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What cloaking isn’t

camouflage

NOT CAMOUFLAGE
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What cloaking isn’t

science fiction (any more)

NOT SCIENCE FICTION
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What cloaking isn’t

magic

NOT (HOLLYWOOD) MAGIC
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What cloaking is

Cylindrical cloak

CYLINDRICAL ELECTROMAGNETIC CLOAK
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What cloaking is

the tailors

D. Smith, D. Schurig, S. Cummer
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What cloaking is

kind of like a lens

Pendry, et. al. 2006

BENDS LIGHT LIKE A LENS. NO SHADOW/REFLECTION.
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What cloaking is

cloaking in action (Schurig et. al. 2006)

a) Measured free field
b) Measured scattering without cloak
c) Full parameter simulation
d) Reduced parameter simulation
e) Measured scattering with cloak

Scale: Instantaneous field intensity
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What cloaking is

cloaking in action (Chen et. al. 2013)
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Metamaterials

Metamaterials

I Engineered materials
I Construct and embed electric and magnetic dipoles
I Only works for wavelengths larger than dipole size
I Tailor dipole arrangement as desired
I Total control over electromagnetic response of the material
I Need not be isotropic or homogeneous
I Allows for bizarre material properties (e.g. negative

refractive index)
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Metamaterials

negative refraction
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Metamaterials

negative refraction
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Metamaterials

negative refraction

Image: Anthony Hoffman
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Metamaterials

metamaterial element

Schurig, et. al. 2006

I Precise design and engineering of
complicated dipole arrangement

I Inverse problem: Given desired field
behavior, what are required material
parameters?
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Maxwell’s Equations

Typical 3-dimensional vector representation of electrodynamics:

Maxwell’s Equations

∇ · D = ρ, ∇ · B = 0, ∇× H− ∂D
∂t = J, ∇× E + ∂B

∂t = 0

Potentials
E = ∇ϕ, B = ∇× A

Constitutive Relations
D = εE, B = µH

Transformation Optics is based on:
1 The covariance of Maxwell’s equations
2 Passive vs. Active transformations
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Maxwell’s Equations

passive transformation

x

y

x
¢

y
¢

v

Transformed Maxwell Eqs.

∇′ · B′ = 0, ∇′ × E′ +
∂B′

∂t ′
= 0

∇′ · D′ = ρ′, ∇′ × H′ − ∂D′

∂t ′
= J′

Transformed Constitutives
D′ = ε′E′, B′ = µ′H′
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Maxwell’s Equations

active transformation

x

y

v

v
¢

Transformed Maxwell Eqs.

∇ · B′ = 0, ∇× E′ +
∂B′

∂t
= 0

∇ · D′ = ρ′, ∇× H′ − ∂D′

∂t
= J′

Transformed Constitutives
D′ = ε′E′, B′ = µ′H′

Question: Given an active transformation that produces a new
set of fields, can we find parameters ε′ and µ′ such that the new
fields are a solution?
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Outline

1 A Crash Course in Differential Geometry

2 Classical Electrodynamics in Vacuum

3 Classical Electrodynamics in Linear Dielectrics

4 Transformation Optics

5 Extensions of the Transformation method

6 Conclusions



Transformation Optics and the mathematics of invisibility

Differential Geometry

1 A Crash Course in Differential Geometry
manifolds, tangent and cotangent spaces
tensor products
exterior derivative
metric
volume
Hodge dual
geometry summary

2 Classical Electrodynamics in Vacuum

3 Classical Electrodynamics in Linear Dielectrics

4 Transformation Optics

5 Extensions of the Transformation method

6 Conclusions
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Differential Geometry

manifolds, tangent and cotangent spaces

For our purposes a manifold is a collection of points
I May have some intuitive shape
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Differential Geometry

manifolds, tangent and cotangent spaces

Can attach a flat “tangent space” to each point p, called Tp(M)

I Tangent space has same
dimension as M

I Linear approximation of the
manifold



Transformation Optics and the mathematics of invisibility

Differential Geometry

manifolds, tangent and cotangent spaces

Tp(M) is a vector space

I Tangent vectors live in Tp(M)

I Each point has its own tangent
space
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Differential Geometry

manifolds, tangent and cotangent spaces

A parametric curve γ(t) on M is the image of γ : R→ M.

