The Toda lattice and a quantum curve. ANZAMP Mooloolaba

November 2013
Paul Norbury
Melbourne

Joint with Dunin-Barkowski, Mulase, Popolitov, Shadrin.

Outline: a story of a wave function Ψ.

- Toda lattice: discrete and continuous $\ldots \mathcal{L} \Psi=0$.
- Rational behaviour of wave function.
- WKB method for producing wave function.
- Quantum curve for Gromov-Witten invariants of \mathbb{P}^{1} :

$$
\hat{A}(\hat{x}, \hat{y}) \Psi=0 \longleftrightarrow A(x, y)=0, \quad \hat{x}=x, \hat{y}=\hbar \frac{d}{d x}
$$

- Gukov-Sułkowski conjecture.

Toda lattice: $\ddot{q}_{n}=e^{q_{n-1}-q_{n}}-e^{q_{n}-q_{n+1}}$

- $u_{n}=q_{n-1}-q_{n}, v_{n}=-\dot{q}_{n}$
- $\tilde{\mathcal{L}}=\Lambda+v_{n}+e^{u_{n}} \Lambda^{-1}, \quad \Lambda f_{n}=f_{n+1}$
$-\frac{d \tilde{\mathcal{L}}}{d t}=\left[\Lambda+v_{n}, \tilde{\mathcal{L}}\right]$

$$
\begin{aligned}
& \Leftrightarrow \quad \dot{v}_{n}+\dot{u}_{n} e^{u_{n}} \Lambda^{-1}=\left[\Lambda+v_{n}, \Lambda+v_{n}+e^{u_{n}} \Lambda^{-1}\right] \\
&=\left(\Lambda+v_{n}\right) e^{u_{n}} \Lambda^{-1}-e^{u_{n}} \Lambda^{-1}\left(\Lambda+v_{n}\right) \\
&=e^{u_{n+1}}+v_{n} e^{u_{n}} \Lambda^{-1}-e^{u_{n}}-e^{u_{n}} v_{n-1} \Lambda^{-1} \\
&=e^{u_{n+1}}-e^{u_{n}}+\left(v_{n}-v_{n-1}\right) e^{u_{n}} \Lambda^{-1} \\
& \Leftrightarrow \quad \dot{v}_{n}=e^{u_{n+1}}-e^{u_{n}}, \quad \dot{u}_{n}=v_{n}-v_{n-1}
\end{aligned}
$$

Continuous Toda

- Interpolation: $u_{n}=u(\hbar n), \quad v_{n}=v(\hbar n)$

$$
\mathcal{L}=\Lambda+v(x)+e^{u(x)} \Lambda^{-1}, \Lambda=e^{\hbar \frac{\partial}{\partial x}}
$$

- $\frac{\partial \mathcal{L}}{\partial t}=[\Lambda+v(x), \mathcal{L}]$

$$
\Leftrightarrow \quad \frac{\partial}{\partial t} v(x)=e^{u(x+\hbar)}-e^{u(x)}, \quad \frac{\partial}{\partial t} u(x)=v(x)-v(x-\hbar)
$$

- Wave function: (for solution: $u=-\hbar t, v=-x$)

$$
\mathcal{L}=\Lambda-x+q \Lambda^{-1}, \quad \mathcal{L} \Psi=0, \quad \Psi=\Psi(x, \hbar, q)
$$

- Aganagic-Dijkgraaf-Klemm-Mariño-Vafa

$$
H=e^{\hbar \frac{\partial}{\partial x}}+x+e^{-\hbar \frac{\partial}{\partial x}}
$$

$H \psi=0$: insertion of D-brane at fixed x.

Rational behaviour.

Consider $\Psi=\sum_{d \geq 0} q^{d} \Psi_{d}=\Psi_{0}\left(1+q \frac{\Psi_{1}}{\Psi_{0}}+q^{2} \frac{\Psi_{2}}{\Psi_{0}}+\ldots\right)$
$\mathcal{L} \Psi=0 \Rightarrow \frac{\Psi_{d}}{\Psi_{0}}$ is

- rational in x, with d simple poles

$$
\begin{aligned}
\frac{\Psi_{d}}{\Psi_{0}} & =\sum_{\lambda \vdash d} \frac{1}{H_{\lambda}^{2}} \prod_{m=1}^{d} \frac{x-\left(m-\frac{1}{2}-\lambda_{m}\right) \hbar}{x-\left(m-\frac{1}{2}\right) \hbar}, H_{\lambda}:=\prod_{i j} h_{i j} \\
& =a_{0, d}+\frac{a_{1, d} \hbar}{x-\frac{\hbar}{2}}+\frac{a_{2, d} \hbar}{x-\frac{3 \hbar}{2}}+\ldots+\frac{a_{d, d} \hbar}{x-\left(d-\frac{1}{2}\right) \hbar}
\end{aligned}
$$

- $a_{m, d}=\frac{1}{d!} \frac{1}{(m-1)!} L_{d-m}^{(m)}(1)$
- Laguerre polynomials $L_{n}^{(\alpha)}(z)=\sum_{i=0}^{n}(-1)^{i}\binom{n+a}{n-i} \frac{z^{i}}{i!}$.

