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Introduction

I What is integrability? Answer: many definitions.

I Algebraic entropy: integrability associated with “low
complexity” - vanishing entropy (Bellon,Viallet, Hietarinta,
Tremblay, Ramani, Grammaticos, Halburd...Arnold,
Friedland,Milnor, Diller, Favre, Bedford, Kim, Hasselblatt,
Propp, Silverman, Blanc and Cantat)

I Integrable lattice equations also have slow growth of degrees
heuristically, i.e. a lot of cancellations

I Can we prove it?

I Can you see slow growth over finite fields?
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Integrable equations: continuous and discrete
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Integrable O∆Es: McMillan Integrable Map

B = 2x2y 2 + (3K + 6)x2 + (3K + 6)y 2 −
`
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500

K 2 + 2897
500

K + 1577
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− 8x − 1
5
y + K + 1− t = 0.

(1)

0

x ′ = −x − δy2+εy+ξ
αy2+βy+γ

; y ′ = −y − βx′2+εx′+λ
αx′2+δx′+κ

(K , t) = (−7, 100); (x0, y0) ≈ (3, 6.71172)
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Integrable O∆Es: McMillan Integrable Map
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Integrable O∆Es: McMillan Integrable Map
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; y ′ = −y − βx′2+εx′+λ
αx′2+δx′+κ

(K , t) = (−7, 100); (x0, y0) ≈ (3, 6.71172), (x1, y1) ≈ (−3.47585,−4.21816),

(x2, y2) ≈ (5.19964, 3.35615), (x3, y3) ≈ (−7.04204,−2.80869).
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Integrable O∆Es: McMillan Integrable Map
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Integrable O∆Es: McMillan Integrable Map

B = 2x2y 2 + (3K + 6)x2 + (3K + 6)y 2 −
`

283
500

K 2 + 2897
500

K + 1577
250

´
xy

− 8x − 1
5
y + K + 1− t = 0.

(9)

K = −7; t ≈ −4.86693, −55.17923, −94.90509, −149.03582, −196.17473.

I McMillan maps are generalised by the 18 parameter family of integrable
birational maps known as QRT maps (Quispel+R+Thompson, 1988)
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What is algebraic entropy?
Given a rational map in an n dimensional space.

I Write it in projective coordinates (x0 : x1 : . . . : xn), the map has the
form

xi 7→ φi (x0, x1, . . . , xn),

where φi is a homogeneous polynomial.

I Cancelling common polynomial factors, the degree of the map and
its iterates is well-defined.

I Let dk be the degree of φk . The entropy is defined as

ε := lim
k→∞

1

k
log(dk)

I The limit exists, is invariant under birational conjugacy

I If ε = 0, the growth is polynomial

Claim: Algebraic entropy is vanishing for integrable maps.

Question: What about lattice equations i.e. partial difference equations?
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Plan

In this talk: we study integrable lattice rules and their
perturbations

I We conjecture the gcd when we iterate the rules.

I We provide a recursive formula of the actual degrees (a linear
partial difference equation with constant coefficients)

I We“prove” vanishing entropy for certain rules.

I We look for the signature of slow growth over finite fields and
we use it as an integrability detector
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List of integrable equations
We denote x = ul,m, x1 = ul+1,m, x2 = ul,m+1 and x12 = xl+1,m+1. The
ABS list (Adler-Bobenko-Suris, 2003):

I List Q:

(Q1) α(x − x2)(x1 − x12)− β(x − x1)(x2 − x12) + δ2αβ(α− β) = 0,

(Q2) α(x − x2)(x1 − x12)− β(x − x1)(x2 − x12)+

αβ(α− β)(x + x1 + x2 + x12) −αβ(α− β)(α2 − αβ + β2) = 0,

(Q3) (β2 − α2)(xx12 + x1x2) + β(α2 − 1)(xx1 + x2x12)−
α(β2 − 1)(xx2 + x1x12)− δ2(α2 − β2)(α2 − 1)(β2 − 1)/(4αβ) = 0.

