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LWhat cloaking isn’t

Lcamouflage

NOT CAMOUFLAGE
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Lscience fiction (any more)

NOT SCIENCE FICTION
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LWhat cloaking isn’t

Lmagic

NOT (HOLLYWOOD) MAGIC
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LWhat cloaking is

L Cylindrical cloak

CYLINDRICAL ELECTF%OMAGNETIC CLOK
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LWhat cloaking is
Lthe tailors

D. Smith, D. Schurig, S. Cummer
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LWhat cloaking is

Lkind of like a lens
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Diverging lens
Pendry, et. al. 2006

BENDS LIGHT LIKE A LENS. NO SHADOW/REFLECTION.
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LWhat cloaking is

L cloaking in action (Schurig et. al. 2006)

a) Measured free field

b) Measured scattering without cloak
c) Full parameter simulation

d) Reduced parameter simulation

e) Measured scattering with cloak

Scale: Instantaneous field intensity
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LWhat cloaking is

Lcloaking in action (Chen et. al. 2013)

Projector

PITS Cloak
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L Metamaterials
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L Metamaterials

Metamaterials

» Engineered materials
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L Metamaterials

Metamaterials

» Engineered materials
» Construct and embed electric and magnetic dipoles
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L Metamaterials

Metamaterials

» Engineered materials

» Only works for wavelengths larger than dipole size
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L Metamaterials

Metamaterials

» Engineered materials

» Tailor dipole arrangement as desired
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L Metamaterials

Metamaterials

» Engineered materials

» Total control over electromagnetic response of the material




Transformation Optics and the mathematics of invisibility

L Metamaterials

Metamaterials

» Engineered materials

» Need not be isotropic or homogeneous
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L Metamaterials

Metamaterials

» Engineered materials

» Allows for bizarre material properties (e.g. negative
refractive index)
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L Metamaterials

L negative refraction
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L Metamaterials

L negative refraction

positive-index material negative-index material
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L Metamaterials

L negative refraction
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L Metamaterials

Lmetamaterial element

cyl. r s Ur

T » Precise design and engineering of
2 0.254 1.677 0.023 . .

SR O 221 SIS0 1052 complicated dipole arrangement

4 0280 005S

b 0.208 1.825 0.120

6 0.190 1.886 0.154

7 OIS IRIEO SN A]13 8

8 0.148  2.027 0.220

9 0.129 2.110 0.250
10 L 209 0270
Schurig, et. al. 2006
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L Metamaterials

Lmetamaterial element

cyl. r s e

1 0.260 1.654 0.003

2 0.254 1.677 0.023

3 0245 1.718 0.052

4 0280 005S . . .

S (20 L2 » Inverse problem: Given desired field
7 0173 1951 0.8 behavior, what are required material
8 0.148  2.027 0.220 n

9 0.129 2.110  0.250 parameters*

10 L 209 0270
Schurig, et. al. 2006



Transformation Optics and the mathematics of invisibility

LMaxweII's Equations

Typical 3-dimensional vector representation of electrodynamics:

Maxwell’s Equations

VD:pa VB:O7 VXH_%?:‘L VXE+%:O

Potentials Constitutive Relations

E=Vy, B=VxA D=¢cE, B=_puH

Transformation Optics is based on:
@ The covariance of Maxwell’s equations
© Passive vs. Active transformations
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LMaxweII's Equations

Lpassive transformation

Transformed Maxwell Egs.

v
B/
V'-B =0, V’xE’+%7:0
oD’
/'D/:/ / Hl_ :/
\Y% o, V' x T3 J

Transformed Constitutives
/I ! ! __ )/
" D'=¢F, B =yH

><\
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LMaxweII's Equations

L active transformation

Transformed Maxwell Egs.

