q\left(\Delta_{3}\right)
$$

where

$$
\begin{gathered}
\Delta_{1}=a_{1}\left(\alpha^{(1)+} \cdot\left(\partial^{(2)}-\partial^{(3)}\right)+c y c\right), \quad \Delta_{2}=a_{2}\left(\alpha^{(1)+} \cdot \alpha^{(1)+}+c y c\right) \\
\Delta_{3}=a_{3}\left(\left(\alpha^{(2)+} \cdot \alpha^{(3)+}\right)\left(\alpha^{(1)+} \cdot\left(\partial^{(2)}-\partial^{(3)}\right)\right)+c y c\right)
\end{gathered}
$$

- Massless flat quartic vertices (the simplest ones, s-channel)

$$
\begin{aligned}
\left|V_{4}\right\rangle_{s}= & -\frac{1}{s} \sum_{k, m, n=0}^{\infty} \frac{F^{(k+m)}(0) F^{(k+n)}(0)}{k!m!n!}\left(a_{1}^{2} p_{12} \cdot p_{34}\right)^{k} \\
& \times\left[a_{1}\left(2 \alpha^{1+} \cdot p_{2}-2 \alpha^{2+} \cdot p_{1}-c^{1+} b_{0}^{2}+c^{2+} b_{0}^{1}\right)\right]^{m} \\
& \times\left[a_{1}\left(2 \alpha^{3+} \cdot p_{4}-2 \alpha^{4+} \cdot p_{3}-c^{3+} b_{0}^{4}+c^{4+} b_{0}^{3}\right)\right]^{n}|0\rangle_{1234}
\end{aligned}
$$

Solutions for Cubic and Quartic vertices

- Massive case R. Metsaev: Phys. Lett. B 720 237, 2013.
- Let us consider a system of $s-s-0$ when all fields have the same mass m.
Cubic vertices are functions of (ghosts are omitted again)

$$
L^{(i)}=a_{1}\left(\alpha^{(i)} \cdot\left(p^{(i+1)}-p^{(i+2)}\right)\right)
$$

and

$$
Q^{(i, i+1)}=a_{2}\left(\alpha^{(i)} \cdot \alpha^{(i+1)}+\frac{\alpha_{D}^{(i)}}{2 a_{1} m} L^{i+1}-\frac{\alpha_{D}^{(i+1)}}{2 a_{1} m} L^{i}-\frac{1}{2} \alpha_{D}^{(i)} \alpha_{D}^{(i+1)}\right)
$$

- We have undetermined coupling constants a_{i} both for massive and massless cases.
- We have guaranteed the gauge invariance, but is it enough?

Consistency checks for massless and massive fields

- Consider four point amplitude with scalars as external fields.
- It is a simplest possible one and is a direct analog of Veneziano amplitude.
- One can check different types of coupling constants a_{i} and use different methods: direct analysis via Feynman diagrams or BCFW (R.Britto, F.Cachazo, B.Feng, E.Wittem, Phys.Rev.Lett 94, 181602, 2005) relations.
- The consistency checks indicate that the theory which contains only massless higher spin point particles on Minkowski background should have a trivial S-matrix unless some nonlocal/composite objects are added into the theory.
- An example of such nonlocal composite object is Stringy Pomeron. (first introduced by R.Brower, J. Polchinski, M.Strassler, C.Tan JHEP 0712, 005, 2007.)

Consistency checks for massless and massive fields

- Massive case: consider a cubic vertex for $s-s-0$ system, where the scalar is considered as a background field.
- Potentially two problems:
- Nonlinear terms violate transversality condition, thus nonphysical polarizations appear. Causal propagation is violated (the Velo-Zwanziger problem)
- For 3-3-0 the first condition requires

$$
\begin{aligned}
0=g & \frac{a_{1}^{4} a_{2}}{4 m}\left[8\left(\partial_{\mu_{1} \mu_{2}} \phi_{\nu_{1} \nu_{2} \nu_{3}}\right)\left(\partial_{\nu_{1} \nu_{2} \nu_{3}} \phi\right)-16\left(\partial_{\mu_{1}} \phi_{\nu_{1} \nu_{2} \nu_{3}}\right)\left(\partial_{\mu_{2} \nu_{1} \nu_{2} \nu_{3}} \phi\right)\right. \\
& \left.+8 \phi_{\nu_{1} \nu_{2} \nu_{3}}\left(\partial_{\mu_{1} \mu_{2} \nu_{1} \nu_{2} \nu_{3}} \phi\right)\right] .
\end{aligned}
$$

- The second condition requires

$$
a_{2}=-\frac{2}{\mathcal{D}+2} a_{1}^{2} m^{2},
$$

I.e., a very large m is required.

Generalization, Conclusions, Outlook

- The method of construction of cubic and quartic interaction verices is valid also for an $A d S_{\mathcal{D}}$ background. The BRST charge on $A d S_{\mathcal{D}}$: A.Sagnotti, M.T. : Nucl.Phys.B 682, 83, 2004.
- On the Minkowski background the gauge invariance is necessary but not a sufficient condition for a consistent higher order interactions.
- The theory of point particles + composite/extended objects can be very interesting. One example of such kind of theories is the String Theory itself.
- The theory of massive higher spin particles (again apart from the String Theory), what can we say about it?
- Many other open questions and problems.