I List H:

(H1) (x − x12)(x1 − x2) + β − α = 0,

(H2) (x − x12)(x1 − x2) + (α− β)(x + x1 + x2 + x12) + β2 − α2 = 0

(H3) α(xx1 + x2x12)− β(xx2 + x1x12) + δ(α2 − β2) = 0.
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Viallet equation: QV (Viallet, 2009)

We also consider QV :

p1xx1x2x12 + p2 (xx1x2 + xx1x12 + xx2x12 + x1x2x12)

+ p3(xx1 + x2x12) + p4(xx12 + x1x2) + p5(xx2 + x1x12)

+ p6(x + x1 + x2 + x12) + p7 = 0

Equations in the ABS list can be obtained from this equations by
choosing appropriate parameters. Note this equation has D4

symmetry.
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Setting

Other equations

(mKdV ) xx2 − x1x12 + αxx1 − βx2x12 = 0,

(sG ) xx1x2x12 + α (xx12 − x1x2)− β = 0

E 16 xx1p1 + xx2p5(p1p3 + p2) + (xx12 + x1x2)p2

+ x1x12p6 + x2x12p3(p5p6 − p2) = 0

E 25 xx12 + x1x2 + (x1x + x2x12)p3 − (xx2 + x1x12)(p3 + 1)

+ (x12 − x)r4 + (x1 − x2)r2 − (s(p3 + 1) + r4) (sp3 + r4) + sr2 = 0

Last two equations and others were suggested numerically by
Hietarinta and Viallet to have vanishing entropy [Searching for
integrable lattice maps using factorization, J Phys A 40 (2007)
12629-12643]



Integrable lattice equations, slow degree growth and possible signatures over finite fields

Setting

Setting
We consider an equation which is multi-affine on the square

Q(ul,m, ul+1,m, ul,m+1, ul+1,m+1) = 0. (10)

Solve this equation for ul+1,m+1 = P(ul,m, ul+1,m, ul,m+1).
Introduce projective coordinates ul,m =

xl,m

zl,m
so rule becomes

xl+1,m+1 = f (xl,m, xl+1,m, xl,m+1, zl,m, zl+1,m, zl,m+1) ,

zl+1,m+1 = g (xl,m, xl+1,m, xl,m+1, zl,m, zl+1,m, zl,m+1) ,

where f and g are homogeneous polynomials of degree 3.

Remark

Given a multi-affine equation on the quad graph, the projective
coordinates xl+1,m+1 and zl+1,m+1 of the top right corner are
homogeneous polynomials where each term includes exactly one
projective coordinate from each of the remaining 3 vertices of the square.
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Growth of degrees

Factorization

I Boundary values are given as polynomials in Z[w ] along horizontal
and vertical axes in the first quadrant (both components with same
degree).

I We iterate the rule with integer coefficients and complete the
vertices in the first quadrant .

I We factor xl,m(w) and zl,m(w) over Z.

gcdl,m(w) = gcd(xl,m(w), zl,m(w)).

xl,m(w) = gcdl,m(w) x̄l,m(w),

zl,m(w) = gcdl,m(w) z̄l,m(w).

dl,m = max(deg(xl,m), deg(zl,m)) ≥ 0

d̄l,m = max(deg(x̄l,m), deg(z̄l,m)) ≥ 0

gl,m = deg(gcdl,m)
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Growth of degrees

Algebraic entropy

Viallet and others: Calculate reduced degrees d̄l ,m of the xl ,m at
each vertex in the square [8 × 8]. Extract diagonal entries d̄m,m;
assume from generating function; fit with univariate rational
function and find asymptotics from closest singularity. Define
algebraic entropy for lattice map to be

ε = lim
m→∞

1

m
log(d̄m,m).

I The key issue for algebraic entropy relates to the growth of
gl ,m. It has been done for reductions of H1 by Van der Kamp

I Our approach: find exact upper bound for dl ,m, conjecture
lower bound for gl ,m =⇒ upper bound for d̄l ,m, hence for
entropy.
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Growth of degrees

Some properties of degrees

We have

I 0 ≤ dl+1,m+1 ≤ dl ,m + dl+1,m + dl ,m+1

I gcdl ,m(w) gcdl+1,m(w) gcdl ,m+1(w)
∣∣ gcdl+1,m+1(w)