’ /

v V-B’:O, V><E’+@:O
ot
oD’

/I ! :/
V-D'=p, VxH 13 J

Transformed Constitutives

D/ — €/E/, B/ — M/H/

X

Question: Given an active transformation that produces a new
set of fields, can we find parameters ¢’ and . such that the new
fields are a solution?
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L Outline

@ A Crash Course in Differential Geometry

@ Classical Electrodynamics in Vacuum

e Classical Electrodynamics in Linear Dielectrics
@ Transformation Optics

© Extensions of the Transformation method

e Conclusions
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L Differential Geometry

Q A Crash Course in Differential Geometry
manifolds, tangent and cotangent spaces
tensor products

exterior derivative

metric

volume

Hodge dual

geometry summary
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L Differential Geometry

L manifolds, tangent and cotangent spaces

For our purposes a manifold is a collection of points
» May have some intuitive shape
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L Differential Geometry

L manifolds, tangent and cotangent spaces

Can attach a flat “tangent space” to each point p, called T,(M)

» Tangent space has same
dimension as M

» Linear approximation of the
manifold
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L Differential Geometry

L manifolds, tangent and cotangent spaces

To(M) is a vector space

» Tangent vectors live in Tp(M)

» Each point has its own tangent
space
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L Differential Geometry

L manifolds, tangent and cotangent spaces

A parametric curve «(t) on M is the image of v : R — M.

™"

» Tangent to the curve at pis T = & ,
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L Differential Geometry

L manifolds, tangent and cotangent spaces

A parametric curve «(t) on M is the image of v : R — M.

™"

» Tangenttothecurve atpis T = %
P

» Tangent vectors at p < directional derivatives at p.
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L Differential Geometry

L manifolds, tangent and cotangent spaces

A parametric curve «(t) on M is the image of v : R — M.

™"

» Tangent to the curve at pis T = & ,

» Tangent vectors at p < directional derivatives at p.
» {;2.} forms basis for To(M)
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L Differential Geometry

L manifolds, tangent and cotangent spaces

A parametric curve «(t) on M is the image of v : R — M.

™"

v

; d
Tangent to the curve atpis T = F’ty )

Tangent vectors at p < directional derivatives at p.
{52:} forms basis for T,(M)
Collection of T,(M) ¥V p € M is labeled T(M)

v

v

v
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L Differential Geometry

L manifolds, tangent and cotangent spaces

A parametric curve «(t) on M is the image of v : R — M.

™"

v

; d
Tangent to the curve atpis T = F’ty )

Tangent vectors at p < directional derivatives at p.
{52:} forms basis for T,(M)

Collection of T,(M) ¥V p € M is labeled T(M)

V € T(M) is a vector field

v

v

v

v
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L Differential Geometry

L manifolds, tangent and cotangent spaces

Cotangent Space: T;(M) = adjoint of Tp(M)
» Space of R-valued functions on T,(M)
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L Differential Geometry

L manifolds, tangent and cotangent spaces

Cotangent Space: T;(M) = adjoint of Tp(M)
» Space of R-valued functions on T,(M)
» Fora € T;(M), v e Tp(M), then a(v) = rforr e R
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L Differential Geometry

L manifolds, tangent and cotangent spaces

Cotangent Space: T;(M) = adjoint of Tp(M)
» Space of R-valued functions on T,(M)
» Fora € T;(M), v e Tp(M), then a(v) = rforr e R
» m-dimensional vector space
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L Differential Geometry

L manifolds, tangent and cotangent spaces

Cotangent Space: T;(M) = adjoint of Tp(M)
» Space of R-valued functions on T,(M)
» Fora € T;(M), v e Tp(M), then a(v) = rforr e R
» m-dimensional vector space
> If {0,} is basis of Tp(M), then {dx*} is basis of T;(M)

> dx(9,) = dxt 2 = o
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L Differential Geometry

L manifolds, tangent and cotangent spaces

Cotangent Space: T;(M) = adjoint of Tp(M)
» Space of R-valued functions on T,(M)
Fora € T;(M), v € Tp(M), then a(v) =rforre R
m-dimensional vector space
If {0,.} is basis of Tp(M), then {dx*} is basis of T;(M)
> dx#(0,) = dxt 2% = ot
Collection of all T5(M) is labeled T*(M)

v

v

v

v
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L Differential Geometry

L manifolds, tangent and cotangent spaces

Cotangent Space: T;(M) = adjoint of Tp(M)
» Space of R-valued functions on T,(M)

