Multiple interacting directed walks **ANZAMP** Annual Meeting

Rami Tabbara¹ Aleks Owczarek¹ Andrew Rechnitzer²

・ロト ・四ト ・ヨト ・ヨト ・ヨー

¹The University of Melbourne, Department of Mathematics and Statistics

²The University of British Columbia, Mathematics Department

Mooloolaba. Australia. November 27-29, 2013

Introduction

- (Multiple) directed walks can be considered as idealised models of polymers in a solution
- At the inaugural ANZAMP meeting, we featured a model of two interacting walks near an attractive surface
- Review the results, including some new ones
- Insights gained for solving models of n > 2 interacting walks

What's new

- Publication (JPhysA): An exact solution of two friendly interacting directed walks near a sticky wall - to appear soon
- Exact solution
- Polished phase diagram

・ロト ・同ト ・ヨト ・ヨ

Allowed walks

Consider two directed walks along the square lattice. Let Ω be the class of allowed configurations.

- both walks begin at (0,0), end on the x-axis.
- directed: can only take steps in the $(\pm 1, 0)$ directions.
- friendly: walks can share sites, but cannot cross

Image: A math a math

Interaction terms

- surface visit step: weight a
- shared site contact: weight c
- trivial walk consisting of zero steps has weight 1.

Image: A math a math

An example

Figure: An allowed configuration of length 10. The overall weight is a^3c^7 .

Rami Tabbara Multiple interacting directed walks * ロ > * 個 > * 注 > * 注 >

Generating function

We encode all the counting information of every configuration in the generating function:

$${{{\mathcal G}}}({{\mathsf{a}}},{{\mathsf{c}}})\equiv {{\mathcal G}}({{\mathsf{a}}},{{\mathsf{c}}};{{\mathsf{z}}})=\sum_{arphi\in\Omega}{{{\mathsf{w}}}(arphi){{\mathsf{z}}}^{|arphi|}}$$

- $w(\varphi)$ is the weight associated with a given config.
- $|\varphi|$ is the number of paired steps.
- e.g. prev. slide, $w(\varphi) = a^3 c^7$ and $|\varphi| = 10$.

・ロト ・ 日 ・ ・ ヨ ・

Reduced free energy

With the generating function, we can also determine the reduced free energy $\psi(a, c)$ of the system.

$$\psi(a,c) = -\log z_s(a,c)$$

where $z_s(a, c)$ is smallest real and positive singularity of G(a, c) w.r.t z

(日) (同) (三) (三)

Order parameters

Define suitable order parameters to identify phases of the system. The limiting average surface contacts

$$\mathcal{A}(a,c)\equiv\lim_{L o\infty}rac{\langle m_a
angle}{L}=arac{\partial\psi}{\partial a}$$

and the limiting average number of shared sites

$$\mathcal{C}(a,c) \equiv \lim_{L\to\infty} \frac{\langle m_c \rangle}{L} = c \frac{\partial \psi}{\partial c}$$

where m_a and m_c are the number of surface visits and shared contacts for a given config. resp.

< ロ > < 回 > < 回 > < 回 > < 回 >

Phases

- free: $\mathcal{A} = \mathcal{C} = 0$
- ▶ adsorbed: (a-rich) A > 0, C = 0
- ▶ zipped: (c-rich) A = 0, C > 0
- adsorbed-zipped: (ac-rich) A > 0, C > 0

э

< □ > < □ > < □ > < □ > < □ >

Solution of G(a, 1)

For the case where we ignore shared-contact effects, it was found in *Owczarek, Rechnitzer & Wong* ('12) that

$$G(a,1) = 1 + \sum_{i=1}^{\infty} z^{2i} \sum_{m=1}^{i} a^{m} \frac{m(m+1)(m+2)}{(i+1)^{2}(i+2)(2i-m)} {2i \choose i} {2i-k \choose i}.$$
(1)

イロト イヨト イヨト イヨト

Solution of G(1, c)

For the case where we ignore surface-visit effects, we were able to find the exact-solution to the generating function

$$G(1, c; z) = 1 + c^{2}z^{2} + c^{3}(1 + 2z)z^{4}$$

$$+ \left\{ \sum_{i=3}^{\infty} z^{2i} \sum_{m=3}^{2i} c^{m} \sum_{k=3}^{m} (-1)^{k+1} \frac{k(k-1)(k-2)(2i-k+1)(i-k+2)}{i^{2}(i-1)^{2}(i+1)(i-2)} \binom{m}{k} \right\}$$

$$\times \binom{2i-k}{i-2} \binom{2i-k-1}{i-3} \left\}.$$

$$(2)$$

Solution of G(a, c)

Finally, we were able to express G(a, c) in terms of G(a, 1) and G(1, c)

$$G(a,c;z) = \frac{1}{(a-1)(c-1)} \left[1 + \frac{p_0}{p_1 G(a,1;z) + p_2 G(1,c;z) + p_3} \right]$$
(3)

where p_i are polynomials in a, c and z. In particular ...