Therefore we get,

gl+1,m+1 ≥ gl ,m + gl+1,m + gl ,m+1,

gl+1,m ≥ gl ,m,

gl ,m+1 ≥ gl ,m,

gl+1,m+1 ≥ 3gl ,m

The last property shows that gl ,m grows exponentially if there
exists l ,m such that gl ,m > 0.
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Growth of degrees

Upper bound for degrees dl ,m = max(deg(xl ,m), deg(zl ,m))

Dc =

26666666666666666666666664

0 1 17 145 833 3649 13073 40081 108545 265729

0 1 15 113 575 2241 7183 19825 48639 108545

0 1 13 85 377 1289 3653 8989 19825 40081

0 1 11 61 231 681 1683 3653 7183 13073

0 1 9 41 129 321 681 1289 2241 3649

0 1 7 25 63 129 231 377 575 833

0 1 5 13 25 41 61 85 113 145

0 1 3 5 7 9 11 13 15 17

0 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0

37777777777777777777777775

.

For affine corner boundary conditions, the maximal degree table
follows from removing the first column and the last row.
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Growth of degrees

Upper bound for degrees
Let dl,m be the maximal degree of xl,m and zl,m. Recall that

dl+1,m+1 ≤ dl,m + dl+1,m + dl,m+1

.

Theorem

Consider the linear partial difference equation with constant coefficients

al+1,m+1 = al,m + al+1,m + al,m+1 (11)

for all l ,m ≥ 0. Let al,0 = a0,m = 0 for all l ,m > 0 and a0,0 = 1, i.e. this
is case of previous slide. Then al,m is the coefficient of xm−1 in the
Taylor expansion of gl(x) around 0, i.e,

gl(x) =
(1 + x)l−1

(1− x)l
=
∞∑

m=1

al,mxm−1.
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Growth of degrees

Exact upper bound for degree growth

I

al,m =
∑

i+j=m−1

(
l − 1

i

)(
j + l − 1

j

)
.

I al,m well known, Delannoy numbers. Asymptotics of sequence??

I Generating functions for full double sequence and diagonal (central)
sequence with presented boundary conditions are known

F (x , y) =
∞∑
l=0

∞∑
m=0

al,m x lym =
1

1− x − y − xy

D(x) =
∞∑

m=0

am,m xm =
1√

1− 6x + x2

am,m ∼
cosh( log 2

4 )
√
π

(3 + 2
√

2)m 1√
m

⇒ ε = lim
m→∞

1

m
log(dm,m) ≤ εmax = log(3 + 2

√
(2)) = 1.76..
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Growth of degrees

Exponentially growing gl ,m = deg(gcdl ,m)
We calculate the degree of the gcd at each point for some known integrable lattice
maps. For the case of constant axis values except for affine in w at the origin we have

26666666666666666666666664

0 0 14 140 826 3640 13062 40068 108530 265712

0 0 12 108 568 2232 7172 19812 48624 108530

0 0 10 80 370 1280 3642 8976 19812 40068

0 0 8 56 224 672 1672 3642 7172 13062

0 0 6 36 122 312 672 1280 2232 3640

0 0 4 20 56 122 224 370 568 826

0 0 2 8 20 36 56 80 108 140

0 0 0 2 4 6 8 10 12 14

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

37777777777777777777777775

.
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Growth of degrees

Exponentially growing gl ,m = deg(gcdl ,m)

For the case of affine boundary values in w , the table is

26666666666666666666666664

0 0 144 1104 5568 22272 75408 224016 598272 1462400

0 0 112 784 3584 12992 39984 108432 265600 598272

0 0 84 532 2184 7112 19740 48540 108432 224016

0 0 60 340 1240 3592 8916 19740 39984 75408

0 0 40 200 640 1632 3592 7112 12992 22272

0 0 24 104 288 640 1240 2184 3584 5568

0 0 12 44 104 200 340 532 784 1104

0 0 4 12 24 40 60 84 112 144

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

37777777777777777777777775
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Growth of degrees

