Multiple interacting directed walks ANZAMP Annual Meeting

Rami Tabbara ${ }^{1}$ Aleks Owczarek ${ }^{1}$ Andrew Rechnitzer ${ }^{2}$
${ }^{1}$ The University of Melbourne,
Department of Mathematics and Statistics
${ }^{2}$ The University of British Columbia,
Mathematics Department

Mooloolaba, Australia, November 27-29, 2013

Introduction

- (Multiple) directed walks can be considered as idealised models of polymers in a solution
- At the inaugural ANZAMP meeting, we featured a model of two interacting walks near an attractive surface
- Review the results, including some new ones
- Insights gained for solving models of $n>2$ interacting walks

What's new

- Publication (JPhysA): An exact solution of two friendly interacting directed walks near a sticky wall - to appear soon
- Exact solution
- Polished phase diagram

Allowed walks

Consider two directed walks along the square lattice. Let Ω be the class of allowed configurations.

- both walks begin at $(0,0)$, end on the x-axis.
- directed: can only take steps in the $(\pm 1,0)$ directions.
- friendly: walks can share sites, but cannot cross

Interaction terms

- surface visit step: weight a
- shared site contact: weight c
- trivial walk consisting of zero steps has weight 1.

An example

Figure: An allowed configuration of length 10 . The overall weight is $a^{3} c^{7}$.

Generating function

We encode all the counting information of every configuration in the generating function:

$$
G(a, c) \equiv G(a, c ; z)=\sum_{\varphi \in \Omega} w(\varphi) z^{|\varphi|}
$$

- $w(\varphi)$ is the weight associated with a given config.
- $|\varphi|$ is the number of paired steps.
- e.g. prev. slide, $w(\varphi)=a^{3} c^{7}$ and $|\varphi|=10$.

Reduced free energy

With the generating function, we can also determine the reduced free energy $\psi(a, c)$ of the system.

$$
\psi(a, c)=-\log z_{s}(a, c)
$$

where $z_{s}(a, c)$ is smallest real and positive singularity of $G(a, c)$ w.r.t z

Order parameters

Define suitable order parameters to identify phases of the system. The limiting average surface contacts

$$
\mathcal{A}(a, c) \equiv \lim _{L \rightarrow \infty} \frac{\left\langle m_{a}\right\rangle}{L}=a \frac{\partial \psi}{\partial a}
$$

and the limiting average number of shared sites

$$
\mathcal{C}(a, c) \equiv \lim _{L \rightarrow \infty} \frac{\left\langle m_{c}\right\rangle}{L}=c \frac{\partial \psi}{\partial c}
$$

where m_{a} and m_{c} are the number of surface visits and shared contacts for a given config. resp.

Phases

- free: $\mathcal{A}=\mathcal{C}=0$
- adsorbed: (a-rich) $\mathcal{A}>0, \mathcal{C}=0$
- zipped: (c-rich) $\mathcal{A}=0, \mathcal{C}>0$
- adsorbed-zipped: (ac-rich) $\mathcal{A}>0, \mathcal{C}>0$

Solution of $G(a, 1)$

For the case where we ignore shared-contact effects, it was found in Owczarek, Rechnitzer \& Wong ('12) that

$$
\begin{equation*}
G(a, 1)=1+\sum_{i=1}^{\infty} z^{2 i} \sum_{m=1}^{i} a^{m} \frac{m(m+1)(m+2)}{(i+1)^{2}(i+2)(2 i-m)}\binom{2 i}{i}\binom{2 i-k}{i} . \tag{1}
\end{equation*}
$$

Solution of $G(1, c)$

For the case where we ignore surface-visit effects, we were able to find the exact-solution to the generating function

$$
\begin{align*}
& G(1, c ; z)=1+c^{2} z^{2}+c^{3}(1+2 z) z^{4} \tag{2}\\
& +\left\{\sum_{i=3}^{\infty} z^{2 i} \sum_{m=3}^{2 i} c^{m} \sum_{k=3}^{m}(-1)^{k+1} \frac{k(k-1)(k-2)(2 i-k+1)(i-k+2)}{i^{2}(i-1)^{2}(i+1)(i-2)}\binom{m}{k}\right. \\
& \left.\times\binom{ 2 i-k}{i-2}\binom{2 i-k-1}{i-3}\right\} .
\end{align*}
$$

Solution of $G(a, c)$

Finally, we were able to express $G(a, c)$ in terms of $G(a, 1)$ and $G(1, c)$

$$
\begin{equation*}
G(a, c ; z)=\frac{1}{(a-1)(c-1)}\left[1+\frac{p_{0}}{p_{1} G(a, 1 ; z)+p_{2} G(1, c ; z)+p_{3}}\right] \tag{3}
\end{equation*}
$$

where p_{i} are polynomials in a, c and z. In particular ...

