Transformation Optics and the mathematics of invisibility

Robert T. Thompson

Department of Mathematics and Statistics
University of Otago
$2^{\text {nd }}$ ANZAMP meeting, 27 November 2013

Transformation Optics and the mathematics of invisibility
-What cloaking isn't
-What cloaking isn't
Lcamouflage

NOT CAMOUFLAGE
$L_{\text {science fiction (any more) }}$

NOT SCIENCE FICTION
-What cloaking isn't
$\square_{\text {magic }}$

NOT (HOLLYWOOD) MAGIC

CYLINDRICAL ELECTROMAGNETIC CLOAK

D. Smith, D. Schurig, S. Cummer

Transformation Optics and the mathematics of invisibility
What cloaking is
L kind of like a lens

Converging lens

Diverging lens

Pendry, et. al. 2006

BENDS LIGHT LIKE A LENS. NO SHADOW/REFLECTION.

Transformation Optics and the mathematics of invisibility
LWhat cloaking is
-cloaking in action (Schurig et. al. 2006)

Transformation Optics and the mathematics of invisibility
LWhat cloaking is
cloaking in action (Chen et. al. 2013)

Metamaterials

- Engineered materials
- Construct and embed electric and magnetic dipoles
- Only works for wavelengths larger than dipole size
- Tailor dipole arrangement as desired
- Total control over electromagnetic response of the material
- Need not be isotropic or homogeneous
- Allows for bizarre material properties (e.g. negative refractive index)

Metamaterials

- Engineered materials
- Construct and embed electric and magnetic dipoles
- Only works for wavelengths larger than dipole size
- Tailor dipole arrangement as desired
- Total control over electromagnetic response of the material
- Need not be isotropic or homogeneous
- Allows for bizarre material properties (e.g. negative refractive index)

Metamaterials

- Engineered materials
- Construct and embed electric and magnetic dipoles
- Only works for wavelengths larger than dipole size
- Tailor dipole arrangement as desired
- Total control over electromagnetic response of the material
- Need not be isotropic or homogeneous
- Allows for bizarre material properties (e.g. negative refractive index)

Metamaterials

- Engineered materials
- Construct and embed electric and magnetic dipoles
- Only works for wavelengths larger than dipole size
- Tailor dipole arrangement as desired
- Total control over electromagnetic response of the material
- Need not be isotropic or homogeneous
- Allows for bizarre material properties (e.g. negative refractive index)

Metamaterials

- Engineered materials
- Construct and embed electric and magnetic dipoles
- Only works for wavelengths larger than dipole size
- Tailor dipole arrangement as desired
- Total control over electromagnetic response of the material
- Need not be isotropic or homogeneous
- Allows for bizarre material properties (e.g. negative refractive index)

Metamaterials

- Engineered materials
- Construct and embed electric and magnetic dipoles
- Only works for wavelengths larger than dipole size
- Tailor dipole arrangement as desired
- Total control over electromagnetic response of the material
- Need not be isotropic or homogeneous
- Allows for bizarre material properties (e.g. negative refractive index)

Metamaterials

- Engineered materials
- Construct and embed electric and magnetic dipoles
- Only works for wavelengths larger than dipole size
- Tailor dipole arrangement as desired
- Total control over electromagnetic response of the material
- Need not be isotropic or homogeneous
- Allows for bizarre material properties (e.g. negative refractive index)

Transformation Optics and the mathematics of invisibility
LMetamaterials
-negative refraction

Transformation Optics and the mathematics of invisibility
$L_{\text {Metamaterials }}$ negative refraction

L Metamaterials

- negative refraction

Image: Anthony Hoffman

Transformation Optics and the mathematics of invisibility
$L_{\text {Metamaterials }}$
-metamaterial element

cyl.	r	s	μ_{r}
1	0.260	1.654	0.003
2	0.254	1.677	0.023
3	0.245	1.718	0.052
4	0.230	1.771	0.085
5	0.208	1.825	0.120
6	0.190	1.886	0.154
7	0.173	1.951	0.188
8	0.148	2.027	0.220
9	0.129	2.110	0.250
10	0.116	2.199	0.279

- Precise design and engineering of complicated dipole arrangement
- Inverse problem: Given desired field behavior, what are required material parameters?

Schurig, et. al. 2006

cyl.	r	s	μ_{r}
1	0.260	1.654	0.003
2	0.254	1.677	0.023
3	0.245	1.718	0.052
4	0.230	1.771	0.085
5	0.208	1.825	0.120
6	0.190	1.886	0.154
7	0.173	1.951	0.188
8	0.148	2.027	0.220
9	0.129	2.110	0.250
10	0.116	2.199	0.279

- Precise design and engineering of
complicated dipole arrangement
- Inverse problem: Given desired field behavior, what are required material parameters?

Schurig, et. al. 2006

Typical 3-dimensional vector representation of electrodynamics:
Maxwell's Equations
$\nabla \cdot \mathbf{D}=\rho, \quad \nabla \cdot \mathbf{B}=0, \quad \nabla \times \mathbf{H}-\frac{\partial \mathbf{D}}{\partial t}=\mathbf{J}, \quad \nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0$

Potentials

$$
\mathbf{E}=\nabla \varphi, \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

Constitutive Relations

$\mathbf{D}=\varepsilon \mathbf{E}, \quad \mathbf{B}=\mu \mathbf{H}$

Transformation Optics is based on:
(1) The covariance of Maxwell's equations
(2) Passive vs. Active transformations

Transformed Maxwell Eqs.

$$
\begin{array}{lc}
\nabla^{\prime} \cdot \mathbf{B}^{\prime}=0, & \nabla^{\prime} \times \mathbf{E}^{\prime}+\frac{\partial \mathbf{B}^{\prime}}{\partial t^{\prime}}=0 \\
\nabla^{\prime} \cdot \mathbf{D}^{\prime}=\rho^{\prime}, & \nabla^{\prime} \times \mathbf{H}^{\prime}-\frac{\partial \mathbf{D}^{\prime}}{\partial t^{\prime}}=\mathbf{J}^{\prime}
\end{array}
$$

Transformed Constitutives

$$
\mathbf{D}^{\prime}=\varepsilon^{\prime} \mathbf{E}^{\prime}, \quad \mathbf{B}^{\prime}=\mu^{\prime} \mathbf{H}^{\prime}
$$

Transformed Maxwell Eqs.

$$
\begin{array}{ll}
\nabla \cdot \mathbf{B}^{\prime}=0, & \nabla \times \mathbf{E}^{\prime}+\frac{\partial \mathbf{B}^{\prime}}{\partial t}=0 \\
\nabla \cdot \mathbf{D}^{\prime}=\rho^{\prime}, & \nabla \times \mathbf{H}^{\prime}-\frac{\partial \mathbf{D}^{\prime}}{\partial t}=\mathbf{J}^{\prime}
\end{array}
$$

Transformed Constitutives

$$
\mathbf{D}^{\prime}=\varepsilon^{\prime} \mathbf{E}^{\prime}, \quad \mathbf{B}^{\prime}=\mu^{\prime} \mathbf{H}^{\prime}
$$

Question: Given an active transformation that produces a new set of fields, can we find parameters ε^{\prime} and μ^{\prime} such that the new fields are a solution?
(1) A Crash Course in Differential Geometry
(2) Classical Electrodynamics in Vacuum
(3) Classical Electrodynamics in Linear Dielectrics
(4) Transformation Optics
(5) Extensions of the Transformation method
(6) Conclusions
(9) A Crash Course in Differential Geometry

- manifolds, tangent and cotangent spaces
- tensor products
- exterior derivative
- metric
- volume
- Hodge dual
- geometry summary
(2) Classical Electrodynamics in Vacuum
(3) Classical Electrodynamics in Linear Dielectrics

4 Transformation Optics

For our purposes a manifold is a collection of points

- May have some intuitive shape

Can attach a flat "tangent space" to each point p, called $T_{p}(M)$

- Tangent space has same dimension as M
- Linear approximation of the manifold
$T_{p}(M)$ is a vector space

- Tangent vectors live in $T_{p}(M)$
- Each point has its own tangent space

A parametric curve $\gamma(t)$ on M is the image of $\gamma: \mathbb{R} \rightarrow M$.