Solution of G(a, c) cont'd

$$\begin{split} p_0(a,c;z) &= (a-1)(c-1)^2(a-c)(ac-c-a) \\ &- (c-1)\left(2a-a^2+3c-3ac+a^2c-2\right)a^2c^2z^2-(a-1)a^2c^4z^4, \\ p_1(a,c;z) &= (a-1)a^2c^3(1-a-c+ac)z^4, \\ p_2(a,c;z) &= (a-1)a(c-1)^3c^2z^2, \\ p_3(a,c;z) &= (a-1)(c-1)^2(a-c) \\ &- a^2(c-1)c^2\left[1+c(a-2)\right]z^2+(a-1)a^2c^4z^4. \end{split}$$

Key point: With solutions to G(a, 1) and G(1, c) we additionally have solved for G(a, c). More on the relation later.

イロト イヨト イヨト

Figure: All transitions are second-order while the critical point where all boundaries meet (filled circle) occurs when a = 2 and c = 4/3

n interacting walks

Recall

$$G(a,c;z) = \frac{1}{(a-1)(c-1)} \left[1 + \frac{p_0}{p_1 G(a,1;z) + p_2 G(1,c;z) + p_3} \right]$$

- Able to isolate interaction effects
- To our knowledge, such a decomposition previously unseen in the literature
- Should we expect this kind of decomposition for similar models (n > 2 interacting walks) ?

・ロト ・同ト ・ヨト ・ヨト

n interacting walks cont'd

- Relation for G(a, c) obtained analytically, but not very illuminating for understanding general case
- Ideally, we would like a combinatorial proof
- ▶ But as a start, consider the case where n = 3 to see if we can repeat the process used for G(a, c)

Three walks in bulk

Let Δ be comb. class of three directed friendly walks in bulk

$$H(e, f) \equiv H(e, f; z) = \sum_{\varphi \in \Delta} w(\varphi) z^{|\varphi|}$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘

Some notation - coefficient extraction

Treating H(e, f) as a power series in e, we have

$$H(e,f) = \sum_{i\geq 0} A_i(f,z)e^i, \quad A_i(f,z)\in \mathbb{Z}[f,z]$$

and we denote the coefficient $A_i(f, z)$ as

$$[e']H(e,f) \equiv A_i(f,z)$$

Rami Tabbara Multiple interacting directed walks ・ロト ・部ト ・ヨト ・ヨト

Three walks in bulk cont'd

Solving for general H(e, f) by the exact same process as G(a, c) has not been possible. But we do know

Combinatorial relation:

$$H(1,f) = \frac{-2fz + [e^1]H(e,f)}{f^2 z^2}$$
(4)

・ロト ・同ト ・ヨト ・ヨト

- We can find $[e^1]H(e, f)$ using same techniques as for G(a, c)
- By symmetry, we can also solve for H(e, 1)

Three walks in bulk cont'd

Most importantly, for the equal interaction case (i.e. f = e) we have found that

$$H(e, e) = rac{1}{(e-1)^2} \left[1 + rac{q_0}{q_1 H(e, 1; z) + q_3} \right]$$

where q_i are polynomials in e and z.

- Closely resembles decomposition for G(a, c)
- Suggests that we can also relate H(e, f) in terms of H(1, f) and H(e, 1)!

イロト イヨト イヨト

To do

- Explicitly solve H(1, f) and H(e, 1)
- Find relation for H(e, f) in terms of H(1, f) and H(e, 1) (?)

* ロ > * 個 > * 注 > * 注 >

Uni. Melb.

Rami Tabbara Multiple interacting directed walks

Distant future

- Can we generalize for arbitrary n interacting directed walks?
- ▶ i.e. relate $H(e_1, e_2, ..., e_{n-1})$ to $H(e_1, 1, 1, ..., 1)$, $H(1, e_2, 1, ..., 1)$, ... $H(1, 1, ..., e_{n-1})$

《曰》 《圖》 《臣》 《臣》

Thanks!