Tµ
0 1t

γ(t)

I Tangent to the curve at p is T = dγ
dt

∣∣∣
p

I Tangent vectors at p ↔ directional derivatives at p.
I
{

∂
∂xµ

}
forms basis for Tp(M)

I Collection of Tp(M) ∀ p ∈ M is labeled T (M)

I V ∈ T (M) is a vector field
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Differential Geometry

manifolds, tangent and cotangent spaces

Cotangent Space: T ∗p (M) = adjoint of Tp(M)

I Space of R-valued functions on Tp(M)

I For α ∈ T ∗p (M), v ∈ Tp(M), then α(v) = r for r ∈ R
I m-dimensional vector space
I If {∂µ} is basis of Tp(M), then {dxµ} is basis of T ∗p (M)

I dxµ(∂ν) = dxµ ∂
∂xν = δµν

I Collection of all T ∗p (M) is labeled T ∗(M)

I α ∈ T ∗(M) called a differential 1-form
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Differential Geometry

tensor products

Tensor products generalize multiplication between vector
spaces v, u, w ∈ Tp(M)

Tensor Product
General bilinear operation

I (v + u)⊗w = v⊗w + u⊗w
I v⊗ (u + w) = v⊗u + v⊗w
I a(v⊗ u) = (av)⊗ u

= v⊗ (au)

Wedge Product
Alternating bilinear operation

I Also require v∧u = −u∧ v
I u ∧ u = 0
I Generalizes cross product
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Differential Geometry

tensor products

Given v = v1e1 + v2e2 + v3e3, and u = u1e1 + u2e2 + u3e3

v ∧ u = (v1u2 − v2u1)(e1 ∧ e2) + (v1u3 − v3u1)(e1 ∧ e3)

+ (v2u3 − v3u2)(e2 ∧ e3)

I v ∧ u ∈ ∧2Tp(M) (2nd exterior product)
I ∧2Tp(M) has basis {(e1 ∧ e2), (e1 ∧ e3), (e2 ∧ e3)}
I Extend to ∧kTp(M) (“alternating k -vectors”)
I Similarly ∧kT ∗p (M) (“alternating k -covectors”)
I Bundled into ∧kT (M) and ∧kT ∗(M)

I Alternating tensors of rank
(k

0

)
or
(0

k

)
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Differential Geometry

exterior derivative

I For smooth f on M, total differential df = f,idx i

I Ext. derivative d generalizes the differential of a function to
an operation on alternating k -forms

I d(k -form) = (k + 1)-form
I Smooth functions on M = 0-forms
I The differential dx = d of coordinate function x
I dx is a coordinate basis 1-form on T ∗(M)

I For any R-valued k -form β, d(dβ) = 0
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Differential Geometry

metric

Metric: symmetric, bilinear 2-form, g ∈ (T ∗)2(M). Defines inner
product on T (M).

I Basically a function that takes two tangent vectors and
returns a number

g(V,U) = r

I g(V, ∗) is a function that takes one tangent vector and
returns a number

I But this is a 1-form!
I So a metric induces a map

g : T (M)→ T ∗(M)

by
gµνvµ = vν ⇒ vνuν = gµνvµuν
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Differential Geometry

volume

For m = Dim(M), the vector space ∧mT ∗(M) is 1D.
I Implies any α ∈ ∧mT ∗(M) ∝ some ω ∈ ∧mT ∗(M)

I ω called the volume form
I in local coordinates, a natural, covariant choice is

ω =
√
|g|(dx1 ∧ · · · ∧ dxm),

I ω induces a unique map

ω : ∧m−kT (M)→ ∧kT ∗(M).
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Differential Geometry

Hodge dual

∧(m−k)T ∗(M)

?
��

g
//

ω
((

∧(m−k)T (M)oo

ω
vv

?
��

∧kT ∗(M)

OO

g
//

ω

66

∧kT (M)oo

ω

hh OO

I g :
(k

0

)
↔
(0

k

)
alt. tensors

I ω :
(k

0

)
↔
( 0

m−k

)
alt. tensors

I ? = ω ◦ g :
(m−k

0

)
↔
(k

0

)
alt. tensors and

( 0
m−k

)
↔
(0

k

)
alt.