Fora € T;(M), v € Tp(M), then a(v) =rforre R

m-dimensional vector space

If {0,.} is basis of Tp(M), then {dx*} is basis of T;(M)
> dx(9,) = dxt 2 = o

Collection of all T5(M) is labeled T*(M)

a € T*(M) called a differential 1-form

v

v

v

v

v
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L Differential Geometry

Ltensor products

Tensor products generalize multiplication between vector
spaces v, u, w € Tp(M)

Tensor Product

General bilinear operation
» (VFU) QW =VROW+URW
> VR((U+W)=VRU+VRW
» alveu)=(av)®@u
=Vv® (au)
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L Differential Geometry

Ltensor products

Tensor products generalize multiplication between vector
spaces v, u, w € Tp(M)

Tensor Product Wedge Product

General bilinear operation . " .
Alternating bilinear operation
» (VFU) QW =VROW+URW .
» AlsorequirevAU = —UAV

> V U+W)=VRIU+VXRW
@ (u+w) QU+VER s UAUZO

» alveu)=(av)®u .
=v® (au) » Generalizes cross product
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L Differential Geometry

Ltensor products

Givenv = v'e; + v2e, + v3e3, and u = u'ey + LPes + UBes

vau= (V2 —v2u')(er Aex)+ (VI —viul)(er Aes)
+ (V2U3 — V3U2)(6’2 A €3)
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L Differential Geometry

Ltensor products

Givenv = v'e; + v2e, + v3e3, and u = u'ey + LPes + UBes

vau= (V2 —v2u')(er Aex)+ (VI —viul)(er Aes)
+ (V2U3 — V3U2)(6’2 A €3)

> VAU E A2T,H(M) (27 exterior product)
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L Differential Geometry

Ltensor products

Givenv = v'e; + v2e, + v3e3, and u = u'ey + LPes + UBes

vau= (V2 —v2u')(er Aex)+ (VI —viul)(er Aes)
+ (V2U3 — V3U2)(6’2 A €3)

> VAU E A2T,H(M) (27 exterior product)
» A2T,(M) has basis {(e1 A €2), (€1 A €3), (€2 A €3)}
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L Differential Geometry

Ltensor products

Givenv = v'e; + v2e, + v3e3, and u = u'ey + LPes + UBes

vau= (V2 —v2u')(er Aex)+ (VI —viul)(er Aes)
+ (V2U3 — V3U2)(6’2 A €3)

» Extend to AKT,(M) (“alternating k-vectors”)
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L Differential Geometry

Ltensor products

Givenv = v'e; + v2e, + v3e3, and u = u'ey + LPes + UBes

vau= (V2 —v2u')(er Aex)+ (VI —viul)(er Aes)
+ (V2U3 — V3U2)(6’2 A €3)

» Extend to AKT,(M) (“alternating k-vectors”)
» Similarly A T;(M) (“alternating k-covectors”)
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L Differential Geometry

Ltensor products

Givenv = v'e; + v2e, + v3e3, and u = u'ey + LPes + UBes

vau= (V2 —v2u')(er Aex)+ (VI —viul)(er Aes)
+ (V2U3 — V3U2)(6’2 A €3)

» Extend to AKT,(M) (“alternating k-vectors”)
» Similarly A T;(M) (“alternating k-covectors”)
» Bundled into AKT(M) and AKT*(M)
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L Differential Geometry

Ltensor products

Givenv = v'e; + v2e, + v3e3, and u = u'ey + LPes + UBes

vau= (V2 —v2u')(er Aex)+ (VI —viul)(er Aes)
+ (V2U3 — V3U2)(6’2 A €3)

v

Extend to AK T,(M) (“alternating k-vectors”)
Similarly A T;(M) (“alternating k-covectors”)
Bundled into AKT(M) and AKT*(M)
Alternating tensors of rank (’6) or (9)

v

v

v
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L Differential Geometry

L exterior derivative

» For smooth f on M, total differential df = f;dx’
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L Differential Geometry

