Functional relations in logarithmic minimal models

Alexi Morin-Duchesne

University of Queensland
Supported by the Natural Sciences and Engineering Research Council of Canada

ANZAMP meeting, Mooloolaba
November 28, 2013
Based on joint work with Paul A. Pearce and Jorgen Rasmussen

Outline

Temperley-Lieb loop models
\rightarrow Planar Temperley-Lieb algebras
\rightarrow Transfer tangles
Fused loop models
\longrightarrow Wenzl-Jones projectors
\longrightarrow Fused face operators and transfer tangles
Fusion hierarchies
\rightarrow Fusion hierarchies of transfer tangles
\hookrightarrow Closure of fusion hierarchies \Rightarrow Functional relations
\hookrightarrow Y-systems
Conclusion and outlook

Transfer matrices

Transfer matrix

$\rightarrow \boldsymbol{T}(u)$ is an operator that acts on in-states and outputs the possible out-states with the correct Boltzmann weights
\hookrightarrow The spectral parameter $u \in \mathbb{R}$ measures the lattice anisotropy

Lattice loop model

\rightarrow Elementary face operator:

Loop configuration on the cylinder with non-local degrees of freedom

$$
u=s_{1}(-u) \square+s_{0}(u) \square
$$

\rightarrow Boltzmann weights given in terms of crossing parameter λ and spectral parameter u :

$$
s_{k}(u)=\frac{\sin (u+k \lambda)}{\sin \lambda}
$$

\rightarrow Loop fugacities:

$$
\begin{array}{cc}
\text { contractible: } & \beta=2 \cos \lambda \\
\text { non-contractible: } & \alpha
\end{array}
$$

Logarithmic minimal model $\mathcal{L M}\left(p, p^{\prime}\right)$
$\lambda=\frac{\left(p^{\prime}-p\right) \pi}{p^{\prime}}, \quad\left(p, p^{\prime}\right)=1, \quad p, p^{\prime} \in \mathbb{N}$

Lattice loop model

\rightarrow Elementary face operator:

Loop configuration on the strip with non-local degrees of freedom

$$
u=s_{1}(-u) \square+s_{0}(u) \square
$$

\rightarrow Boltzmann weights given in terms of crossing parameter λ and spectral parameter u :

$$
s_{k}(u)=\frac{\sin (u+k \lambda)}{\sin \lambda}
$$

\rightarrow Loop fugacities:

$$
\begin{array}{cc}
\text { contractible: } & \beta=2 \cos \lambda \\
\text { non-contractible: } & \alpha
\end{array}
$$

Logarithmic minimal model $\mathcal{L M}\left(p, p^{\prime}\right)$
$\lambda=\frac{\left(p^{\prime}-p\right) \pi}{p^{\prime}}, \quad\left(p, p^{\prime}\right)=1, \quad p, p^{\prime} \in \mathbb{N}$

Planar Temperley-Lieb algebra

\rightarrow An N-tangle is a diagram (with $2 N$ free nodes) composed of face operators glued together by loop segments

4-tangle obtained as a multiplication of two 3-tangles:

\rightarrow Tangles also include single connectivity diagrams since

$$
\square=\square=\square=\square
$$

Planar TL algebra with fixed direction of transfer
$\leftrightarrow \quad$ Temperley-Lieb algebra

Planar identities

Local inversion relation

$$
=\underbrace{\left(\beta s_{0}(u) s_{0}(-u)+s_{1}(-u) s_{0}(-u)+s_{0}(u) s_{1}(u)\right)}_{=0}
$$

Yang-Baxter equations

Temperley-Lieb algebra

On the strip

$$
I=\left.\left.\left.\left.\right|_{1}\right|_{2}\right|_{3} \cdots\right|_{N} \quad e_{j}=|\cdots| \underbrace{}_{j} \bigcap_{j+1}|\cdots|_{N}
$$

\hookrightarrow Multiplication is by vertical concatenation
Example

Algebraic definition

$$
\begin{gathered}
T L_{N}(\beta)=\left\langle I, e_{j} ; j=1, \ldots, N-1\right\rangle \\
I e_{j}=e_{j} I=e_{j} \\
e_{j}^{2}=\beta e_{j}, \quad e_{j} e_{j \pm 1} e_{j}=e_{j}, \quad e_{i} e_{j}=e_{j} e_{i}, \quad|i-j|>1
\end{gathered}
$$

Enlarged periodic Temperley-Lieb algebra

On the cylinder

$$
\begin{aligned}
& I=\left.\left.\left.\left.\right|_{1}\right|_{2}\right|_{3} \cdots\right|_{N} \quad e_{j}=|\cdots|_{1} \sum_{j+1}|\cdots|_{N}
\end{aligned}
$$

Algebraic definition [subscripts interpreted mod N with $e_{0} \equiv e_{N}$]

\[

\]

Transfer tangles

On the cylinder

$$
T(u)=-\begin{array}{|l|l|l|l|l|}
\hline u & u & \cdots & \cdots & u \\
\hline
\end{array}
$$

On the strip

\hookrightarrow Two commuting families of transfer tangles:

$$
[\boldsymbol{T}(u), \boldsymbol{T}(v)]=0, \quad[\boldsymbol{D}(u), \boldsymbol{D}(v)]=0, \quad \forall u, v \in \mathbb{C}
$$

