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Introduction

◮ (Multiple) directed walks can be considered as idealised models of
polymers in a solution

◮ At the inaugural ANZAMP meeting, we featured a model of two
interacting walks near an attractive surface

◮ Review the results, including some new ones

◮ Insights gained for solving models of n > 2 interacting walks
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What’s new

◮ Publication (JPhysA): An exact solution of two friendly interacting

directed walks near a sticky wall - to appear soon

◮ Exact solution

◮ Polished phase diagram
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Allowed walks

Consider two directed walks along the square lattice.
Let Ω be the class of allowed configurations.

◮ both walks begin at (0, 0), end on the x-axis.

◮ directed: can only take steps in the (±1, 0) directions.

◮ friendly: walks can share sites, but cannot cross
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Interaction terms

◮ surface visit step: weight a

◮ shared site contact: weight c

◮ trivial walk consisting of zero steps has weight 1.
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An example
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Figure: An allowed configuration of length 10. The overall weight is a3c7.
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Generating function

We encode all the counting information of every configuration in the
generating function:

G(a, c) ≡ G(a, c ; z) =
∑

ϕ∈Ω

w(ϕ)z |ϕ|

◮ w(ϕ) is the weight associated with a given config.

◮ |ϕ| is the number of paired steps.

◮ e.g. prev. slide, w(ϕ) = a3c7 and |ϕ| = 10.
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Reduced free energy

With the generating function, we can also determine the reduced free
energy ψ(a, c) of the system.

ψ(a, c) = − log zs(a, c)

where zs(a, c) is smallest real and positive singularity of G(a, c) w.r.t z
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Order parameters

Define suitable order parameters to identify phases of the system.
The limiting average surface contacts

A(a, c) ≡ lim
L→∞

〈ma〉

L
= a

∂ψ

∂a

and the limiting average number of shared sites

C(a, c) ≡ lim
L→∞

〈mc〉

L
= c

∂ψ

∂c

where ma and mc are the number of surface visits and shared contacts
for a given config. resp.
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Phases

◮ free: A = C = 0

◮ adsorbed: (a-rich) A > 0, C = 0

◮ zipped: (c-rich) A = 0, C > 0

◮ adsorbed-zipped: (ac-rich) A > 0, C > 0
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Solution of G (a, 1)

For the case where we ignore shared-contact effects, it was found in
Owczarek, Rechnitzer & Wong (’12) that

G(a, 1) = 1 +

∞
∑

i=1

z2i
i

∑

m=1

am
m(m + 1)(m + 2)

(i + 1)2(i + 2)(2i −m)

(

2i

i

)(

2i − k

i

)

.

(1)
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Solution of G (1, c)

For the case where we ignore surface-visit effects, we were able to find
the exact-solution to the generating function

G(1, c; z) = 1 + c
2
z
2 + c

3 (1 + 2z) z4 (2)

+

{

∞
∑

i=3

z
2i

2i
∑

m=3

c
m

m
∑

k=3

(−1)k+1 k(k − 1)(k − 2)(2i − k + 1)(i − k + 2)

i2(i − 1)2(i + 1)(i − 2)

(

m

k

)

×

(

2i − k

i − 2

)(

2i − k − 1

i − 3

)}

.
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Solution of G (a, c)

Finally, we were able to express G(a, c) in terms of G(a, 1) and G(1, c)

G(a, c ; z) =
1

(a− 1)(c − 1)

[

1 +
p0

p1G (a, 1; z) + p2G (1, c ; z) + p3

]

(3)

where pi are polynomials in a, c and z . In particular ...
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Solution of G (a, c) cont’d

p0(a, c ; z) = (a − 1)(c − 1)2(a− c)(ac − c − a)

− (c − 1)
(

2a− a2 + 3c − 3ac + a2c − 2
)

a2c2z2 − (a − 1)a2c4z4,

p1(a, c ; z) = (a − 1)a2c3(1− a− c + ac)z4,

p2(a, c ; z) = (a − 1)a(c − 1)3c2z2,

p3(a, c ; z) = (a − 1)(c − 1)2(a− c)

− a2(c − 1)c2 [1 + c(a− 2)] z2 + (a − 1)a2c4z4.

Key point: With solutions to G(a, 1) and G(1, c) we additionally have
solved for G(a, c). More on the relation later.
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Phase diagram
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Figure: All transitions are second-order while the critical point where all
boundaries meet (filled circle) occurs when a = 2 and c = 4/3
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n interacting walks

Recall

G(a, c ; z) =
1

(a− 1)(c − 1)

[

1 +
p0

p1G (a, 1; z) + p2G (1, c ; z) + p3

]

◮ Able to isolate interaction effects

◮ To our knowledge, such a decomposition previously unseen in the
literature

◮ Should we expect this kind of decomposition for similar models
(n > 2 interacting walks) ?
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n interacting walks cont’d

◮ Relation for G(a, c) obtained analytically, but not very illuminating
for understanding general case

◮ Ideally, we would like a combinatorial proof

◮ But as a start, consider the case where n = 3 to see if we can repeat
the process used for G(a, c)

Rami Tabbara Uni. Melb.

Multiple interacting directed walks



Three walks in bulk
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Let ∆ be comb. class of three directed friendly walks in bulk

H(e, f ) ≡ H(e, f ; z) =
∑

ϕ∈∆

w(ϕ)z |ϕ|
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Some notation - coefficient extraction

Treating H(e, f ) as a power series in e, we have

H(e, f ) =
∑

i≥0

Ai (f , z)e
i , Ai (f , z) ∈ Z[f , z]

and we denote the coefficient Ai (f , z) as

[e i ]H(e, f ) ≡ Ai (f , z)
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Three walks in bulk cont’d

Solving for general H(e, f ) by the exact same process as G(a, c) has not
been possible. But we do know

◮ Combinatorial relation:

H(1, f ) =
−2fz + [e1]H(e, f )

f 2z2
(4)

◮ We can find [e1]H(e, f ) using same techniques as for G(a, c)

◮ By symmetry, we can also solve for H(e, 1)

Rami Tabbara Uni. Melb.

Multiple interacting directed walks



Three walks in bulk cont’d

Most importantly, for the equal interaction case (i.e.f = e) we have
found that

H(e, e) =
1

(e − 1)2

[

1 +
q0

q1H (e, 1; z) + q3

]

where qi are polynomials in e and z .

◮ Closely resembles decomposition for G(a, c)

◮ Suggests that we can also relate H(e, f ) in terms of H(1, f ) and
H(e, 1)!
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To do

◮ Explicitly solve H(1, f ) and H(e, 1)

◮ Find relation for H(e, f ) in terms of H(1, f ) and H(e, 1) (?)
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Distant future

◮ Can we generalize for arbitrary n interacting directed walks?

◮ i.e. relate H(e1, e2, . . . , en−1) to H(e1, 1, 1, . . . , 1), H(1, e2, 1, . . . , 1),
. . .H(1, 1, . . . , en−1)
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Thanks!