tensors
I ? called “Hodge dual”
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Differential Geometry

geometry summary

Want to describe elctrodynamics on manifolds

I A manifold is a collection of points
I tangent & cotangent space at each point
I alternating (∧) products of tangent/cotangent spaces
I metric g defines inner product (symmetric matrix)
I canonical volume form ω

I “∧” constructs alternating k -vector fields and k -forms
I Represented as skew-symmetric matrices

I “d” takes k -form, returns (k + 1)-form
I “?” provides natural map ∧kT ∗(M)→ ∧m−kT ∗(M)
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Classical Electrodynamics in Vacuum

field strength tensor

Classical electrodynamics in vacuum
I Combine (ϕ, ~A) into 1-form A = Aµ
I The field strength tensor F ∈ ∧2T ∗(M) encodes ~E and ~B

F = dA⇒ Fµν = Aν,µ − Aµ,ν

I In local frame (or Minkowski space)

Fµν =




0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0




I Recall d(dA) = 0 for any 1-form A
I dF = 0 ⇔ Homogeneous Maxwell Eqs.



Transformation Optics and the mathematics of invisibility

Classical Electrodynamics in Vacuum

vacuum action

Inhomogeneous eqs. ⇒ require action

S =
∫

M L

I L must be a 4-form constructed from A or F
I Use only operations ∧, d, and ?.
I A ∧ A ∧ A ∧ A = 0 by antisymmetry of ∧
I F ∧ F is total divergence→ No good!
I Use Hodge dual!

∫

M
(F ∧ ?F) =

∫

M
d4x

√
|g|(FµνFµν)

(?F)µν =
1
2

√
|g| εµναβgαγgβδFγδ, (?F)µν =




0 Bx By Bz
−Bx 0 Ez −Ey
−By −Ez 0 Ex
−Bz Ey −Ex 0
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Classical Electrodynamics in Vacuum

excitation tensor

I The field strength F encodes information about the fields:
I Electric field strength and magnetic flux.

I Let the excitation tensor G encode information about
I Electric flux and magnetic field strength.

I In a local frame (or Minkowski space)

Gµν =




0 Hx Hy Hz
−Hx 0 Dz −Dy
−Hy −Dz 0 Dx
−Hz Dy −Dx 0






Transformation Optics and the mathematics of invisibility

Classical Electrodynamics in Vacuum

excitation tensor

I The field strength F encodes information about the fields:
I Electric field strength and magnetic flux.

I Let the excitation tensor G encode information about
I Electric flux and magnetic field strength.

I In a local frame (or Minkowski space)

Gµν =




0 Hx Hy Hz
−Hx 0 Dz −Dy
−Hy −Dz 0 Dx
−Hz Dy −Dx 0






Transformation Optics and the mathematics of invisibility

Classical Electrodynamics in Vacuum

excitation tensor

I The field strength F encodes information about the fields:
I Electric field strength and magnetic flux.

I Let the excitation tensor G encode information about
I Electric flux and magnetic field strength.

I In a local frame (or Minkowski space)

Gµν =




0 Hx Hy Hz
−Hx 0 Dz −Dy
−Hy −Dz 0 Dx
−Hz Dy −Dx 0


 (?F)µν =




0 Bx By Bz
−Bx 0 Ez −Ey
−By −Ez 0 Ex
−Bz Ey −Ex 0




I G = ?F
I Constitutive relations for components of G in terms of

components of F
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Classical Electrodynamics in Vacuum

inhomogeneous equations

The action is generalized to

S =
∫ 1

2F ∧G + J ∧ A

Vary with respect to A

dG = J Inhomogeneous Maxwell Eqs.
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Classical Electrodynamics in Linear Dielectrics

macroscopic electrodynamics in polarizable media

E

E

+q -qP

E

P
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Classical Electrodynamics in Linear Dielectrics

macroscopic electrodynamics in polarizable media

Effective theory accounts for average atomic response to
applied fields.