WKB method

- Assume the wave function has the form

$$
\log \Psi(x)=\hbar^{-1} S_{0}(x)+\hbar^{0} S_{1}(x)+\hbar S_{2}(x)+\ldots
$$

- $\mathcal{L} \Psi=0 \Rightarrow$ can recursively solve for $S_{k}(x)$.
- $\Lambda=e^{\hbar \frac{\partial}{\partial x}}=\sum \frac{\hbar^{n}}{n!}\left(\frac{\partial}{\partial x}\right)^{n}$ acts on Laurent series in \hbar
- Ψ is not Laurent in $\hbar \ldots$ make sense of $\mathcal{L} \Psi$ by conjugation:

$$
\begin{aligned}
\mathcal{L}_{1} & =e^{-\frac{1}{\hbar} S_{0}} \mathcal{L} e^{\frac{1}{\hbar} S_{0}} \\
& =e^{-\frac{1}{\hbar} S_{0}} \Lambda e^{\frac{1}{\hbar} S_{0}}+q e^{-\frac{1}{\hbar} S_{0}} \Lambda^{-1} e^{\frac{1}{\hbar} S_{0}}-x \\
& =e^{\frac{1}{\hbar}\left(S_{0}(x+\hbar)-S_{0}(x)\right)} \Lambda+q e^{\frac{1}{\hbar}\left(S_{0}(x-\hbar)-S_{0}(x)\right)} \Lambda^{-1}-x
\end{aligned}
$$

now acts on $e^{-\frac{1}{\hbar} S_{0}} \Psi$ which is a Laurent series in \hbar.

Spectral curve

- Semi-classical limit:

$$
\begin{aligned}
\lim _{\hbar \rightarrow 0} \mathcal{L}_{1} & =\lim _{\hbar \rightarrow 0}\left\{e^{\frac{1}{\hbar}\left(S_{0}(x+\hbar)-S_{0}(x)\right)} \Lambda+q e^{\frac{1}{\hbar}\left(S_{0}(x-\hbar)-S_{0}(x)\right)} \Lambda^{-1}-x\right\} \\
& =e^{S_{0}^{\prime}(x)}+q e^{-S_{0}^{\prime}(x)}-x
\end{aligned}
$$

which is a multiplication operator and hence must vanish.

- so it defines an algebraic curve

$$
z+q z^{-1}-x=0, \quad z=e^{S_{0}^{\prime}(x)}
$$

- we say that \mathcal{L} is a quantisation of the curve

$$
x=z+\frac{q}{z}, \quad y=\log z, \quad(x, y) \mapsto\left(x, \hbar \frac{d}{d x}\right)
$$

Exact solution to the WKB method

- Summary:
- $\mathcal{L}=\Lambda-x+q \Lambda^{-1}, \quad \mathcal{L} \Psi=0$
- $\log \Psi(x)=\hbar^{-1} S_{0}(x)+\hbar^{0} S_{1}(x)+\hbar S_{2}(x)+\ldots$
- $\hbar \rightarrow 0 \quad x=z+\frac{q}{z}, \quad y=\log z, \quad(x, y) \mapsto\left(x, \hbar \frac{d}{d x}\right)$
- Gukov-Sułkowski: conjectured an exact expression for $S_{k}(x)$
- $S_{k}(x)$ are meromorphic functions on the curve $x=z+\frac{q}{z}$
- Moreover they conjectured an explicit relation between the $S_{k}(x)$ for $k>1$ and CEO invariants:

$$
\log \Psi(x)=\hbar^{-1} S_{0}(x)+\hbar^{0} S_{1}(x)+\sum_{2 g-2+n>0} \frac{\hbar^{2 g-2+n}}{n!} F_{g, n}(x, \ldots, x)
$$

- $d_{1} \cdots d_{n} F_{g, n}\left(x_{1}, \ldots, x_{n}\right)=W_{g, n}\left(x_{1}, \ldots, x_{n}\right)$ multidifferentials on $x=z+\frac{q}{z}$ produced by CEO recursion

Results

- Theorem (N., Scott, $g=0,1,2011$; DOSS, all g, 2012)

The CEO recursion applied to $x=z+\frac{q}{z}, y=\log z$ produces stationary Gromov-Witten invariants of \mathbb{P}^{1}, i.e. an expansion of the multidifferentials $W_{g, n}\left(x_{1}, \ldots, x_{n}\right)$ are generating functions for stationary Gromov-Witten invariants of \mathbb{P}^{1}.

- Theorem (DuninBarkowski-Mulase-N-Popolitov-Shadrin 2013) The Gukov-Sutkowski conjecture holds for $x=z+\frac{q}{z}, y=\log z$.
- Ψ is non-perturbative-it collects different genus
- Place target stationary points at a single point p. $\Psi(x)=\sum N_{k} x^{-k}, N_{k}=\#$ covers with ramification k over p.