Spontaneous gcd

Recall that

gcdl ,m gcdl+1,m gcdl ,m+1 | gcdl+1,m+1,

so we can write

gcdl+1,m+1 = gcdl ,m gcdl+1,m gcdl ,m+1 gcd l+1,m+1,

and we call gcd l+1,m+1 the spontaneous gcd at that point.
We have

g l+1,m+1 = gl+1,m+1 − gl ,m − gl+1,m − gl ,m+1

For our convenience we take g l ,0 = g 0,m = 0.
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Growth of degrees

Spontaneous gcd
For the first case, we obtain

0 0 2 6 10 14 18 22 26 28

0 0 2 6 10 14 18 22 24 26

0 0 2 6 10 14 18 20 22 22

0 0 2 6 10 14 16 18 18 18

0 0 2 6 10 12 14 14 14 14

0 0 2 6 8 10 10 10 10 10

0 0 2 4 6 6 6 6 6 6

0 0 0 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



.
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Growth of degrees

Spontaneous gcd
For the second case, we have

0 0 32 64 96 128 160 192 224 256

0 0 28 56 84 112 140 168 196 224

0 0 24 48 72 96 120 144 168 192

0 0 20 40 60 80 100 120 140 160

0 0 16 32 48 64 80 96 112 128

0 0 12 24 36 48 60 72 84 96

0 0 8 16 24 32 40 48 56 64

0 0 4 8 12 16 20 24 28 32

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



,
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Growth of degrees

Observation
For the rule H1, for the first case of boundary values the degrees of spontaneous gcd and the actual degrees are
given (respectively) as follows

266666666666666666666666666664

0 0 2 6 10 14 18 22 26 28

0 0 2 6 10 14 18 22 24 26

0 0 2 6 10 14 18 20 22 22

0 0 2 6 10 14 16 18 18 18

0 0 2 6 10 12 14 14 14 14

0 0 2 6 8 10 10 10 10 10

0 0 2 4 6 6 6 6 6 6

0 0 0 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

377777777777777777777777777775

266666666666666666666666666664

0 1 3 5 7 9 11 13 15 17

0 1 3 5 7 9 11 13 15 15

0 1 3 5 7 9 11 13 13 13

0 1 3 5 7 9 11 11 11 11

0 1 3 5 7 9 9 9 9 9

0 1 3 5 7 7 7 7 7 7

0 1 3 5 5 5 5 5 5 5

0 1 3 3 3 3 3 3 3 3

0 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0

377777777777777777777777777775

.

We found that

g l ,m + g l+1,m+1 = 2(d l ,m−1 + d l−1,m).
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Growth of degrees

A source of spontaneous gcd on each 2 x 2 lattice square

I Generalizing an observation of Hietarinta and Viallet (2007),
we find that for many integrable lattice equations (ABS list,
QV , sG, mKdV, E16,E25), there is a common factor Al ,m of
xl+1,m+1 and zl+1,m+1 that depends on coordinates at vertices
(l − 1,m) and (l ,m − 1). For example, for rule H1:

Al ,m = (xl ,m−1zl−1,m − zl ,m−1xl−1,m)2.

I This creates an ongoing spontaneous gcd as we iterate.

I The common factor has the same degree 2(dl−1,m + dl ,m−1)
for all these equations.
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Growth of degrees

A recurrence that generates gcdl ,m
At the point (l + 1,m + 1) we know that

I gcdl,m gcdl+1,m gcdl,m+1 | gcdl+1,m+1 and Al,m | gcdl+1,m+1.

Therefore, we have

Al,m gcdl,m gcdl+1,m gcdl,m+1

gcd (Al,m, gcdl,m gcdl+1,m gcdl,m+1)
| gcdl+1,m+1.

Let Gl,m = 1 for all l ,m ≤ 1. We introduce the recurrence

Gl+1,m+1 =
Al,m Gl−1,m−1Gl+1,mGl,m+1

Gl−1,mGl,m−1
, (12)

For the ABS equations, sG, mKdV, E16 and E25 we have evidence for
the following conjecture.

Conjecture (Enabling)

Given arbitrary boundary conditions satisfying gcdl,m = 1 for all l ,m ≤ 1,
then Gl,m = gcdl,m (‘up to a constant’), so deg(Gl,m) = deg(gcdl,m).
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Growth of degrees

Polynomial growth of integrable lattice rules

Proposition

When deg(Al,m) = 2 (dl−1,m + dl,m−1), the degrees gl,m = deg(gcdl,m) of
the common factors satisfy the following linear partial difference equation
with constant coefficients

gl+1,m+1 = 2(dl,m−1+dl−1,m)+gl−1,m−1+gl+1,m+gl,m+1−gl−1,m−gl,m−1.