I Applied ~E induces dipole far field ~P

~Enet = ~Eapplied + ~P = ~Eapplied + ¯̄χE
~Eapplied = (¯̄1 + ¯̄χE )~Eapplied

I New constitutive relation

~Dnet = (¯̄1 + ¯̄χE )~Eapplied = ¯̄ε~Eapplied
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Classical Electrodynamics in Linear Dielectrics

macroscopic electrodynamics in polarizable media

I Macroscopic equations contain material-dependent set of
constitutive relations

I Take the minimal approach: Extend vacuum relations to
more general linear map

G = ?(χF)

Gµν = ? αβ
µν (χF)αβ

I Properties of χ:
I Antisymmetric on 1st and 2nd sets of indices
I In vacuum, χvac(F) = F
I Maximum of 36 independent components
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Classical Electrodynamics in Linear Dielectrics

macroscopic electrodynamics in polarizable media

χvacF = F is sufficient to specify all components of χvac

(χvac) σρ
γδ =

1
2




 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

  0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

  0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

  0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0


 0 −1 0 0

1 0 0 0
0 0 0 0
0 0 0 0

  0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

  0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

  0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0


 0 0 −1 0

0 0 0 0
1 0 0 0
0 0 0 0

  0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

  0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

  0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


 0 0 0 −1

0 0 0 0
0 0 0 0
1 0 0 0

  0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

  0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

  0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






I χvac is unique, independent of coordinate choice
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Classical Electrodynamics in Linear Dielectrics

macroscopic electrodynamics in polarizable media

Components of G = ?(χF) can be collected as

~D = ¯̄εc~E + ¯̄γb c~B, ~H = ¯̄µc~B + ¯̄γe c~E

Rearrange to usual representation:

~D = ¯̄ε~E + ¯̄γh ~H, ~B = ¯̄µ~H + ¯̄γe ~E

Easily switch back and forth with:

¯̄µ = (¯̄µc)−1 , ¯̄ε = ¯̄εc −
(

¯̄γb c) ¯̄µ ( ¯̄γe c) , ¯̄γh =
(

¯̄γb c) ¯̄µ,
¯̄γe = − ¯̄µ ( ¯̄γe c)

I Essentially equivalent representations
I 3× 3 matrices are NOT tensors
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Classical Electrodynamics in Linear Dielectrics

macroscopic electrodynamics in polarizable media

χ σρ
γδ =

1
2




( 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
∗ ∗ ∗




0 −εc
xx −εc

xy −εc
xz

εc
xx 0 γb c

xz − γb c
xy

εc
xy − γb c

xz 0 γb c
xx

εc
xz γb c

xy − γb c
xx 0




( 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
∗ ∗




0 −εc
yx −εc

yy −εc
yz

εc
yx 0 γb c

yz − γb c
yy

εc
yy − γb c

yz 0 γb c
yx

εc
yz γb c

yy − γb c
yx 0







0 γe c
zx γe c

zy γe c
zz

− γe c
zx 0 −µc

zz µc
zy

− γe c
zy µc

zz 0 −µc
zx

− γe c
zz −µc

zy µc
zx 0




( 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
∗




0 −εc
zx −εc

zy −εc
zz

εc
zx 0 γb c

zz − γb c
zy

εc
zy − γb c

zz 0 γb c
zx

εc
zz γb c

zy − γb c
zx 0







0 − γe c
yx − γe c

yy − γe c
yz

γe c
yx 0 µc

yz −µc
yy

γe c
yy −µc

yz 0 µc
yx

γe c
yz µc

yy −µc
yx 0







0 γe c
xx γe c

xy γe c
xz

− γe c
xx 0 −µc

xz µc
xy

− γe c
xy µc

xz 0 −µc
xx

− γe c
xz −µc

xy µc
xx 0




( 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)




I ∗ indicates entries that are antisymmetric on either the 1st

or 2nd set of indices
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Classical Electrodynamics in Linear Dielectrics

electrodynamics summary

I Potential 1-form A
I Field strength tensor F = dA (alt. 2-form)

I Electric field strength, E
I Magnetic flux, B

I Excitation tensor G (alt. 2-form)
I Magnetic field strength, H
I Electric flux, D

I Constitutive relation G = ?(χF)
I Vacuum is trivial dielectric s.t. χvacF = F

I Maxwell’s equations
I dF = 0
I dG = J
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1 A Crash Course in Differential Geometry
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6 Conclusions
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Transformation Optics

Rahm, et. al. 2008

Typical picture of transformation optics
I Start with empty Minkowski space
I Perform a coord. transformation
I “Open a hole in space”
I Fields dragged with coord. points
I Fields can’t get into the hole
I Find equivalent material
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Transformation Optics

(M,g, ?)
(M,g, ?)