L exterior derivative

» For smooth f on M, total differential df = f;dx’

» Ext. derivative d generalizes the differential of a function to
an operation on alternating k-forms



Transformation Optics and the mathematics of invisibility

L Differential Geometry

L exterior derivative

» For smooth f on M, total differential df = f;dx’
» Ext. derivative d generalizes the differential of a function to
an operation on alternating k-forms

» d(k-form) = (k + 1)-form
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L Differential Geometry

L exterior derivative

v

For smooth f on M, total differential df = f;dx’

Ext. derivative d generalizes the differential of a function to
an operation on alternating k-forms

d(k-form) = (k + 1)-form
Smooth functions on M = 0-forms

v

v

v
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L Differential Geometry

L exterior derivative

For smooth f on M, total differential df = f;dx’

Ext. derivative d generalizes the differential of a function to
an operation on alternating k-forms

d(k-form) = (k + 1)-form
Smooth functions on M = 0-forms
The differential dx = d of coordinate function x

v

v

v

v

v
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L Differential Geometry

L exterior derivative

» For smooth f on M, total differential df = f;dx’

» Ext. derivative d generalizes the differential of a function to
an operation on alternating k-forms

» d(k-form) = (k + 1)-form

» Smooth functions on M = 0-forms

» The differential dx = d of coordinate function x
» dx is a coordinate basis 1-form on T*(M)
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L Differential Geometry

L exterior derivative

» For smooth f on M, total differential df = f;dx’

» Ext. derivative d generalizes the differential of a function to
an operation on alternating k-forms

» d(k-form) = (k + 1)-form

» Smooth functions on M = 0-forms

» The differential dx = d of coordinate function x
» dx is a coordinate basis 1-form on T*(M)

» For any R-valued k-form 3, d(d@) = 0
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L Differential Geometry

L metric

Metric: symmetric, bilinear 2-form, g € (T7*)2(M). Defines inner
product on T(M).
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L Differential Geometry

L metric

Metric: symmetric, bilinear 2-form, g € (T7*)2(M). Defines inner
product on T(M).
» Basically a function that takes two tangent vectors and

returns a number
agV,U)=r
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L Differential Geometry

L metric

Metric: symmetric, bilinear 2-form, g € (T7*)2(M). Defines inner
product on T(M).
» Basically a function that takes two tangent vectors and
returns a number
agV,U)=r
» g(V,«) is a function that takes one tangent vector and
returns a number
» But thisis a 1-form!
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L Differential Geometry

L metric

Metric: symmetric, bilinear 2-form, g € (T7*)2(M). Defines inner
product on T(M).

» Basically a function that takes two tangent vectors and
returns a number
agV,U)=r

» g(V,«) is a function that takes one tangent vector and
returns a number

» But thisis a 1-form!
» So a metric induces a map

g: T(M)— T*(M)

by
GVt = v, = wu” = guviu’
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L Differential Geometry

Lvolume

For m = Dim(M), the vector space A™T*(M) is 1D.
» Implies any a € A™T*(M) &< some w € A"T*(M)
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L Differential Geometry

Lvolume

For m = Dim(M), the vector space A™T*(M) is 1D.
» Implies any a € A™T*(M) &< some w € A"T*(M)
» w called the volume form
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L Differential Geometry

Lvolume

For m = Dim(M), the vector space A™T*(M) is 1D.
» Implies any o € A™T*(M) x some w € A" T*(M)
» w called the volume form
» in local coordinates, a natural, covariant choice is

w =+/|g|(dx A--- Adx™),
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L Differential Geometry

Lvolume

For m = Dim(M), the vector space A™T*(M) is 1D.
Implies any a € A" T*(M) o< some w € A" T*(M)
w called the volume form

in local coordinates, a natural, covariant choice is

w =+/|g|(dx A--- Adx™),

w induces a unique map

v

v

v

v

w: AMET(M) = AKT*(M).
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L Differential Geometry
L Hodge dual