- Tangent to the curve at p is $T=\left.\frac{d \gamma}{d t}\right|_{p}$
- Tangent vectors at $p \leftrightarrow$ directional derivatives at p.
- $\left\{\frac{\partial}{\partial x^{\mu}}\right\}$ forms basis for $T_{p}(M)$
- Collection of $T_{p}(M) \forall p \in M$ is labeled $T(M)$
- $V \in T(M)$ is a vector field

A parametric curve $\gamma(t)$ on M is the image of $\gamma: \mathbb{R} \rightarrow M$.

- Tangent to the curve at p is $T=\left.\frac{d \gamma}{d t}\right|_{p}$
- Tangent vectors at $p \leftrightarrow$ directional derivatives at p.
- $\left\{\frac{\partial}{\partial x^{\mu}}\right\}$ forms basis for $T_{p}(M)$
- Collection of $T_{p}(M) \forall p \in M$ is labeled $T(M)$ - $V \in T(M)$ is a vector field

A parametric curve $\gamma(t)$ on M is the image of $\gamma: \mathbb{R} \rightarrow M$.

- Tangent to the curve at p is $T=\left.\frac{d \gamma}{d t}\right|_{p}$
- Tangent vectors at $p \leftrightarrow$ directional derivatives at p.
- $\left\{\frac{\partial}{\partial x^{\mu}}\right\}$ forms basis for $T_{p}(M)$
- Collection of $T_{p}(M) \forall p \in M$ is labeled $T(M)$
- $V \in T(M)$ is a vector field

A parametric curve $\gamma(t)$ on M is the image of $\gamma: \mathbb{R} \rightarrow M$.

- Tangent to the curve at p is $T=\left.\frac{d \gamma}{d t}\right|_{p}$
- Tangent vectors at $p \leftrightarrow$ directional derivatives at p.
- $\left\{\frac{\partial}{\partial x^{\mu}}\right\}$ forms basis for $T_{p}(M)$
- Collection of $T_{p}(M) \forall p \in M$ is labeled $T(M)$
- $V \in T(M)$ is a vector field

A parametric curve $\gamma(t)$ on M is the image of $\gamma: \mathbb{R} \rightarrow M$.

- Tangent to the curve at p is $T=\left.\frac{d \gamma}{d t}\right|_{p}$
- Tangent vectors at $p \leftrightarrow$ directional derivatives at p.
- $\left\{\frac{\partial}{\partial x^{\mu}}\right\}$ forms basis for $T_{p}(M)$
- Collection of $T_{p}(M) \forall p \in M$ is labeled $T(M)$
- $V \in T(M)$ is a vector field

Cotangent Space: $T_{p}^{*}(M)=$ adjoint of $T_{p}(M)$

- Space of \mathbb{R}-valued functions on $T_{p}(M)$
- For $\alpha \in T_{p}^{*}(M), v \in T_{p}(M)$, then $\alpha(v)=r$ for $r \in \mathbb{R}$
- m-dimensional vector space
- If $\left\{\partial_{\mu}\right\}$ is basis of $T_{p}(M)$, then $\left\{\mathrm{d} x^{\mu}\right\}$ is basis of $T_{p}^{*}(M)$
- $\mathrm{d} x^{\mu}\left(\partial_{\nu}\right)=\mathrm{d} x^{\mu} \frac{\partial}{\partial x^{\nu}}=\delta_{\nu}^{\mu}$
- Collection of all $T_{p}^{*}(M)$ is labeled $T^{*}(M)$
- $\alpha \in T^{*}(M)$ called a differential 1-form

Cotangent Space: $T_{p}^{*}(M)=$ adjoint of $T_{p}(M)$

- Space of \mathbb{R}-valued functions on $T_{p}(M)$
- For $\alpha \in T_{p}^{*}(M), v \in T_{p}(M)$, then $\alpha(v)=r$ for $r \in \mathbb{R}$

- m-dimensional vector space

- If $\left\{\partial_{\mu}\right\}$ is basis of $T_{p}(M)$, then $\left\{\mathrm{d} x^{\mu}\right\}$ is basis of $T_{p}^{*}(M)$ - $\mathrm{d} x^{\mu}\left(\partial_{\nu}\right)=\mathrm{d} x^{\mu} \frac{\partial}{\partial \mathrm{x}^{\nu}}=\delta_{\nu}^{\mu}$
- Collection of all $T_{p}^{*}(M)$ is labeled $T^{*}(M)$
- $\alpha \in T^{*}(M)$ called a differential 1-form

Cotangent Space: $T_{p}^{*}(M)=$ adjoint of $T_{p}(M)$

- Space of \mathbb{R}-valued functions on $T_{p}(M)$
- For $\alpha \in T_{p}^{*}(M), v \in T_{p}(M)$, then $\alpha(v)=r$ for $r \in \mathbb{R}$
- m-dimensional vector space

Cotangent Space: $T_{p}^{*}(M)=\operatorname{adjoint}$ of $T_{p}(M)$

- Space of \mathbb{R}-valued functions on $T_{p}(M)$
- For $\alpha \in T_{p}^{*}(M), v \in T_{p}(M)$, then $\alpha(v)=r$ for $r \in \mathbb{R}$
- m-dimensional vector space
- If $\left\{\partial_{\mu}\right\}$ is basis of $T_{p}(M)$, then $\left\{\mathrm{d} x^{\mu}\right\}$ is basis of $T_{p}^{*}(M)$
- $\mathrm{d} x^{\mu}\left(\partial_{\nu}\right)=\mathrm{d} x^{\mu} \frac{\partial}{\partial x^{\nu}}=\delta_{\nu}^{\mu}$
\rightarrow Collection of all $T_{p}^{*}(M)$ is labeled $T^{*}(M)$
- $\alpha \in T^{*}(M)$ called a differential 1-form

Cotangent Space: $T_{p}^{*}(M)=\operatorname{adjoint}$ of $T_{p}(M)$

- Space of \mathbb{R}-valued functions on $T_{p}(M)$
- For $\alpha \in T_{p}^{*}(M), v \in T_{p}(M)$, then $\alpha(v)=r$ for $r \in \mathbb{R}$
- m-dimensional vector space
- If $\left\{\partial_{\mu}\right\}$ is basis of $T_{p}(M)$, then $\left\{\mathrm{d} x^{\mu}\right\}$ is basis of $T_{p}^{*}(M)$
- $\mathrm{d} x^{\mu}\left(\partial_{\nu}\right)=\mathrm{d} x^{\mu} \frac{\partial}{\partial x^{\nu}}=\delta_{\nu}^{\mu}$
- Collection of all $T_{p}^{*}(M)$ is labeled $T^{*}(M)$

- $\alpha \in T^{*}(M)$ called a differential 1-form

Cotangent Space: $T_{p}^{*}(M)=\operatorname{adjoint~of~} T_{p}(M)$

- Space of \mathbb{R}-valued functions on $T_{p}(M)$
- For $\alpha \in T_{p}^{*}(M), v \in T_{p}(M)$, then $\alpha(v)=r$ for $r \in \mathbb{R}$
- m-dimensional vector space
- If $\left\{\partial_{\mu}\right\}$ is basis of $T_{p}(M)$, then $\left\{\mathrm{d} x^{\mu}\right\}$ is basis of $T_{p}^{*}(M)$
- $\mathrm{d} x^{\mu}\left(\partial_{\nu}\right)=\mathrm{d} x^{\mu} \frac{\partial}{\partial x^{\nu}}=\delta_{\nu}^{\mu}$
- Collection of all $T_{D}^{*}(M)$ is labeled $T^{*}(M)$
- $\alpha \in T^{*}(M)$ called a differential 1-form

Tensor products generalize multiplication between vector spaces $\mathbf{v}, \mathbf{u}, \mathbf{w} \in T_{p}(M)$

Tensor Product

General bilinear operation

Wedge Product

- $(\mathbf{v}+\mathbf{u}) \otimes \mathbf{w}=\mathbf{v} \otimes \mathbf{w}+\mathbf{u} \otimes \mathbf{w}$
- $\mathbf{v} \otimes(\mathbf{u}+\mathbf{w})=\mathbf{v} \otimes \mathbf{u}+\mathbf{v} \otimes \mathbf{w}$
- $a(\mathbf{v} \otimes \mathbf{u})=(a \mathbf{v}) \otimes \mathbf{u}$

$$
=\mathbf{v} \otimes(a \mathbf{u})
$$

Alternating bilinear operation

\square

- Generalizes cross product

Tensor products generalize multiplication between vector spaces $\mathbf{v}, \mathbf{u}, \mathbf{w} \in T_{p}(M)$