M̃

T

I Imagine T : M → M̃ ⊆ M, g unaffected
I Initial (F,G) dragged to new (F̃, G̃)

I Supported only on M̃
I New field configuration must be supported by new χ̃

I Physically: change fields⇔ change material, (e.g.
dielectric slab in parallel plate capacitor)

I χinitial may be vacuum, not necessary!
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Transformation Optics

(M,g, ?)

(F,G,χ)

G = ?(χF)

(M,g, ?)

M̃

(F̃, G̃, χ̃)

G̃ = ?(χ̃F)
T

I Imagine T : M → M̃ ⊆ M, g unaffected
I Initial (F,G) dragged to new (F̃, G̃)

I Supported only on M̃
I New field configuration must be supported by new χ̃
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Transformation Optics

(M,g, ?)

(F,G,χ)

G = ?(χF)

(M, ĝ, ?̂)

M̃

(F̃, G̃, χ̃)

G̃ = ?̂(χ̃F)

T

T

T

Some subtleties involved:

I To be rigorous, need T to transform g
I Let T be identity

{
T : M → M
T∗(g) = ĝ

I Fields (F,G) NOT transformed by T
I Need T to transform (F,G)

{
T : M̃ ⊆ M → M
T ∗(F) = F̃

I If ∃ T−1, then we can use T = T−1

I T ∗ called the pullback of T (did not discuss)
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Transformation Optics

(M,g, ?)

(F,G,χ)

G = ?(χF)

(M, ĝ, ?̂)

M̃

(F̃, G̃, χ̃)

G̃ = ?̂(χ̃F)

T

T

T

G̃ = T ∗G, so at x ∈ M̃

G̃x = T ∗
(
GT (x)

)
= T ∗

(
?T (x) ◦ χT (x) ◦ FT (x)

)

But from G̃ = ?̂(χ̃F̃) we also have

G̃x = ?̂x ◦ χ̃x ◦ T ∗
(
FT (x)

)

Since G̃x = G̃x

?̂x ◦ χ̃x ◦ T ∗
(
FT (x)

)
= T ∗

(
?T (x) ◦ χT (x) ◦ FT (x)

)
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Transformation Optics

?̂x ◦ χ̃x ◦ T ∗
(
FT (x)

)
= T ∗

(
?T (x) ◦ χT (x) ◦ FT (x)

)

Can be solved for χ̃:

χ̃ πθ
ητ (x) = −?̂ λκ

ητ

∣∣∣
x

ΛαλΛβκ ?
µν

αβ

∣∣∣
T (x)

χ σρ
µν

∣∣∣
T (x)

(Λ−1)πσ(Λ−1)θρ

Thompson 2010

Features

I Λ is Jacobian matrix of T
I Λ−1 is matrix inverse of Λ

I Initial χ can be non-vacuum

I Λ and Λ−1 evaluated at x
I χ̃ undetermined for x /∈ M̃
I Can be non-Minkowskian
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Transformation Optics

cylindrical cloak

χ̃ πθ
ητ (x) = −?̂ λκ

ητ

∣∣∣
x

ΛαλΛβκ ?
µν

αβ

∣∣∣
T (x)

χ σρ
µν

∣∣∣
T (x)

(Λ−1)πσ(Λ−1)θρ

R2 R1 0 R1 R2

T (t , r , θ, z) =
(

t , (r−R1)R2
(R2−R1)

, θ, z
)

¯̄ε = ¯̄µ =


1−R1
r 0 0

0
(

1−R1
r

)−1
0

0 0
(

1−R1
r

)(
R2

R2−R1

)2
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Transformation Optics

cylindrical cloak

¶rr, Μrr ¶ΘΘ , ΜΘΘ ¶zz, Μzz

30 40 50

-1

1

2

3

4

I Some parameters < 1
I Complicated, anisotropic medium. How to realize?
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Transformation Optics

cylindrical cloak

Parameter reduction: trade performance for fabrication

∇ · ε(x)~E = 0
∇× µ−1(x)~B − ε(x)∂

~E
∂t = 0

I µ→ f (x)µ, ε→ f−1(x)ε

I Rescale so µθθ = 1.
I Single polarization.
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Transformation Optics

cylindrical cloak
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Transformation Optics

harmonic map

I T (t , r , θ, z) =
(

t , (r−R1)R2
(R2−R1)