ANm=R) T (M) L A= T (M)

| > |

AET*(M) — ANKT (M)

> g: (¥ « () alt. tensors
> w: (§) < (,2,) alt. tensors

» x=wog: (M%) « (§) alt. tensors and (,°,) + () alt.
tensors
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L Differential Geometry

L geometry summary

Want to describe elctrodynamics on manifolds

» A manifold is a collection of points

tangent & cotangent space at each point

alternating (A) products of tangent/cotangent spaces
metric g defines inner product (symmetric matrix)
canonical volume form w

v

vV vy
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L Differential Geometry

L geometry summary

Want to describe elctrodynamics on manifolds

» “A” constructs alternating k-vector fields and k-forms
» Represented as skew-symmetric matrices

» “d” takes k-form, returns (k + 1)-form
» “x” provides natural map AKT*(M) — AM=KT*(M)
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LClassioal Electrodynamics in Vacuum

e Classical Electrodynamics in Vacuum
@ field strength tensor
@ vacuum action
@ excitation tensor
@ inhomogeneous equations
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LClassioal Electrodynamics in Vacuum

Lfield strength tensor

Classical electrodynamics in vacuum

» Combine (¢, A) into 1-form A = A,
» The field strength tensor F € A2T*(M) encodes E and B
F=dA=F,=A,—A.
» In local frame (or Minkowski space)
0 —Ex —E, —E;
E Ec 0 B: —By
nv

=& -8B 0 B
E; B, —Bx 0

» Recall d(dA) = 0 for any 1-form A
» dF=0 <« Homogeneous Maxwell Egs.
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LClassioal Electrodynamics in Vacuum

Lvacuum action

Inhomogeneous egs. = require action

S=[uL
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LClassioal Electrodynamics in Vacuum

Lvacuum action

Inhomogeneous egs. = require action

S=[uL

L must be a 4-form constructed from A or F
Use only operations A, d, and x.
AANAANAAA =0 Dby antisymmetry of A

F A F is total divergence — No good!

v

v

v

v
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LClassioal Electrodynamics in Vacuum

Lvacuum action

Inhomogeneous egs. = require action

S=[uL

» Use Hodge dual!
/(F/\*F):/ d*x \/Igl(F"F...)
M M

0 B« B B

6 —-Bx 0 E; —E
(*F) \@ |l €wapg 9" Fs, Flw= |8 £ o &
-B, E, —Ex 0
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LClassioal Electrodynamics in Vacuum

L excitation tensor

» The field strength F encodes information about the fields:
» Electric field strength and magnetic flux.
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LClassioal Electrodynamics in Vacuum

L excitation tensor

» Let the excitation tensor G encode information about
» Electric flux and magnetic field strength.

» In a local frame (or Minkowski space)

0 Hx Hy H:
G — |- o b -D
w =\ —-H,-D, 0 Dy
—~H; Dy —Dx 0
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LClassioal Electrodynamics in Vacuum

L excitation tensor

» The field strength F encodes information about the fields:
» Electric field strength and magnetic flux.

» Let the excitation tensor G encode information about
» Electric flux and magnetic field strength.

» In alocal frame (or Minkowski space)

0 Hx Hy H: 0 B« B B
| -H 0 D, -D, [ -B 0 E -E
G = —H, —D, 0 Dy (*F)uw = -By —E, 0 £

—H, D, —Dy 0 —B, E, —Ex 0
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LClassioal Electrodynamics in Vacuum

L excitation tensor

» The field strength F encodes information about the fields:
» Electric field strength and magnetic flux.

» Let the excitation tensor G encode information about
» Electric flux and magnetic field strength.