Tensor Product

General bilinear operation

- $(\mathbf{v}+\mathbf{u}) \otimes \mathbf{w}=\mathbf{v} \otimes \mathbf{w}+\mathbf{u} \otimes \mathbf{w}$
- $\mathbf{v} \otimes(\mathbf{u}+\mathbf{w})=\mathbf{v} \otimes \mathbf{u}+\mathbf{v} \otimes \mathbf{w}$
- $a(\mathbf{v} \otimes \mathbf{u})=(a \mathbf{v}) \otimes \mathbf{u}$ $=\mathbf{v} \otimes(a \mathbf{u})$

Wedge Product

Alternating bilinear operation

- Also require $\mathbf{v} \wedge \mathbf{u}=-\mathbf{u} \wedge \mathbf{v}$
- $\mathbf{u} \wedge \mathbf{u}=0$
- Generalizes cross product

Given $\mathbf{v}=v^{1} e_{1}+v^{2} e_{2}+v^{3} e_{3}$, and $\mathbf{u}=u^{1} e_{1}+u^{2} e_{2}+u^{3} e_{3}$

$$
\begin{aligned}
\mathbf{v} \wedge \mathbf{u}=\left(v^{1} u^{2}-v^{2} u^{1}\right)\left(e_{1} \wedge e_{2}\right)+ & \left(v^{1} u^{3}-v^{3} u^{1}\right)\left(e_{1} \wedge e_{3}\right) \\
& +\left(v^{2} u^{3}-v^{3} u^{2}\right)\left(e_{2} \wedge e_{3}\right)
\end{aligned}
$$

- $\mathbf{v} \wedge \mathbf{u} \in \wedge^{2} T_{p}(M)$ (2 $2^{\text {nd }}$ exterior product)
- $\wedge^{2} T_{p}(M)$ has basis $\left\{\left(e_{1} \wedge e_{2}\right),\left(e_{1} \wedge e_{3}\right),\left(e_{2} \wedge e_{3}\right)\right\}$
- Extend to $\wedge^{k} T_{p}(M)$ ("alternating k-vectors")
- Similarly $\wedge^{k} T_{p}^{*}(M)$ ("alternating k-covectors")
- Bundled into $\wedge^{k} T(M)$ and $\wedge^{k} T^{*}(M)$
- Alternating tensors of rank $\binom{k}{0}$ or $\binom{0}{k}$

Given $\mathbf{v}=v^{1} e_{1}+v^{2} e_{2}+v^{3} e_{3}$, and $\mathbf{u}=u^{1} e_{1}+u^{2} e_{2}+u^{3} e_{3}$

$$
\begin{aligned}
\mathbf{v} \wedge \mathbf{u}=\left(v^{1} u^{2}-v^{2} u^{1}\right)\left(e_{1} \wedge e_{2}\right)+ & \left(v^{1} u^{3}-v^{3} u^{1}\right)\left(e_{1} \wedge e_{3}\right) \\
& +\left(v^{2} u^{3}-v^{3} u^{2}\right)\left(e_{2} \wedge e_{3}\right)
\end{aligned}
$$

- $\mathbf{v} \wedge \mathbf{u} \in \wedge^{2} T_{p}(M)$ (2 $2^{\text {nd }}$ exterior product)
- $\wedge^{2} T_{p}(M)$ has basis $\left\{\left(e_{1} \wedge e_{2}\right),\left(e_{1} \wedge e_{3}\right),\left(e_{2} \wedge e_{3}\right)\right\}$
- Extend to $\wedge^{k} T_{p}(M)$ ("alternating k-vectors")
- Similarly $\wedge^{k} T_{p}^{*}(M)$ ("alternating k-covectors")
- Bundled into $\wedge^{k} T(M)$ and $\wedge^{k} T^{*}(M)$
- Alternating tensors of rank $\binom{k}{0}$ or $\binom{0}{k}$

Given $\mathbf{v}=v^{1} e_{1}+v^{2} e_{2}+v^{3} e_{3}$, and $\mathbf{u}=u^{1} e_{1}+u^{2} e_{2}+u^{3} e_{3}$

$$
\begin{aligned}
\mathbf{v} \wedge \mathbf{u}=\left(v^{1} u^{2}-v^{2} u^{1}\right)\left(e_{1} \wedge e_{2}\right)+ & \left(v^{1} u^{3}-v^{3} u^{1}\right)\left(e_{1} \wedge e_{3}\right) \\
& +\left(v^{2} u^{3}-v^{3} u^{2}\right)\left(e_{2} \wedge e_{3}\right)
\end{aligned}
$$

- $\mathbf{v} \wedge \mathbf{u} \in \wedge^{2} T_{p}(M)$ (2 $2^{\text {nd }}$ exterior product)
- $\wedge^{2} T_{p}(M)$ has basis $\left\{\left(e_{1} \wedge e_{2}\right),\left(e_{1} \wedge e_{3}\right),\left(e_{2} \wedge e_{3}\right)\right\}$
- Extend to $\wedge^{k} T_{p}(M)$ ("alternating k-vectors")
- Similarly $\wedge^{k} T_{p}^{*}(M)$ ("alternating k-covectors")
- Bundled into $\wedge^{k} T(M)$ and $\wedge^{k} T^{*}(M)$
- Alternating tensors of rank $\binom{k}{0}$ or $\binom{0}{k}$

Given $\mathbf{v}=v^{1} e_{1}+v^{2} e_{2}+v^{3} e_{3}$, and $\mathbf{u}=u^{1} e_{1}+u^{2} e_{2}+u^{3} e_{3}$

$$
\begin{aligned}
\mathbf{v} \wedge \mathbf{u}=\left(v^{1} u^{2}-v^{2} u^{1}\right)\left(e_{1} \wedge e_{2}\right)+ & \left(v^{1} u^{3}-v^{3} u^{1}\right)\left(e_{1} \wedge e_{3}\right) \\
& +\left(v^{2} u^{3}-v^{3} u^{2}\right)\left(e_{2} \wedge e_{3}\right)
\end{aligned}
$$

- $\mathbf{v} \wedge \mathbf{u} \in \wedge^{2} T_{p}(M)$ (2 $2^{\text {nd }}$ exterior product)
- $\wedge^{2} T_{p}(M)$ has basis $\left\{\left(e_{1} \wedge e_{2}\right),\left(e_{1} \wedge e_{3}\right),\left(e_{2} \wedge e_{3}\right)\right\}$
- Extend to $\wedge^{k} T_{p}(M)$ ("alternating k-vectors")
- Similarly $\wedge^{k} T_{p}^{*}(M)$ ("alternating k-covectors")
- Bundled into $\wedge^{k} T(M)$ and $\wedge^{k} T^{*}(M)$
- Alternating tensors of rank $\binom{k}{0}$ or $\binom{0}{k}$

Given $\mathbf{v}=v^{1} e_{1}+v^{2} e_{2}+v^{3} e_{3}$, and $\mathbf{u}=u^{1} e_{1}+u^{2} e_{2}+u^{3} e_{3}$

$$
\begin{aligned}
\mathbf{v} \wedge \mathbf{u}=\left(v^{1} u^{2}-v^{2} u^{1}\right)\left(e_{1} \wedge e_{2}\right)+ & \left(v^{1} u^{3}-v^{3} u^{1}\right)\left(e_{1} \wedge e_{3}\right) \\
& +\left(v^{2} u^{3}-v^{3} u^{2}\right)\left(e_{2} \wedge e_{3}\right)
\end{aligned}
$$

- $\mathbf{v} \wedge \mathbf{u} \in \wedge^{2} T_{p}(M)$ (2 $2^{\text {nd }}$ exterior product)
- $\wedge^{2} T_{p}(M)$ has basis $\left\{\left(e_{1} \wedge e_{2}\right),\left(e_{1} \wedge e_{3}\right),\left(e_{2} \wedge e_{3}\right)\right\}$
- Extend to $\wedge^{k} T_{p}(M)$ ("alternating k-vectors")
- Similarly $\wedge^{k} T_{p}^{*}(M)$ ("alternating k-covectors")
- Bundled into $\wedge^{k} T(M)$ and $\wedge^{k} T^{*}(M)$
- Alternating tensors of rank $\binom{k}{0}$ or $\binom{0}{k}$