Recalling that dl,m = max(deg(xl,m), deg(zl,m)) satisfy

dl+1,m+1 = dl,m + dl+1,m + dl,m+1,

the linear partial difference equation with constant coefficients for
d̄l,m = max(deg(x̄l,m), deg(z̄l,m)) is

d l+1,m+1 = d l+1,m + d l,m+1 + d l−1,m−1 − d l,m−1 − d l−1,m.
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Growth of degrees

Polynomial growth of integrable lattice rules

Introduce vl,m = d l+1,m+1 − d l,m. We have

vl,m + vl−1,m−1 = vl−1,m + vl,m−1.

We consider ABS equations (including QV ), sG, mKdV, E16 and E25.
Along the diagonal (from (l ,m) to (l + 1,m + 1) we obtain:

I These equations have linear growth of d l,m if xl,0, zl,0 and x0,m, z0,m

are constant for l ,m > 0 and x0,0 and z0,0 are affine in w .

I Quadratic growth if xl,0(w), zl,0(w) and x0,m(w), z0,m(w) are
degree-one-polynomials in w .

I Cubic growth if xl,0(w), zl,0(w) and x0,m(w), z0,m(w) are
polynomials of degree l + 1 and m + 1 in w .

Remark: deg(Al,m) = 2 (dl−1,m + dl,m−1). If omit 2, not enough

cancellation and “prove” exponential growth of reduced degrees d l,m.
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Lattice equations over finite fields

Integrable equations: continuous and discrete

I RHS: When the O∆Es and P∆Es are defined by rational functions
with rational coefficients, they make sense over any field e.g. Fp,
where p is a prime number.
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Lattice equations over finite fields

Integrable maps over finite fields
[R+Vivaldi 2003, Jogia+R+Vivaldi 2006]

I Area-preserving birational map of R2 with rational integral
I (x ′, y ′) = I (x , y) and I (x , y) = x2y 2 + x2 + y 2 + 2xy + x + y

LMcM : x ′ = y , y ′ = −x − 1 + 2y

1 + y 2

I Level sets are elliptic curves in general. Reduce LMcM for
p ≡ 3 (mod 4) gives a permutation. Number of points on elliptic
curve (mod p) bounded by HW (p) = p + 1 + 2

√
p.

Dp(x) =
#{z ∈ F2

p : T (z) ≤ κx}
#F2

p

,

κ = HW (p).

I Case p = 1019 shows quantised periods around 1/n, n = 1, 2, . . .
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Lattice equations over finite fields

Integrable maps over finite fields
[R+Vivaldi 2003, Jogia+R+Vivaldi 2006]

I Area-preserving birational map of R2 with rational integral
I (x ′, y ′) = I (x , y) and I (x , y) = x2y 2 + x2 + y 2 + 2xy + x + y

LMcM : x ′ = y , y ′ = −x − 1 + 2y

1 + y 2

I Level sets are elliptic curves in general. Reduce LMcM for
p ≡ 3 (mod 4) gives a permutation. Number of points on elliptic
curve (mod p) bounded by HW (p) = p + 1 + 2

√
p.

Dp(x) =
#{z ∈ F2

p : T (z) ≤ κx}
#F2

p

,

κ = HW (p).

I Case p = 1019 shows quantised periods around 1/n, n = 1, 2, . . .
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Integrability signatures over finite fields

I The signatures on reduction to finite fields can be used as necessary
conditions to detect algebraic properties in parametrised families of
birational maps (parameter space is also finite over Fp).

I Over finite fields, being close to integrable is the same as being far
from integrable.
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Lattice rule over finite fields

Recall that over Z, we wrote

xl,m(w) = gcdl,m(w) x̄l,m(w), zl,m(w) = gcdl,m(w) z̄l,m(w).

We repeat our experiments over Fp, where p is a prime number. We take

xp
l,m(w) ≡ xl,m(w) (mod p), zp

l,m(w) ≡ zl,m(w) (mod p).