» In alocal frame (or Minkowski space)

0 Hx H H; 0 B« By B
| =Hx 0 D; —Dy | -Bx 0 E; —-E
G;w = —H, -D; 0 Dy (*F)MV - -By, —E; 0 Ex
—H; D, —Dx 0 -B, E, —Ex O
» G =«F

» Constitutive relations for components of G in terms of
components of F
» Linear map taking xF to G
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LClassioal Electrodynamics in Vacuum

Linhomogeneous equations

The action is generalized to

S=[lFAG+JAA

Vary with respect to A

dG =J Inhomogeneous Maxwell Egs.
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LClassioal Electrodynamics in Linear Dielectrics

e Classical Electrodynamics in Linear Dielectrics
@ macroscopic electrodynamics in polarizable media
@ electrodynamics summary
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LClass‘.ical Electrodynamics in Linear Dielectrics

Lmacroscopic electrodynamics in polarizable media

~—E

+H OO GO GO
A0 @O.O0F
‘00 ereo)'

+H OO ®O GO
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LClassioal Electrodynamics in Linear Dielectrics

Lma\croscopic electrodynamics in polarizable media

Effective theory accounts for average atomic response to
applied fields.

» Applied E induces dipole far field P

— —

Enet = Eapplied +P= Eapplied + )?EEappIied = (T =+ )?E)Eapplied

» New constitutive relation

Dnet = (1 + )=(E)Eapplied = gEapplied
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LClassioal Electrodynamics in Linear Dielectrics

Lmacroscopic electrodynamics in polarizable media

» Macroscopic equations contain material-dependent set of
constitutive relations

» Take the minimal approach: Extend vacuum relations to
more general linear map

G = x(xF)

Guv = %" (xF)ag

» Properties of x:
» Antisymmetric on 15 and 2" sets of indices
» In vacuum, xac(F) = F
» Maximum of 36 independent components
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LClassioal Electrodynamics in Linear Dielectrics

Lma\croscopic electrodynamics in polarizable media

F is sufficient to specify all components of xyac

XvacF
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> Xvac IS Unique, independent of coordinate choice
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LClassioal Electrodynamics in Linear Dielectrics

Lma\croscopic electrodynamics in polarizable media

Components of G = x(xF) can be collected as

D =E°E +%5°B, H=[i°B+ 5°E



Transformation Optics and the mathematics of invisibility

LClassioal Electrodynamics in Linear Dielectrics

Lma\croscopic electrodynamics in polarizable media

Components of G = x(xF) can be collected as

Rearrange to usual representation:

[}
mu

D=ZFE+M"H B=jH+®

m
=u
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Lma\croscopic electrodynamics in polarizable media

=n

Il
i
N
|
Q]

Il
Q1]
o

|
—~
N
)
S—
=n
Sh
=
>
il

Il
N
)
SN—
:f;u

» Essentially equivalent representations
» 3 x 3 matrices are NOT tensors
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Lmacroscopic electrodynamics in polarizable media

0060
(o 00 o) * * *
0000
I
< 0 by _be 0000
x Sy 0000 N B
e "% 0 by 0000
¢ bye  _bie 0000
1 % Py Pk
o ~ -
P A N s 2 0 o5 7 9% 0000
gx 0 P =Py =% 0 —ug ugy 0000 «
5, —byg, 0 by =% nE 0 —mg 8888
€ P15 —bv 0 =% —HEy M O
tz —e ;fgy ’,fgg 0 -5 —*15, —%15 0 v *1G g 0000
% 0 2 — ey 9 0 mp -y v 0 —ng gy 0000
£ -tg 0 g Sy i 0 o e 0 i 0000
% Mg "% 0 e My O —v% —my M O

» x indicates entries that are antisymmetric on either the 15!
or 2 set of indices
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Lelectrodynamics summary

>

Potential 1-form A
Field strength tensor F = dA (alt. 2-form)
» Electric field strength, E
» Magnetic flux, B
Excitation tensor G (alt. 2-form)
» Magnetic field strength, H
» Electric flux, D
Constitutive relation G = %(xF)
» Vacuum is trivial dielectric s.t. xvacF = F
Maxwell’s equations
» dF=0
» dG=J

v

v

v

v
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@ Transformation Optics
@ cylindrical cloak
@ harmonic map

@ other possibilities with covariant formalism
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(a)

x, [em)