Given $\mathbf{v}=v^{1} e_{1}+v^{2} e_{2}+v^{3} e_{3}$, and $\mathbf{u}=u^{1} e_{1}+u^{2} e_{2}+u^{3} e_{3}$

$$
\begin{aligned}
\mathbf{v} \wedge \mathbf{u}=\left(v^{1} u^{2}-v^{2} u^{1}\right)\left(e_{1} \wedge e_{2}\right)+ & \left(v^{1} u^{3}-v^{3} u^{1}\right)\left(e_{1} \wedge e_{3}\right) \\
& +\left(v^{2} u^{3}-v^{3} u^{2}\right)\left(e_{2} \wedge e_{3}\right)
\end{aligned}
$$

- $\mathbf{v} \wedge \mathbf{u} \in \wedge^{2} T_{p}(M)$ (2 $2^{\text {nd }}$ exterior product)
- $\wedge^{2} T_{p}(M)$ has basis $\left\{\left(e_{1} \wedge e_{2}\right),\left(e_{1} \wedge e_{3}\right),\left(\epsilon_{2} \wedge e_{3}\right)\right\}$
- Extend to $\wedge^{k} T_{p}(M)$ ("alternating k-vectors")
- Similarly $\wedge^{k} T_{p}^{*}(M)$ ("alternating k-covectors")
- Bundled into $\wedge^{k} T(M)$ and $\wedge^{k} T^{*}(M)$
- Alternating tensors of rank $\binom{k}{0}$ or $\binom{0}{k}$

Given $\mathbf{v}=v^{1} e_{1}+v^{2} e_{2}+v^{3} e_{3}$, and $\mathbf{u}=u^{1} e_{1}+u^{2} e_{2}+u^{3} e_{3}$

$$
\begin{aligned}
\mathbf{v} \wedge \mathbf{u}=\left(v^{1} u^{2}-v^{2} u^{1}\right)\left(e_{1} \wedge e_{2}\right)+ & \left(v^{1} u^{3}-v^{3} u^{1}\right)\left(e_{1} \wedge e_{3}\right) \\
& +\left(v^{2} u^{3}-v^{3} u^{2}\right)\left(e_{2} \wedge e_{3}\right)
\end{aligned}
$$

- $\mathbf{v} \wedge \mathbf{u} \in \wedge^{2} T_{p}(M)$ (2 $2^{n d}$ exterior product)
- $\wedge^{2} T_{p}(M)$ has basis $\left\{\left(e_{1} \wedge e_{2}\right),\left(e_{1} \wedge e_{3}\right),\left(e_{2} \wedge e_{3}\right)\right\}$
- Extend to $\wedge^{k} T_{p}(M)$ ("alternating k-vectors")
- Similarly $\wedge^{k} T_{p}^{*}(M)$ ("alternating k-covectors")
- Bundled into $\wedge^{k} T(M)$ and $\wedge^{k} T^{*}(M)$
- Alternating tensors of rank $\binom{k}{0}$ or $\binom{0}{k}$
- For smooth f on M, total differential $\mathrm{d} f=f_{, i} \mathrm{~d} x^{i}$
- Ext. derivative d generalizes the differential of a function to an operation on alternating k-forms
- $\mathrm{d}(k$-form $)=(k+1)$-form
- Smooth functions on $M=0$-forms
- The differential $\mathrm{d} x=\mathrm{d}$ of coordinate function x
- $\mathrm{d} x$ is a coordinate basis 1 -form on $T^{*}(M)$
- For any \mathbb{R}-valued k-form $\beta, \mathrm{d}(\mathrm{d} \beta)=0$
- For smooth f on M, total differential $\mathrm{d} f=f_{, i} \mathrm{~d} x^{i}$
- Ext. derivative d generalizes the differential of a function to an operation on alternating k-forms
- $\mathrm{d}(k$-form $)=(k+1)$-form
- Smooth functions on $M=0$-forms
- The differential $\mathrm{d} x=\mathrm{d}$ of coordinate function x
- $\mathrm{d} x$ is a coordinate basis 1 -form on $T^{*}(M)$
- For any \mathbb{R}-valued k-form $\beta, \mathrm{d}(\mathrm{d} \boldsymbol{\beta})=0$
- For smooth f on M, total differential $\mathrm{d} f=f_{, i} \mathrm{~d} x^{i}$
- Ext. derivative d generalizes the differential of a function to an operation on alternating k-forms
- $\mathrm{d}(k$-form $)=(k+1)$-form
- Smooth functions on $M=0$-forms
- The differential $\mathrm{d} x=\mathrm{d}$ of coordinate function x
- $\mathrm{d} x$ is a coordinate basis 1 -form on $T^{*}(M)$
- For any \mathbb{R}-valued k-form $\beta, \mathrm{d}(\mathrm{d} \beta)=0$
- For smooth f on M, total differential $\mathrm{d} f=f_{, i} \mathrm{~d} x^{i}$
- Ext. derivative d generalizes the differential of a function to an operation on alternating k-forms
- $\mathrm{d}(k$-form $)=(k+1)$-form
- Smooth functions on $M=0$-forms
- The differential $\mathrm{d} x=\mathrm{d}$ of coordinate function x - $\mathrm{d} x$ is a coordinate basis 1 -form on $T^{*}(M)$ - For any \mathbb{R}-valued k-form $\boldsymbol{\beta}, \mathrm{d}(\mathrm{d} \boldsymbol{\beta})=0$
- For smooth f on M, total differential $\mathrm{d} f=f_{, i} \mathrm{~d} x^{i}$
- Ext. derivative d generalizes the differential of a function to an operation on alternating k-forms
- $\mathrm{d}(k$-form $)=(k+1)$-form
- Smooth functions on $M=0$-forms
- The differential $\mathrm{d} x=\mathrm{d}$ of coordinate function x
- $\mathrm{d} x$ is a coordinate basis 1 -form on $T^{*}(M)$
- For any \mathbb{R}-valued k-form $\beta, \mathrm{d}(\mathrm{d} \boldsymbol{\beta})=0$
- For smooth f on M, total differential $\mathrm{d} f=f_{, i} \mathrm{~d} x^{i}$
- Ext. derivative d generalizes the differential of a function to an operation on alternating k-forms
- $\mathrm{d}(k$-form $)=(k+1)$-form
- Smooth functions on $M=0$-forms
- The differential $\mathrm{d} x=\mathrm{d}$ of coordinate function x
- $\mathrm{d} x$ is a coordinate basis 1 -form on $T^{*}(M)$
- For smooth f on M, total differential $\mathrm{d} f=f_{, i} \mathrm{~d} x^{i}$
- Ext. derivative d generalizes the differential of a function to an operation on alternating k-forms
- $\mathrm{d}(k$-form $)=(k+1)$-form
- Smooth functions on $M=0$-forms
- The differential $\mathrm{d} x=\mathrm{d}$ of coordinate function x
- $\mathrm{d} x$ is a coordinate basis 1 -form on $T^{*}(M)$
- For any \mathbb{R}-valued k-form $\boldsymbol{\beta}, \mathrm{d}(\mathrm{d} \boldsymbol{\beta})=0$

Metric: symmetric, bilinear 2-form, $\mathbf{g} \in\left(T^{*}\right)^{2}(M)$. Defines inner product on $T(M)$.

- Basically a function that takes two tangent vectors and returns a number
$\mathbf{g}(\mathbf{V}, *)$ is a function that takes one tangent vector and returns a number

Metric: symmetric, bilinear 2-form, $\mathbf{g} \in\left(T^{*}\right)^{2}(M)$. Defines inner product on $T(M)$.

- Basically a function that takes two tangent vectors and returns a number

$$
\mathbf{g}(\mathbf{V}, \mathbf{U})=r
$$

- $\mathbf{g}(\mathbf{V}, *)$ is a function that takes one tangent vector and returns a number
- So a metric induces a map

Metric: symmetric, bilinear 2-form, $\mathbf{g} \in\left(T^{*}\right)^{2}(M)$. Defines inner product on $T(M)$.

- Basically a function that takes two tangent vectors and returns a number

$$
\mathbf{g}(\mathbf{V}, \mathbf{U})=r
$$

- $\mathbf{g}(\mathbf{V}, *)$ is a function that takes one tangent vector and returns a number
- But this is a 1 -form!
- So a metric induces a map

Metric: symmetric, bilinear 2-form, $\mathbf{g} \in\left(T^{*}\right)^{2}(M)$. Defines inner product on $T(M)$.