We divide and factorize polynomials now over the finite field so that

xp
l,m(w) = gcdp

l,m(w) x̄p
l,m(w) (mod p), (13)

zp
l,m(w) = gcdp

l,m(w) z̄p
l,m(w) (mod p) (14)

gcdl,m(w) (mod p) | gcdp
l,m(w)

but gcdp
l,m(w) may be bigger. Faster computationally but still restricted

to 11 × 11 square.
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Polynomials over finite fields
Can go much further if cap the degrees of polynomials by using the
Fermat’s little theorem

wp = w (mod p). (15)

We denote

rootspl,m := {w : xp
l ,m(w) = zp

l ,m(w) = 0 (mod p)} (16)

We use rootspl,m as analogue of gcdl ,m to measure “commonality”

between xp
l ,m(w) and zp

l ,m(w).

Remark

The non-negative integer sequence # rootspl,m is non-decreasing as
we move to the right and/or upwards on the lattice.

We consider the sequence rp(m) := # rootspm,m ≤ p along the
diagonal.
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Roots of integrable rules and their perturbations over Fp
Computationally fast to calculate, with random constant initial conditions
along the corner axes and xp

0,0(w) and zp
0,0(w) affine in w .

Figure: # roots along the diagonal over F59

for KdV (blue) and its perturbation (red) together

with H3 (black) and its perturbation (green).

.

Figure: # roots along the diagonal over F127

for Q1 (blue) and its perturbation (black) together

with Q2 (red) and its perturbation (green). Each

curve is average of 10 simulations.
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Observations

Over Fp, m is called a saturation point if for all w ∈ {0, 1, ..., p − 1}, we
get xp

m,m(w) = zp
m,m(w) = 0, i.e. rp(m) := #rootspm,m = p. We observe

the following.

I Saturation always occurs for the sequences rp(m) derived from
integrable lattice rules and for many non-integrable lattice rules.
The growth of rp(m) is markedly faster for integrable rules as
compared to their non-integrable perturbations.

I The first saturation point m∗(p) for an integrable lattice rule is
much lower than the corresponding one for non-integrable
perturbations.

I Integrable rules rise from 0 quickly compared to non-integrable
perturbations.
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Building models to explain the observations

Recall: At vertex (l ,m), we have xp
l,m(w) ≡ xl,m(w) (mod p) and

zp
l,m(w) ≡ zl,m(w) (mod p). Common roots passed to the right and

upwards.

Fact: Over Fp, a polynomial has on average 1 root independent of its
degree!!

Assumption: On average, common root over Fp appears every T
vertices. T depends on common factors of xp

l,m(w) and zp
l,m(w).

I T = 1 if one common factor over Z;

I T = 1
2 if two common factors over Z;

I T = p+1
2 or T = p if no common factors over Z.
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The models

I Model 1: Assume j distinct roots produced from m vertices.
Expected number of vertices to add next new root (Bernoulli trial)
is p

p−j T . Expected number of vertices to see i roots:

F (T , p, i) = T +
p

p − 1
T +

p

p − 2
T + . . .

p

p − (i − 1)
T

At (i , i), there are (i − 1)2 − 1 or i2 vertices that can contribute to
the process.

I Model 2: At (i , i), let Li be # common roots. Assume L2 = 0 and

Li+1 = Li + E (p,
2i ∓ 1

T
)(

p − Li

p
)

E(p,N) = Np
N+p−1

: expected # distinct values from N choices of {0, . . . , p − 1} with replacement



Integrable lattice equations, slow degree growth and possible signatures over finite fields

Lattice equations over finite fields

Saturation points: Data versus model 1
F (T , p, p) gives number of vertices to see p roots, i.e. saturation

Figure: Saturation points of H1 (cross) and H3

(circle) vs prime. Higher curve and lower curve

represent expected saturation points from Model 1

for T = 1 and T = 1/2

.

Figure: Saturation points of a perturbation of

Q2 (green) vs prime. Higher point curve (black)

and lower point curve (red) are saturation points

from Model 1 with T = p and T = (p + 1)/2.
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Roots along the diagonal: Data versus models 1 and 2
Recall the # roots rp(m) := # rootspm,m along the diagonal.