®) of

X, [em]

x, lem]

Rahm, et. al. 2008

Typical picture of transformation optics
Start with empty Minkowski space
Perform a coord. transformation
“Open a hole in space”

Fields dragged with coord. points
Fields can’t get into the hole

Find equivalent material

v

v

v

v

v

v
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(M, g, %) s

» Imagine T : M — M C M, g unaffected
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(V.. (Mg
(F,G)
J(FG) N
— | o
- -

» Initial (F, G) dragged to new (F, G)
» Supported only on M
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/ M,g, %), --""
M, g, * ( a8
(M. g, %) "
(F. G, x) S
C(F, G, %)
G = +(xF) SN,
.|\ G=xxF)
T . -

» New field configuration must be supported by new x
» Physically: change fields < change material, (e.g.
dielectric slab in parallel plate capacitor)
> Xinitia May be vacuum, not necessary!
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Some subtleties involved:

v

v

To be rigorous, need < to transform g T M=M
Let T be identity T*(g) =0

Fields (F,G) NOT transformed by T T-MCM—=M
Need 7 to transform (F, G) T*(F)=F

v

v

» f3 T ', thenwecanuse 7 = T
» T called the pullback of T (did not discuss)
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M,g,#) .-~
M, g, * T ( Ve
(M. g,%) PR
(F,G,x) - S
G = (xF) 1( ‘ X)
v G =HxEF) Ty
T o

G=7"G,soatxc M

Gy = T (Gr(g) = T (*7(x) © X7(x) © Fr(n)
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M,g,#) .-~
M, g, * T ( Ve
(M. g,%) PR
(F,G,x) - S
G = (xF) 1( ‘ X)
v G =HxEF) Ty
T o

But from G = #(F) we also have

Gy =0 Xxo T" (Fr(n)
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Mg, %) -~
M,g,* T ( e
(M. g,%) PR
(F.G.x) . S
[ (F.Gox)N

G =x(xF) i ( ~ X) AN

G =*xF)

A N -

Gx = T" (Gr() = T* (*7(0 © X7(x) © Fr(n))

éx =%xoxxo T* (FT(X))

FxoXxo T* (Freg) = T* (x7(x) © X7(x) © Fr(x))



Transformation Optics and the mathematics of invisibility
LTrane‘.formation Optics

FxoXx o T (Freg) = T* (*7(x) © X7(x) © Fr(x))

Can be solved for x:

imwe(x) _ _;m_)\l-z /\a)\/\ﬁ Qv

X

ap

K *aﬂ

Af17r /\719
¥ (TSN

T(x
Thompson 2010

Features

» A is Jacobian matrix of T
» A~ 'is matrix inverse of A

» A and A1 evaluated at x

» % undetermined for x ¢ M
» [nitial x can be non-vacuum » Can be non-Minkowskian



Transformation Optics and the mathematics of invisibility
L Transformation Optics

Lcylindrical cloak

—R;)R
T(t,r.0,2) = (1, (G242, 0, 2)
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Lcylindrical cloak

By, ® Egg, Hop W 22, P2z

» Some parameters < 1
» Complicated, anisotropic medium. How to realize?
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Lcylindrical cloak

Parameter reduction: trade performance for fabrication

V-e(X)E=0
V x p ' (x)B - e(x)2E =0

> p = (X, e — 1 (x)e
» Rescale so g9 = 1.

» Single polarization.
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Lcylindrical cloak
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Lharmonic map

» T(tr6,z)= (t ((’R H%’?,G,z) was linear choice

» Not unique

T ()

» Could let boundary determine cloak
» e.g. let 7 be harmonic map (uet al. 2009)
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Lharmonic map

Assume T harmonic with 7(R2) = R and T(R;) =0

2
VT =0 = T(r)= i (1_’?1)

B &y Hir ® &9y Moo ® €22, P2z B e Hir ® 09y Hoo @ €220 Hzz
4 B
3 3
2 2
1 1
w0 0 0 20 0 s
1 1