- Basically a function that takes two tangent vectors and returns a number

$$
\mathbf{g}(\mathbf{V}, \mathbf{U})=r
$$

- $\mathbf{g}(\mathbf{V}, *)$ is a function that takes one tangent vector and returns a number
- But this is a 1 -form!
- So a metric induces a map

$$
g: T(M) \rightarrow T^{*}(M)
$$

by

$$
g_{\mu \nu} v^{\mu}=v_{\nu} \Rightarrow v_{\nu} u^{\nu}=g_{\mu \nu} v^{\mu} u^{\nu}
$$

For $m=\operatorname{Dim}(M)$, the vector space $\wedge^{m} T^{*}(M)$ is $1 D$.

- Implies any $\alpha \in \wedge^{m} T^{*}(M) \propto$ some $\omega \in \wedge^{m} T^{*}(M)$
- ω called the volume form
- in local coordinates, a natural, covariant choice is

- ω induces a unique map

For $m=\operatorname{Dim}(M)$, the vector space $\wedge^{m} T^{*}(M)$ is 1D.

- Implies any $\alpha \in \wedge^{m} T^{*}(M) \propto$ some $\omega \in \wedge^{m} T^{*}(M)$
- ω called the volume form
- in local coordinates, a natural, covariant choice is

- ω induces a unique map

For $m=\operatorname{Dim}(M)$, the vector space $\wedge^{m} T^{*}(M)$ is $1 D$.

- Implies any $\alpha \in \wedge^{m} T^{*}(M) \propto$ some $\boldsymbol{\omega} \in \wedge^{m} T^{*}(M)$
- ω called the volume form
- in local coordinates, a natural, covariant choice is

$$
\boldsymbol{\omega}=\sqrt{|g|}\left(\mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{m}\right)
$$

- ω induces a unique map

For $m=\operatorname{Dim}(M)$, the vector space $\wedge^{m} T^{*}(M)$ is $1 D$.

- Implies any $\alpha \in \wedge^{m} T^{*}(M) \propto$ some $\boldsymbol{\omega} \in \wedge^{m} T^{*}(M)$
- ω called the volume form
- in local coordinates, a natural, covariant choice is

$$
\boldsymbol{\omega}=\sqrt{|g|}\left(\mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{m}\right)
$$

- ω induces a unique map

$$
\omega: \wedge^{m-k} T(M) \rightarrow \wedge^{k} T^{*}(M)
$$

$$
\wedge^{(m-k)} T^{*}(M) \stackrel{g}{\longleftrightarrow} \wedge^{(m-k)} T(M)
$$

- $\mathbf{g}:\binom{k}{0} \leftrightarrow\binom{0}{k}$ alt. tensors
- $\boldsymbol{\omega}:\binom{k}{0} \leftrightarrow\binom{0}{m-k}$ alt. tensors
- $\star=\omega \circ g:\binom{m-k}{0} \leftrightarrow\binom{k}{0}$ alt. tensors and $\binom{0}{m-k} \leftrightarrow\binom{0}{k}$ alt. tensors
- * called "Hodge dual"

Want to describe elctrodynamics on manifolds

- A manifold is a collection of points
- tangent \& cotangent space at each point
- alternating (\wedge) products of tangent/cotangent spaces
- metric \mathbf{g} defines inner product (symmetric matrix)
- canonical volume form ω
- " \wedge " constructs alternating k-vector fields and k-forms
- Represented as skew-symmetric matrices
" "d" takes k-form, returns $(k+1)$-form
- " $\star^{\prime \prime}$ provides natural map $\wedge^{k} T^{*}(M) \rightarrow \wedge^{m-k} T^{*}(M)$

Want to describe elctrodynamics on manifolds

- A manifold is a collection of points
- tangent \& cotangent space at each point
- alternating (\wedge) products of tangent/cotangent spaces
- metric \mathbf{g} defines inner product (symmetric matrix)
- canonical volume form ω
- " \wedge " constructs alternating k-vector fields and k-forms
- Represented as skew-symmetric matrices
- "d" takes k-form, returns $(k+1)$-form
- " \star " provides natural map $\wedge^{k} T^{*}(M) \rightarrow \wedge^{m-k} T^{*}(M)$

(1) A Crash Course in Differential Geometry

(2) Classical Electrodynamics in Vacuum

- field strength tensor
- vacuum action
- excitation tensor
- inhomogeneous equations
(3) Classical Electrodynamics in Linear Dielectrics

4 Transformation Optics
(5) Extensions of the Transformation methodConclusions

Classical electrodynamics in vacuum

- Combine (φ, \vec{A}) into 1-form $\mathbf{A}=A_{\mu}$
- The field strength tensor $\mathbf{F} \in \wedge^{2} T^{*}(M)$ encodes \vec{E} and \vec{B}

$$
\mathbf{F}=\mathrm{d} \mathbf{A} \Rightarrow F_{\mu \nu}=A_{\nu, \mu}-\boldsymbol{A}_{\mu, \nu}
$$

- In local frame (or Minkowski space)

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right)
$$

- Recall $\mathrm{d}(\mathrm{d} \mathbf{A})=0$ for any 1-form \mathbf{A}
- $\mathrm{dF}=0 \quad \Leftrightarrow \quad$ Homogeneous Maxwell Eqs.

Inhomogeneous eqs. \Rightarrow require action

$$
S=\int_{M} \mathcal{L}
$$

- \mathcal{L} must be a 4 -form constructed from \mathbf{A} or \mathbf{F}

- Use only operations \wedge, d, and \star.
- $\mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A}=0$ by antisymmetry of \wedge
- $\mathbf{F} \wedge \mathbf{F}$ is total divergence \rightarrow No good!
- Use Hodge dual!

Inhomogeneous eqs. \Rightarrow require action

$$
S=\int_{M} \mathcal{L}
$$

- \mathcal{L} must be a 4-form constructed from \mathbf{A} or \mathbf{F}
- Use only operations \wedge, d, and \star.
- $\mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A}=0$ by antisymmetry of \wedge
- $F \wedge F$ is total divergence \rightarrow No good!
- Use Hodge dual!

Inhomogeneous eqs. \Rightarrow require action

$$
S=\int_{M} \mathcal{L}
$$

$\checkmark \mathcal{L}$ must be a 4-form constructed from \mathbf{A} or \mathbf{F}

- Use only operations \wedge, d, and *.
- $\mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A}=0$ by antisymmetry of \wedge
- $\mathrm{F} \wedge \mathrm{F}$ is total divergence $\rightarrow \mathrm{No}$ good!
- Use Hodge dual!

$$
\begin{gathered}
\int_{M}(\mathbf{F} \wedge \star \mathbf{F})=\int_{M} d^{4} x \sqrt{|g|}\left(F^{\mu \nu} F_{\mu \nu}\right) \\
(\star \mathbf{F})_{\mu \nu}=\frac{1}{2} \sqrt{|g|} \epsilon_{\mu \nu \alpha \beta} g^{\alpha \gamma} g^{\beta \delta} F_{\gamma \delta}, \quad(\star \mathbf{F})_{\mu \nu}=\left(\begin{array}{cccc}
0 & B_{x} & B_{y} & B_{z} \\
-B_{x} & 0 & E_{z} & -E_{y} \\
-B_{y} & -E_{z} & 0 & E_{x} \\
-B_{z} & E_{y} & -E_{x} & 0
\end{array}\right)
\end{gathered}
$$

- The field strength F encodes information about the fields:
- Electric field strength and magnetic flux.
- Let the excitation tensor G encode information about - Electric flux and magnetic field strength.
- In a local frame (or Minkowski space)

- The field strength F encodes information about the fields: - Electric field strength and magnetic flux.
- Let the excitation tensor \mathbf{G} encode information about
- Electric flux and magnetic field strength.
- In a local frame (or Minkowski space)

$$
G_{\mu \nu}=\left(\begin{array}{cccc}
0 & H_{x} & H_{y} & H_{z} \\
-H_{x} & 0 & D_{z} & -D_{y} \\
-H_{y} & -D_{z} & 0 & D_{x} \\
-H_{z} & D_{y} & -D_{x} & 0
\end{array}\right)
$$