Figure: Average # roots along the diagonal

over F349 for ABS equations Q1,H2,H3 (blue) and

Q2,Q3,Q4,H1 (red) vs predictions from Model 1

(green dash) and Model 2 (black) for T = 1/2

(top) and T = 1 (bottom).

Figure: # roots along the diagonal over F113

for perturbations of Q1 (blue) and Q2 (red) vs

predictions from Model 1 (green, dash) and Model

2 (black) for T = (p + 1)/2 (top) and T = p

(bottom).
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Remarks

I It appears there is a T-dependent scaling that brings all root curves
to the universal curve D(x) = 1− exp(−x2), which gives the
proportion of Fp that appear as roots at the (scaled) distance x
along the diagonal from the origin. D(x) is a cumulative
distribution function.

I This “integrable” model is actually a test/model for # of common
factors of xp

l,m(w) and zp
l,m(w) (T = 1 is 1 common factor,

T = 1/2 is 2 common factors). Non-integrable equations can
produce the “integrable” signature over Fp.

I Nevertheless, the difference in unscaled root curves can be used to
test parametrised families of lattice equations over finite fields for
parameter values that are possibly integrable. Helps find needle in
the haystack or goldfish in the pond.
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Embedding integrable equations

-We add more general terms in some integrable equations and do a
factorization test over Fp[w ].
-All the equations in the ABS list except Q4 and equations given by Hietarinta
and Viallet do not have any cubic terms.

I Write the rule in projective coordinates with free cubic coefficients.

I Impose the ’constant boundary conditions’.

I Let the free coefficient run from 0 to p − 1 and then calculate all the
points in the 3× 3 square over Fp[w ].

I Record all the values of the ”free coefficient” that makes
deg(gcdp

3,3(w)) ≥ 4 or gcdp
3,3(w) = 0

I Run the test with different sets of initial values.

I Intersect all the ”survival” sets.

I Run with different prime numbers.

I Solve the Chinese Remainder Theorem to recover the original parameter.
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Embedding integrable equations: an example
By adding cubic terms in Q1 where α = 2, β = 3, we obtain the following rule

xl+1,m+1 = 6zl+1,mzl,mzl,m+1 − 2xl+1,mxl,mzl,m+1 − xl+1,mxl,m+1zl,m + 3xl,m+1xl,mzl+1,m

− a xl,mxl+1,mxl,m+1,

zl+1,m+1 = xl,mzl+1,mzl,m+1 + 2xl,m+1zl+1,mzl,m − 3xl+1,mzl,mzl,m+1

+ b xl,mxl+1,mzl,m+1 + c xl,mxl,m+1zl+1,m + d, zl,mxl+1,mxl,m+1.

We use prime numbers p = 7, 11, 13 and 20 sets of initial values. For p = 7, the survival set is

{[0, 0, 0, 0], [0, 0, 5, 5], [1, 1, 1, 1], [2, 2, 0, 0], [2, 2, 2, 2],

[3, 3, 3, 3], [4, 4, 4, 4], [5, 5, 0, 0], [5, 5, 5, 5], [6, 6, 6, 6]}

For p = 11, the survival set is

{[0, 0, 0, 0], [0, 0, 5, 5], [1, 1, 1, 1], [2, 2, 0, 0], [2, 2, 2, 2],

[3, 3, 3, 3], [4, 4, 4, 4], [5, 5, 0, 0], [5, 5, 5, 5], [6, 6, 6, 6]}

For p = 13, the survival set is

{[0, 0, 0, 0], [0, 0, 8, 8], [1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3],

[4, 4, 4, 4], [5, 5, 0, 0], [5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7],

[8, 8, 0, 0], [8, 8, 8, 8], [9, 9, 9, 9], [10, 10, 10, 10], [11, 11, 11, 11],

[12, 12, 12, 12]}

They suggest that, we can take a = b = c = d , i.e. the new equation is just a special case of QV .
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Embedding integrable equations: a new equation
We add 4 possible cubic terms to the following equation