T linear T harmonic



Transformation Optics and the mathematics of invisibility

LTrane‘.formation Optics

Lother possibilities with covariant formalism

)2777-7“9()() _ _;\(m_)\n /\O‘)\/\ﬁ Qv op

X

/\_1 T /\_1 0
n*aﬂ ’T(X)X’ul/ T(X)( ) U( ) P

v

Time-mixing transformations (cummer and Thompson, 2011)

T(tx.,2) = (ks xy,2), x#0

v

Applications in relative motion via boost (thompson, et. al. 2011
» Non-vacuum prior media, Xinitial 7 X vac (Thompson 2010)

v

Non-Minkowskian applications (e.g. Earth orbit) (rhompson 2012)

v

Analog Space—times (Thompson and Frauendiener 2010)
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e Extensions of the Transformation method
@ transformation acoustics (Cummer and Schurig 2007)
@ analogue transformation acoustics (arcia-Meca, et. al. 2013)
@ transformation thermodynamics (cuenneau et. al. 2012)
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LE><tensions of the Transformation method

Ltransformation acoustics (Cummer and Schurig 2007)

One path to acoustic cloaking

Pressure perturbations:

b= B\%af (vadiap)

B = bulk modulus
p! = inverse density matrix

v

v

v

~ = spatial metric
Form invariant under spatial coordinate transformations

Can do transformation acoustics with spatial
transformations

v

v
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Lanalogue transformation acoustics (Garcia-Meca, et. al. 2013)

Potential function ¢4 for velocity perturbation vi = V¢4
—0 (0072(3@1 +v- V¢1)) +V'<PV¢1 — pC 2(0r1 + V- Vo )V) =0

» v = background fluid velocity
» p = isotropic mass density

» c= \/g local sound speed

)

A50u(V=99"Dud1) G =&

» ¢4 described by massless KG eq. in acoustic analogue
spacetime
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Lanalogue transformation acoustics (Garcia-Meca, et. al. 2013)

Analogue Acoustic Spacetime

Ou (V=900 — T o 0, (V=55"0)
__________________________________________ I
T (v, pv,Vv) = Guv l Juv — (CR, PRsVR)
| m = = m e e e e e e e e e
Virtual Medium: cy, py, vy Real Medium: cg, pr,Vr

Laboratory Space

» Enables expanded set of transformations
» Time transformations = frequency shifts
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Ltransformation thermodynamics (Guenneau et. al. 2012)

p(X)c(X) 2 = V- (x(xV0) + 5(x, 1)
» p(X) = density
» c¢(x) = specific heat capacity
» r(X) = matrix-valued thermal conductivity

» Invariant to spatial transformations
» Can do transformation thermodynamics
» Thermal cloak
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L Extensions of the Transformation method

Ltransformation thermodynamics (Guenneau et. al. 2012)

Fig. 2. Diffusion of heat from the left on a cloak with R; = 2.10"*m and R, = 3.10 *m.
The temperature is normalized throughout time on the left side of the cell. Snapshots of
temperature distribution at + = 0.001s (a), r = 0.005s (b), r = 0.02s (c). r = 0.05s (d).
Streamlines of thermal flux are also represented with white color in panel (d). The mesh
formed by streamlines and isothermal values illustrates the deformation of the transformed
thermal space: the central disc (“invisibility region’) is a hole in the metric, which is curved

smoothly around it
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e Conclusions
@ future directions
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LConclusions

quture directions

Outstanding issues:
» Complicated, anisotropic, inhomogeneous media

» Conformal transformations — isotropic, inhomogeneous

» Quasi-conformal transformations — neglectable anisotropy
» Other classes of restricted transformations?

» Other optimization tools?

» Perfect transformation media unrealistic

» Incorporate dispersion, dissipation
» Geometrically? Covariantly?
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LConclusions

quture directions

Transformation method based on

» invariance of system of equations
» active transformations

Trans. Optics great potential for future application
Many avenues still to explore
Trans. Acoustics and Trans. thermodynamics popular too

v

v

v

v
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