- The field strength F encodes information about the fields:
- Electric field strength and magnetic flux.
- Let the excitation tensor \mathbf{G} encode information about
- Electric flux and magnetic field strength.
- In a local frame (or Minkowski space)

$$
G_{\mu \nu}=\left(\begin{array}{cccc}
0 & H_{x} & H_{y} & H_{z} \\
-H_{x} & 0 & D_{z} & -D_{y} \\
-H_{y} & -D_{z} & 0 & D_{x} \\
-H_{z} & D_{y} & -D_{x} & 0
\end{array}\right) \quad(\star \mathbf{F})_{\mu \nu}=\left(\begin{array}{cccc}
0 & B_{x} & B_{y} & B_{z} \\
-B_{x} & 0 & E_{z} & -E_{y} \\
-B_{y} & -E_{z} & 0 & E_{x} \\
-B_{z} & E_{y} & -E_{x} & 0
\end{array}\right)
$$

- Constitutive relations for components of \mathbf{G} in terms of
components of F
- Linear map taking *F to G
- The field strength F encodes information about the fields:
- Electric field strength and magnetic flux.
- Let the excitation tensor \mathbf{G} encode information about
- Electric flux and magnetic field strength.
- In a local frame (or Minkowski space)

$$
G_{\mu \nu}=\left(\begin{array}{cccc}
0 & H_{x} & H_{y} & H_{z} \\
-H_{x} & 0 & D_{z} & -D_{y} \\
-H_{y} & -D_{z} & 0 & D_{x} \\
-H_{z} & D_{y} & -D_{x} & 0
\end{array}\right) \quad(\star \mathbf{F})_{\mu \nu}=\left(\begin{array}{cccc}
0 & B_{x} & B_{y} & B_{z} \\
-B_{x} & 0 & E_{z} & -E_{y} \\
-B_{y} & -E_{z} & 0 & E_{x} \\
-B_{z} & E_{y} & -E_{x} & 0
\end{array}\right)
$$

- $\mathbf{G}=\star \mathbf{F}$
- Constitutive relations for components of \mathbf{G} in terms of components of \mathbf{F}
- Linear map taking $\star \mathbf{F}$ to \mathbf{G}

The action is generalized to

$$
S=\int \frac{1}{2} \mathbf{F} \wedge \mathbf{G}+\mathbf{J} \wedge \mathbf{A}
$$

Vary with respect to \mathbf{A}
$\mathrm{d} \mathbf{G}=\mathbf{J} \quad$ Inhomogeneous Maxwell Eqs.

(1)
 A Crash Course in Differential Geometry

Classical Electrodynamics in Vacuum
(3) Classical Electrodynamics in Linear Dielectrics - macroscopic electrodynamics in polarizable media

- electrodynamics summary

4 Transformation Optics
(5) Extensions of the Transformation methodConclusions

-macroscopic electrodynamics in polarizable media

Effective theory accounts for average atomic response to applied fields.

- Applied \vec{E} induces dipole far field \vec{P}

$$
\vec{E}_{\text {net }}=\vec{E}_{\text {applied }}+\vec{P}=\vec{E}_{\text {applied }}+\overline{\bar{\chi}} E_{E} \vec{E}_{\text {applied }}=\left(\overline{\overline{1}}+\overline{\bar{\chi}}_{E}\right) \vec{E}_{\text {applied }}
$$

- New constitutive relation

$$
\vec{D}_{\text {net }}=\left(\overline{\overline{1}}+\overline{\bar{\chi}}_{E}\right) \vec{E}_{\text {applied }}=\overline{\bar{\varepsilon}} \overrightarrow{\mathrm{a}}_{\text {applied }}
$$

- Macroscopic equations contain material-dependent set of constitutive relations
- Take the minimal approach: Extend vacuum relations to more general linear map

$$
\begin{gathered}
\mathbf{G}=\star(\chi \mathbf{F}) \\
\mathbf{G}_{\mu \nu}=\star_{\mu \nu}^{\alpha \beta}(\chi \mathbf{F})_{\alpha \beta}
\end{gathered}
$$

- Properties of χ :
- Antisymmetric on $1^{\text {st }}$ and $2^{\text {nd }}$ sets of indices
- In vacuum, $\chi_{\text {vac }}(\mathbf{F})=\mathbf{F}$
- Maximum of 36 independent components
$\chi_{v a c} \mathbf{F}=\mathbf{F}$ is sufficient to specify all components of $\chi_{\text {vac }}$
- $\chi_{v a c}$ is unique, independent of coordinate choice

Components of $\mathbf{G}=\star(\chi \mathbf{F})$ can be collected as

$$
\vec{D}=\overline{\bar{\varepsilon}}^{c} \vec{E}+{ }^{b} \overline{\bar{\gamma}}^{c} \vec{B}, \quad \vec{H}=\overline{\bar{\mu}}^{c} \vec{B}+{ }^{e} \overline{\bar{\gamma}}^{c} \vec{E}
$$

Components of $\mathbf{G}=\star(\chi \mathbf{F})$ can be collected as

$$
\vec{D}=\overline{\bar{\varepsilon}}^{c} \vec{E}+{ }^{b} \overline{\bar{\gamma}}^{c} \vec{B}, \quad \vec{H}=\overline{\bar{\mu}}^{c} \vec{B}+e \overline{\bar{\gamma}}^{c} \vec{E}
$$

Rearrange to usual representation:

$$
\vec{D}=\overline{\bar{\varepsilon}} \vec{E}+{ }^{h} \overline{\bar{\gamma}} \vec{H}, \quad \vec{B}=\overline{\bar{\mu}} \vec{H}+{ }^{e} \overline{\bar{\gamma}} \vec{E}
$$

$$
\begin{array}{cc}
\vec{D}=\overline{\bar{\varepsilon}}^{c} \vec{E}+{ }^{b} \overline{\bar{\gamma}} \vec{B}, & \vec{H}=\overline{\bar{\mu}}^{c} \vec{B}+{ }^{e} \overline{\bar{\gamma}} c \vec{E} \\
\vec{D}=\overline{\bar{\varepsilon}} \vec{E}+{ }^{n} \overline{\bar{\gamma}} \vec{H}, & \vec{B}=\overline{\bar{\mu}} \vec{H}+{ }^{e} \overline{\bar{\gamma}} \vec{E}
\end{array}
$$

Easily switch back and forth with:

$$
\begin{aligned}
& \overline{\bar{\mu}}=\left(\overline{\bar{\mu}}^{c}\right)^{-1}, \overline{\bar{\varepsilon}}=\overline{\bar{\varepsilon}}^{c}-\left(b^{c} c\right) \overline{\bar{\mu}}\left(e \overline{\bar{\gamma}}^{c}\right), h \overline{\bar{\gamma}}=\left({ }^{\left(\overline{\bar{\gamma}}^{c}\right)}\right) \overline{\bar{\mu}}, \\
& { }^{e} \overline{\bar{\gamma}}=-\overline{\bar{\mu}}\left({ }^{e \overline{\bar{\gamma}}^{c}}\right)
\end{aligned}
$$

- Essentially equivalent representations
- 3×3 matrices are NOT tensors

- * indicates entries that are antisymmetric on either the $1^{s t}$ or $2^{\text {nd }}$ set of indices
- Potential 1-form A
- Field strength tensor $\mathbf{F}=\mathrm{d} \mathbf{A}$ (alt. 2-form)
- Electric field strength, E
- Magnetic flux, B
- Excitation tensor G (alt. 2-form)
- Magnetic field strength, H
- Electric flux, D
- Constitutive relation $\mathbf{G}=\star(\chi \mathbf{F})$
- Vacuum is trivial dielectric s.t. $\chi_{\text {vac }} \mathbf{F}=\mathbf{F}$
- Maxwell's equations
- $\mathrm{dF}=0$
- $\mathrm{d} \mathbf{G}=\mathbf{J}$

A Crash Course in Differential Geometry

Classical Electrodynamics in VacuumClassical Electrodynamics in Linear Dielectrics

4 Transformation Optics

- cylindrical cloak
- harmonic map
- other possibilities with covariant formalism
(5) Extensions of the Transformation methodConclusions

Rahm, et. al. 2008

Typical picture of transformation optics

- Start with empty Minkowski space
- Perform a coord. transformation
- "Open a hole in space"
- Fields dragged with coord. points
- Fields can't get into the hole
- Find equivalent material

- Imagine $T: M \rightarrow \tilde{M} \subseteq M$, g unaffected
- Initial (F,G) dragged to new ($\tilde{\boldsymbol{F}}, \tilde{\mathbf{G}})$
- Supported only on \tilde{M}
- New field configuration must be supported by new $\tilde{\chi}$
- Physically: change fields \Leftrightarrow change material, (e.g.
dielectric slab in parallel plate capacitor)
- $\chi_{\text {initial }}$ may be vacuum, not necessary!