(x2 + x)(x12 + x1) + β(x1 + x2) = 0

For p = 7, the survival set of 4 coefficients is

{[0, 0, 0, 0], [0, 1, 1, 0], [0, 2, 2, 0], [0, 3, 3, 0], [0, 4, 4, 0],

[0, 5, 5, 0], [0, 6, 6, 0]}

For p = 11, the survival set is

{[0, 0, 0, 0], [0, 1, 1, 0], [0, 2, 2, 0], [0, 3, 3, 0], [0, 4, 4, 0],

[0, 5, 5, 0], [0, 6, 6, 0], [0, 7, 7, 0], [0, 8, 8, 0], [0, 9, 9, 0],

[0, 10, 10, 0]}

They suggest that a = d = 0, b = c = α. We obtain the following equation

αxx12(x1 + x2) + (x2 + x)(x12 + x1) + β(x1 + x2) = 0. (17)

This equation has vanishing entropy and fits in our framework in the first part

of the talk as one checks that deg(Al,m) = 2 (dl−1,m + dl,m−1).
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Diophantine integrability (after Halburd 2005)
If we choose initial values as rational numbers, big cancellations result in slow growth of the height of the iterates.
When k = Q, given x ∈ Q we define its height H(x) as follows.

If x = 0, then H(x) := 1 and if x = p/q where gcd(p, q) = 1 then H(x) := max(|p|, |q|)
We plot log(log(H(un,n)) vs log(n) along the diagonal (n ≥ 1) where α = 3, β = −2 and its perturbation

x12 = P(x, x1, x2) + 10−2.

Figure: Equation (17) and its perturbation,

time=450.224 seconds, size=9× 9

.

Figure: Equation (17), time=1.94 seconds,

size=40× 40

.
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Thanks for your attention!
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Recovery of integrable equations from parametrised
families via test of spontaneous gcd

We free one of the coefficients in the integrable rule, and perform the
following test to recover it.

I Write the rule in projective coordinates and free one of the
coefficients.

I Impose the ’constant boundary conditions’.

I Let the free coefficient run from 0 to p − 1 and then calculate all
the points in the 3× 3 square over Fp[w ].

I Record all the values of the ”free coefficient” that makes
deg(gcdp

3,3(w)) ≥ 4 or gcdp
3,3(w) = 0.

I Run the test with different sets of boundary values.

I Intersect all the ”survival” sets.

I Run with different prime numbers.

I Use the chinese remainder theorem to recover the original parameter
.
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Recovery test: an example

For example, the Q1 rule with α = 2, β = 3 is

xl+1,m+1 = 6zl+1,mzl,mzl,m+1 − 2xl+1,mxl,mzl,m+1 − xl+1,mxl,m+1zl,m + 3xl,m+1xl,mzl+1,m,

zl+1,m+1 = xl,mzl+1,mzl,m+1 + 2xl,m+1zl+1,mzl,m − 3xl+1,mzl,mzl,m+1.

We free the first term of zl+1,m+1, i.e. we take

zl+1,m+1 = R xl,mzl+1,mzl,m+1 + 2xl,m+1zl+1,mzl,m − 3xl+1,mzl,mzl,m+1.

Prime Initial values Survival set Intersection
p = 17 Initial values 1 {0, 1, 2, 6, 7, 9, 10, 12, 15, 16} {0, 1, 10}

Initial values 2 {0, 1, 8, 9, 10, 13}
Initial values 3 {0, 1, 2, 6, 7, 10, 13}

p = 19 Initial values 1 {1, 4, 5, 6, 8, 12, 15, 17, 18} {1, 4}
Initial values 2 {0, 1, 2, 4, 6, 7, 10, 11, 12, 13, 17, 18}
Initial values 3 {0, 1, 3, 4, 5, 8, 10, 13, 16}

p = 13 Initial values 1 {0, 1, 2, 3, 8, 10, 11, 17, 21, 22} {1, 2}
Initial values 2 {1, 2, 5, 7, 9, 12, 16, 20}
Initial values 3 {1, 2, 6, 7, 9, 11, 13, 16}

Using the Chinese remainder theorem to solve the systems R ≡ ai (mod pi ) gives 12 values Only R = 1 will

stabilize we use more prime numbers. It confirms that R = 1 in the original equation.
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