Solution of $G(a, c)$ cont'd

$$
\begin{aligned}
p_{0}(a, c ; z) & =(a-1)(c-1)^{2}(a-c)(a c-c-a) \\
& -(c-1)\left(2 a-a^{2}+3 c-3 a c+a^{2} c-2\right) a^{2} c^{2} z^{2}-(a-1) a^{2} c^{4} z^{4}, \\
p_{1}(a, c ; z) & =(a-1) a^{2} c^{3}(1-a-c+a c) z^{4}, \\
p_{2}(a, c ; z) & =(a-1) a(c-1)^{3} c^{2} z^{2}, \\
p_{3}(a, c ; z) & =(a-1)(c-1)^{2}(a-c) \\
& -a^{2}(c-1) c^{2}[1+c(a-2)] z^{2}+(a-1) a^{2} c^{4} z^{4} .
\end{aligned}
$$

Key point: With solutions to $G(a, 1)$ and $G(1, c)$ we additionally have solved for $G(a, c)$. More on the relation later.

Phase diagram

Figure: All transitions are second-order while the critical point where all boundaries meet (filled circle) occurs when $a=2$ and $c=4 / 3$

n interacting walks

Recall

$$
G(a, c ; z)=\frac{1}{(a-1)(c-1)}\left[1+\frac{p_{0}}{p_{1} G(a, 1 ; z)+p_{2} G(1, c ; z)+p_{3}}\right]
$$

- Able to isolate interaction effects
- To our knowledge, such a decomposition previously unseen in the literature
- Should we expect this kind of decomposition for similar models ($n>2$ interacting walks) ?

n interacting walks cont'd

- Relation for $G(a, c)$ obtained analytically, but not very illuminating for understanding general case
- Ideally, we would like a combinatorial proof
- But as a start, consider the case where $n=3$ to see if we can repeat the process used for $G(a, c)$

Three walks in bulk

Let Δ be comb. class of three directed friendly walks in bulk

$$
H(e, f) \equiv H(e, f ; z)=\sum_{\varphi \in \Delta} w(\varphi) z^{|\varphi|}
$$

Some notation - coefficient extraction

Treating $H(e, f)$ as a power series in e, we have

$$
H(e, f)=\sum_{i \geq 0} A_{i}(f, z) e^{i}, \quad A_{i}(f, z) \in \mathbb{Z}[f, z]
$$

and we denote the coefficient $A_{i}(f, z)$ as

$$
\left[e^{i}\right] H(e, f) \equiv A_{i}(f, z)
$$

Three walks in bulk cont'd

Solving for general $H(e, f)$ by the exact same process as $G(a, c)$ has not been possible. But we do know

- Combinatorial relation:

$$
\begin{equation*}
H(1, f)=\frac{-2 f z+\left[e^{1}\right] H(e, f)}{f^{2} z^{2}} \tag{4}
\end{equation*}
$$

- We can find $\left[e^{1}\right] H(e, f)$ using same techniques as for $G(a, c)$
- By symmetry, we can also solve for $H(e, 1)$

Three walks in bulk cont'd

Most importantly, for the equal interaction case (i.e. $f=e$) we have found that

$$
H(e, e)=\frac{1}{(e-1)^{2}}\left[1+\frac{q_{0}}{q_{1} H(e, 1 ; z)+q_{3}}\right]
$$

where q_{i} are polynomials in e and z.

- Closely resembles decomposition for $G(a, c)$
- Suggests that we can also relate $H(e, f)$ in terms of $H(1, f)$ and $H(e, 1)$!

To do

- Explicitly solve $H(1, f)$ and $H(e, 1)$
- Find relation for $H(e, f)$ in terms of $H(1, f)$ and $H(e, 1)(?)$

Distant future

- Can we generalize for arbitrary n interacting directed walks?
- i.e. relate $H\left(e_{1}, e_{2}, \ldots, e_{n-1}\right)$ to $H\left(e_{1}, 1,1, \ldots, 1\right), H\left(1, e_{2}, 1, \ldots, 1\right)$, $\ldots H\left(1,1, \ldots, e_{n-1}\right)$

Thanks!