- Imagine $T: M \rightarrow \tilde{M} \subseteq M, g$ unaffected
- Initial (F,G) dragged to new ($\tilde{\boldsymbol{F}}, \tilde{\mathbf{G}})$
- Supported only on \tilde{M}
- New field configuration must be supported by new $\tilde{\chi}$
- Physically: change fields \Leftrightarrow change material, (e.g.
dielectric slab in parallel plate capacitor)
- Xinitial may be vacuum, not necessary!
(M, \mathbf{g}, \star)
$(\mathbf{F}, \mathbf{G}, \boldsymbol{\chi})$
$\mathbf{G}=\star(\boldsymbol{\chi} \mathbf{F})$
T
- Imagine $T: M \rightarrow \tilde{M} \subseteq M, \mathbf{g}$ unaffected
- Initial (F,G) dragged to new ($\tilde{\mathbf{F}}, \tilde{\mathbf{G}}$)
- Supported only on \tilde{M}
- New field configuration must be supported by new $\tilde{\chi}$
- Physically: change fields \Leftrightarrow change material, (e.g. dielectric slab in parallel plate capacitor)
- $\chi_{\text {initial }}$ may be vacuum, not necessary!

Some subtleties involved:

- To be rigorous, need \mathfrak{T} to transform \mathbf{g}
- Let \mathfrak{T} be identity

$$
\left\{\begin{array}{l}
\mathfrak{T}: M \rightarrow M \\
\mathfrak{T}^{*}(\mathbf{g})=\hat{\mathbf{g}}
\end{array}\right.
$$

- Fields (F, G) NOT transformed by T

$$
\left\{\begin{array}{l}
\mathcal{T}: \tilde{M} \subseteq M \rightarrow M \\
\mathcal{T}^{*}(\mathbf{F})=\tilde{\mathbf{F}}
\end{array}\right.
$$

- If $\exists T^{-1}$, then we can use $\mathcal{T}=T^{-1}$
- \mathcal{T}^{*} called the pullback of \mathcal{T} (did not discuss)

$\begin{aligned} & (M, \mathbf{g}, \star) \\ & \quad(\mathbf{F}, \mathbf{G}, \boldsymbol{\chi}) \\ & \quad \mathbf{G}=\star(\boldsymbol{\gamma}) \end{aligned}$		

$\tilde{\mathbf{G}}=\mathcal{T}^{*} \mathbf{G}$, so at $x \in \tilde{M}$

$$
\tilde{\mathbf{G}}_{x}=\mathcal{T}^{*}\left(\mathbf{G}_{\mathcal{T}(x)}\right)=\mathcal{T}^{*}\left({ }^{\star \mathcal{T}(x)}{ }^{\circ} \circ \boldsymbol{\chi}_{\mathcal{T}(x)} \circ \mathbf{F}_{\mathcal{T}(x)}\right)
$$

But from $\tilde{G}=\hat{\star}(\tilde{\mathcal{X}} \tilde{F})$ we also have

$\tilde{\mathrm{G}}=\mathcal{T}^{*} \mathrm{G}$, so at $x \in \tilde{M}$

$$
\tilde{\mathbf{G}}_{x}=\mathcal{T}^{*}\left(\mathbf{G}_{\mathcal{T}(x)}\right)=\mathcal{T}^{*}\left(\star_{\mathcal{T}(x)} \circ \chi_{\mathcal{T}(x)} \circ \mathbf{F}_{\mathcal{T}(x)}\right)
$$

But from $\tilde{\mathbf{G}}=\hat{\star}(\tilde{\chi} \tilde{F})$ we also have

$$
\tilde{\mathbf{G}}_{x}=\hat{\star}_{x} \circ \tilde{\boldsymbol{\chi}}_{x} \circ \mathcal{T}^{*}\left(\mathbf{F}_{\mathcal{T}(x)}\right)
$$

$\begin{aligned} & (M, \mathbf{g}, \star) \\ & \quad(\mathbf{F}, \mathbf{G}, \boldsymbol{\chi}) \\ & \quad \mathbf{G}=\star(\chi \mathbf{F}) \end{aligned}$		

$\tilde{\mathrm{G}}=\mathcal{T}^{*} \mathrm{G}$, so at $x \in \tilde{M}$

$$
\tilde{\mathbf{G}}_{x}=\mathcal{T}^{*}\left(\mathbf{G}_{\mathcal{T}(x)}\right)=\mathcal{T}^{*}\left(\star_{\mathcal{T}(x)} \circ \chi_{\mathcal{T}(x)} \circ \mathbf{F}_{\mathcal{T}(x)}\right)
$$

But from $\tilde{G}=\hat{\star}(\tilde{\mathcal{X}} \tilde{F})$ we also have

$$
\tilde{\mathbf{G}}_{x}=\hat{\star}_{x} \circ \tilde{\chi}_{x} \circ \mathcal{T}^{*}\left(\mathbf{F}_{\mathcal{T}(x)}\right)
$$

Since $\tilde{\mathbf{G}}_{x}=\tilde{\mathbf{G}}_{x}$

$$
\hat{\star}_{x} \circ \tilde{\chi}_{x} \circ \mathcal{T}^{*}\left(\mathbf{F}_{\mathcal{T}(x)}\right)=\mathcal{T}^{*}\left(\star_{\mathcal{T}(x)} \circ \chi_{\mathcal{T}(x)} \circ \mathbf{F}_{\mathcal{T}(x)}\right)
$$

$$
\hat{\star}_{x} \circ \tilde{\boldsymbol{\chi}}_{x} \circ \mathcal{T}^{*}\left(\mathbf{F}_{\mathcal{T}(x)}\right)=\mathcal{T}^{*}\left(\star_{\mathcal{T}(x)} \circ \chi_{\mathcal{T}(x)} \circ \mathbf{F}_{\mathcal{T}(x)}\right)
$$

Can be solved for $\tilde{\chi}$:

$$
\tilde{\chi}_{\eta \tau}{ }^{\pi \theta}(x)=-\left.\left.\left.\hat{\star}_{\eta \tau}{ }^{\lambda \kappa}\right|_{x} \Lambda^{\alpha}{ }_{\lambda} \Lambda^{\beta}{ }_{\kappa}{ }_{\alpha \beta}{ }^{\mu \nu}\right|_{\mathcal{T}(x)} \chi_{\mu \nu}{ }^{\sigma \rho}\right|_{\mathcal{T}(x)}\left(\Lambda^{-1}\right)^{\pi}{ }_{\sigma}\left(\Lambda^{-1}\right)^{\theta}{ }_{\rho}
$$

Features

- $\boldsymbol{\Lambda}$ is Jacobian matrix of \mathcal{T}
- Λ^{-1} is matrix inverse of Λ
- Initial χ can be non-vacuum
- Λ and Λ^{-1} evaluated at x
- $\tilde{\chi}$ undetermined for $x \notin \tilde{M}$
- Can be non-Minkowskian

- Transformation Optics

-cylindrical cloak

$$
\tilde{\chi}_{\eta \tau}{ }^{\pi \theta}(x)=-\left.\left.\left.\hat{\star}_{\eta \tau} \lambda^{\lambda \kappa}\right|_{\chi} \Lambda^{\alpha}{ }_{\lambda} \Lambda^{\beta}{ }_{\kappa}{ }^{\star}{ }_{\alpha \beta}{ }^{\mu \nu}\right|_{\mathcal{T}(x)} \chi_{\mu \nu}{ }^{\sigma \rho}\right|_{\mathcal{T}(x)}\left(\Lambda^{-1}\right)^{\pi}{ }_{\sigma}\left(\Lambda^{-1}\right)^{\theta}{ }_{\rho}
$$

$$
\begin{aligned}
& \mathcal{T}(t, r, \theta, z)=\left(t, \frac{\left(r-R_{1}\right) R_{2}}{\left(R_{2}-R_{1}\right)}, \theta, z\right) \\
& \overline{\bar{\varepsilon}}=\overline{\bar{\mu}}= \\
& \left(\begin{array}{ccc}
1-\frac{R_{1}}{r} & 0 & 0 \\
0 & \left(1-\frac{R_{1}}{r}\right)^{-1} & 0 \\
0 & 0 & \left(1-\frac{R_{1}}{r}\right)\left(\frac{R_{2}}{R_{2}-R_{1}}\right)^{2}
\end{array}\right)
\end{aligned}
$$

$\begin{array}{lllll}R_{2} & R_{1} & 0 & R_{1} & R_{2}\end{array}$

$$
\square \varepsilon_{\mathrm{rr}}, \mu_{\mathrm{rr}} \square \varepsilon_{\theta \theta}, \mu_{\theta \theta} \square \varepsilon_{\mathrm{zz}}, \mu_{\mathrm{zz}}
$$

- Some parameters <1
- Complicated, anisotropic medium. How to realize?