, θ, z
)

was linear choice

I Not unique

T

Ωo

Ωi

T (Ωo)

T (Ωi)

I Could let boundary determine cloak
I e.g. let T be harmonic map (Hu et. al. 2009)



Transformation Optics and the mathematics of invisibility

Transformation Optics

harmonic map

Assume T harmonic with T (R2) = R2 and T (R1) = 0

∇2T = 0 ⇒ T (r) =
R2

2
R2 − R1

(
1− R1

r

)

¶rr, Μrr ¶ΘΘ , ΜΘΘ ¶zz, Μzz

30 40 50

-1

1

2

3

4

T linear

¶rr, Μrr ¶ΘΘ , ΜΘΘ ¶zz, Μzz

30 40 50

-1

1

2

3

4

T harmonic
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Transformation Optics

other possibilities with covariant formalism

χ̃ πθ
ητ (x) = −?̂ λκ

ητ

∣∣∣
x

ΛαλΛβκ ?
µν

αβ

∣∣∣
T (x)

χ σρ
µν

∣∣∣
T (x)

(Λ−1)πσ(Λ−1)θρ

I Time-mixing transformations (Cummer and Thompson, 2011)

T (t , x , y , z) =
(

t
ax+b , x , y , z

)
, x 6= 0

I Applications in relative motion via boost (Thompson, et. al. 2011)

I Non-vacuum prior media, χinitial 6= χvac (Thompson 2010)

I Non-Minkowskian applications (e.g. Earth orbit) (Thompson 2012)

I Analog space-times (Thompson and Frauendiener 2010)
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Extensions of the Transformation method

transformation acoustics (Cummer and Schurig 2007)

One path to acoustic cloaking

Pressure perturbations:

p̈ = B
1√
γ
∂i

(√
γρij∂jp

)

I B = bulk modulus
I ρij = inverse density matrix
I γ = spatial metric
I Form invariant under spatial coordinate transformations
I Can do transformation acoustics with spatial

transformations
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Extensions of the Transformation method

analogue transformation acoustics (García-Meca, et. al. 2013)

Potential function φ1 for velocity perturbation v1 = ∇φ1:

−∂t

(
ρc−2(∂tφ1 + v · ∇φ1)

)
+∇·

(
ρ∇φ1 − ρc−2(∂tφ1 + v · ∇φ1)v

)
= 0

I v = background fluid velocity
I ρ = isotropic mass density

I c =
√

B
ρ local sound speed

m

1√
−g∂µ(

√−ggµν∂νφ1) gµν = ρ
c


−c2+v i v jγij

... −v jγij. . . . . . . . . . . . . .
−v jγij

... γij




I φ1 described by massless KG eq. in acoustic analogue
spacetime
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Extensions of the Transformation method

analogue transformation acoustics (García-Meca, et. al. 2013)

Analogue Acoustic Spacetime

∂µ (
√−ggµν∂νφ1) ∂µ

(√−g̃g̃µν∂ν φ̃1
)

Laboratory Space

Virtual Medium: cV , ρV ,vV Real Medium: cR, ρR,vR

(cV , ρV ,vV )→ gµν g̃µν → (cR, ρR,vR)

T

I Enables expanded set of transformations
I Time transformations⇒ frequency shifts
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Extensions of the Transformation method

transformation thermodynamics (Guenneau et. al. 2012)

ρ(x)c(x)
∂u
∂t

= ∇ · (κ(x∇u) + s(x, t))

I ρ(x) = density
I c(x) = specific heat capacity
I κ(x) = matrix-valued thermal conductivity

I Invariant to spatial transformations
I Can do transformation thermodynamics
I Thermal cloak
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Extensions of the Transformation method

transformation thermodynamics (Guenneau et. al. 2012)
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Conclusions

future directions

Outstanding issues:
I Complicated, anisotropic, inhomogeneous media

I Conformal transformations→ isotropic, inhomogeneous
I Quasi-conformal transformations→ neglectable anisotropy
I Other classes of restricted transformations?
I Other optimization tools?

I Perfect transformation media unrealistic
I Incorporate dispersion, dissipation
I Geometrically? Covariantly?
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Conclusions

future directions

I Transformation method based on
I invariance of system of equations
I active transformations

I Trans. Optics great potential for future application
I Many avenues still to explore
I Trans. Acoustics and Trans. thermodynamics popular too
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