Parameter reduction: trade performance for fabrication

$$
\begin{gathered}
\nabla \cdot \varepsilon(\mathbf{x}) \vec{E}=0 \\
\nabla \times \mu^{-1}(\mathbf{x}) \vec{B}-\varepsilon(\mathbf{x}) \frac{\partial \vec{E}}{\partial t}=0
\end{gathered}
$$

- $\mu \rightarrow f(x) \mu, \quad \varepsilon \rightarrow f^{-1}(x) \varepsilon$
- Rescale so $\mu_{\theta \theta}=1$.
- Single polarization.

Transformation Optics and the mathematics of invisibility

- Transformation Optics
cylindrical cloak
- $\mathcal{T}(t, r, \theta, z)=\left(t, \frac{\left(r-R_{1}\right) R_{2}}{\left(R_{2}-R_{1}\right)}, \theta, z\right)$ was linear choice
- Not unique

- Could let boundary determine cloak
- e.g. let \mathcal{T} be harmonic map (Hu et. al. 2009)

-harmonic map

Assume \mathcal{T} harmonic with $\mathcal{T}\left(R_{2}\right)=R_{2}$ and $\mathcal{T}\left(R_{1}\right)=0$

$$
\nabla^{2} \mathcal{T}=0 \Rightarrow \mathcal{T}(r)=\frac{R_{2}^{2}}{R_{2}-R_{1}}\left(1-\frac{R_{1}}{r}\right)
$$

$$
\square \varepsilon_{\mathrm{rr}}, \mu_{\mathrm{rr}} \boxminus \varepsilon_{\theta \theta}, \mu_{\theta \theta} \boxminus \varepsilon_{\mathrm{zz}}, \mu_{\mathrm{zz}}
$$

\mathcal{T} linear
\mathcal{T} harmonic

$$
\tilde{\chi}_{\eta \tau}{ }^{\pi \theta}(x)=-\left.\left.\left.\hat{\star}_{\eta \tau}{ }^{\lambda \kappa}\right|_{x} \Lambda^{\alpha}{ }_{\lambda} \Lambda^{\beta}{ }_{\kappa}{ }_{\alpha}{ }_{\alpha \beta}{ }^{\mu \nu}\right|_{\mathcal{T}(x)} \chi_{\mu \nu}{ }^{\sigma \rho}\right|_{\mathcal{T}(x)}\left(\Lambda^{-1}\right)^{\pi}{ }_{\sigma}\left(\Lambda^{-1}\right)^{\theta}{ }_{\rho}
$$

- Time-mixing transformations (Cummer and Thompson, 2011)

$$
\mathcal{T}(t, x, y, z)=\left(\frac{t}{a x+b}, x, y, z\right), \quad x \neq 0
$$

- Applications in relative motion via boost (Thompson, et. al. 2011)
- Non-vacuum prior media, $\chi_{\text {initial }} \neq \chi_{\text {vac }}$ (Thompson 2010)
- Non-Minkowskian applications (e.g. Earth orbit) (Thompson 2012)
- Analog space-times (Thompson and Frauendiener 2010)

(1) A Crash Course in Differential Geometry

Classical Electrodynamics in Vacuum(3) Classical Electrodynamics in Linear Dielectrics
(4) Transformation Optics
(5) Extensions of the Transformation method

- transformation acoustics (Cummer and Schurig 2007)
- analogue transformation acoustics (García-Meca, et. al. 2013)
- transformation thermodynamics (Guenneau et. al. 2012)Conclusions

One path to acoustic cloaking
Pressure perturbations:

$$
\ddot{p}=B \frac{1}{\sqrt{\gamma}} \partial_{i}\left(\sqrt{\gamma} \rho^{i j} \partial_{j} p\right)
$$

- $B=$ bulk modulus
- $\rho^{i j}=$ inverse density matrix
- $\gamma=$ spatial metric
- Form invariant under spatial coordinate transformations
- Can do transformation acoustics with spatial transformations

Potential function ϕ_{1} for velocity perturbation $v_{1}=\nabla \phi_{1}$:

$$
-\partial_{t}\left(\rho c^{-2}\left(\partial_{t} \phi_{1}+\mathbf{v} \cdot \nabla \phi_{1}\right)\right)+\nabla \cdot\left(\rho \nabla \phi_{1}-\rho c^{-2}\left(\partial_{t} \phi_{1}+\mathbf{v} \cdot \nabla \phi_{1}\right) \mathbf{v}\right)=0
$$

- $\mathbf{v}=$ background fluid velocity
- $\rho=$ isotropic mass density
- $c=\sqrt{\frac{B}{\rho}}$ local sound speed

$$
\begin{aligned}
& \hat{\mathbb{1}} \\
& g_{\mu \nu}=\frac{\rho}{c}\left(\begin{array}{c:c}
-c^{2}+v^{i} v^{j} \gamma_{i j} & \vdots \\
\cdots \cdots \cdots & -v^{j} \gamma_{i j} \\
-v^{j} \gamma_{i j} & \vdots \\
\gamma_{i j}
\end{array}\right)
\end{aligned}
$$

- ϕ_{1} described by massless KG eq. in acoustic analogue spacetime

- Enables expanded set of transformations
- Time transformations \Rightarrow frequency shifts

$$
\rho(\mathbf{x}) c(\mathbf{x}) \frac{\partial u}{\partial t}=\nabla \cdot(\kappa(\mathbf{x} \nabla u)+s(\mathbf{x}, t))
$$

- $\rho(\mathbf{x})=$ density
- $c(\mathbf{x})=$ specific heat capacity
- $\kappa(\mathbf{x})=$ matrix-valued thermal conductivity
- Invariant to spatial transformations
- Can do transformation thermodynamics
- Thermal cloak

Transformation Optics and the mathematics of invisibility

- Extensions of the Transformation method
transformation thermodynamics (Guenneau et. al. 2012)

Fig. 2. Diffusion of heat from the left on a cloak with $R_{1}=2.10^{-4} \mathrm{~m}$ and $R_{2}=3.10^{-4} \mathrm{~m}$. The temperature is normalized throughout time on the left side of the cell. Snapshots of temperature distribution at $t=0.001 \mathrm{~s}$ (a), $t=0.005 \mathrm{~s}$ (b), $t=0.02 \mathrm{~s}$ (c), $t=0.05 \mathrm{~s}$ (d). Streamlines of thermal flux are also represented with white color in panel (d). The mesh formed by streamlines and isothermal values illustrates the deformation of the transformed thermal space: the central disc ('invisibility region') is a hole in the metric, which is curved smoothly around it.

(1) A Crash Course in Differential Geometry

(2) Classical Electrodynamics in Vacuum
(3) Classical Electrodynamics in Linear Dielectrics

4 Transformation Optics
(5) Extensions of the Transformation method
(6) Conclusions

- future directions

Outstanding issues:

- Complicated, anisotropic, inhomogeneous media
- Conformal transformations \rightarrow isotropic, inhomogeneous
- Quasi-conformal transformations \rightarrow neglectable anisotropy
- Other classes of restricted transformations?
- Other optimization tools?
- Perfect transformation media unrealistic
- Incorporate dispersion, dissipation
- Geometrically? Covariantly?
- Transformation method based on
- invariance of system of equations
- active transformations
- Trans. Optics great potential for future application
- Many avenues still to explore
- Trans. Acoustics and Trans. thermodynamics popular too