\rightarrow An example for $N=2$:

Wenzl-Jones projectors

\hookrightarrow The WJ projector P_{n} is an n-tangle depicted as $\square, n \in \mathbb{N}$, and defined recursively by

$$
\square=\frac{n}{n-1} \mathbf{I}-\frac{U_{n-2}\left(\frac{\beta}{2}\right)}{U_{n-1}\left(\frac{\beta}{2}\right)} \prod_{\square \cdots \mid}^{n-1]}
$$

$$
1=1
$$

\hookrightarrow Chebyshev polynomial of the second kind: $U_{k}\left(\frac{\beta}{2}\right)=s_{k+1}(0), k \in \mathbb{N}_{0}$ Examples

Properties of the WJ projectors
(i) P_{n} is a projector: $\frac{n}{n}=\square$
(ii) P_{n} is an annihilator: $\square_{n}^{n}=0$
(iii) $P_{n=p^{\prime}}$ diverges for $\lambda=\frac{\left(p^{\prime}-p\right) \pi}{p^{\prime}}$

$$
\begin{aligned}
& \square=| |-\frac{1}{\beta} \simeq
\end{aligned}
$$

Fused faces

(m, n)-fused face operator

Generalised monoids [illustrated for $(m, n)=(2,2)]$

$$
\text { (2,2)}=\alpha_{0}
$$

Fused transfer tangles

On the cylinder

$$
\boldsymbol{T}^{m, n}(u)=\begin{array}{|c|c|c|c|c|}
\hline(m, n) & (m, n) & \cdots & \cdots & { }^{(m, n)} \\
u & \cdots & & \\
\hline
\end{array}
$$

On the strip

Two commuting families

$$
\left[\boldsymbol{T}^{m, n}(u), \boldsymbol{T}^{m, n^{\prime}}(v)\right]=0 \quad\left[\boldsymbol{D}^{m, n}(u), \boldsymbol{D}^{m, n^{\prime}}(v)\right]=0, \quad \forall u, v \in \mathbb{C}
$$

Fused identity tangle

Braid tangles

Elementary braid face operator

$$
\frac{1}{\square}=e^{-\mathrm{i} \frac{\pi-\lambda}{2}} \square+e^{\mathrm{i} \frac{\pi-\lambda}{2}} \square=\lim _{u \rightarrow \mathrm{i} \infty} \frac{e^{\mathrm{i} \frac{\pi-\lambda}{2}}}{s_{0}(u)}
$$

Braid transfer tangle on the cylinder

$$
\boldsymbol{F}=\begin{array}{|l|l|l|l|l|}
\hline \mathbf{1} & 1 & \cdots & \cdots & \mathbf{1} \\
\hline \mathbf{1} & 1 & \cdots & & \mathbf{1} \\
\hline
\end{array} \in Z\left[\mathcal{E P T L} L_{N}(\alpha, \beta)\right]
$$

Fused braid tangles on the cylinder

$$
\boldsymbol{F}^{m, n}=\begin{array}{|l|l|l|l|l|}
\hline \text { II } & \text { II } & \cdots & \cdots & \text { II } \\
\hline \hline & \hline \mathrm{ll} & \mathrm{II} & & \\
\hline
\end{array}
$$

Critical dense polymers $\mathcal{L} \mathcal{M}(1,2)$

\rightarrow Described by $\lambda=\frac{\pi}{2}$ for which contractible loops are disallowed

$$
\lambda=\frac{\pi}{2} \quad \Rightarrow \quad \beta=0
$$

Inversion identity

$$
\begin{gathered}
\boldsymbol{T}(u) \boldsymbol{T}\left(u+\frac{\pi}{2}\right)=\boldsymbol{I}\left(\cos ^{2 N} u+(-1)^{N} \sin ^{2 N} u\right)+2 \boldsymbol{J}(-i \cos u \sin u)^{N} \\
\text { where } \quad \boldsymbol{J}=\frac{1}{2}\left(\boldsymbol{F}^{2}-2 \boldsymbol{I}\right)
\end{gathered}
$$

\hookrightarrow Closed form for eigenvalues known for all N.

Objective

\rightarrow Extend these results from $\mathcal{L M}(1,2)$ to general $\mathcal{L M}\left(p, p^{\prime}\right)$ where

$$
\lambda=\frac{\left(p^{\prime}-p\right) \pi}{p^{\prime}}, \quad\left(p, p^{\prime}\right)=1, \quad p, p^{\prime} \in \mathbb{N}
$$

Fusion hierarchies in loop models

On the cylinder $[\lambda \in \mathbb{R}]$

$$
\boldsymbol{T}_{0}^{m, n} \boldsymbol{T}_{n}^{m, 1}=\boldsymbol{T}_{0}^{m, n+1}+h_{n} h_{n-2} \boldsymbol{T}_{0}^{m, n-1}
$$

\hookrightarrow Shorthand notations and definitions

$$
\boldsymbol{T}_{k}^{m, n}=\boldsymbol{T}^{m, n}(u+k \lambda), \quad \boldsymbol{T}_{k}^{m, 0}=\boldsymbol{I}^{m}, \quad h_{k}=\left(\prod_{j=0}^{m-1}(-\mathrm{i}) s_{k-j}(u)\right)^{N}
$$

\longrightarrow Diagrammatical example $[m=1, n=4, N=3]$
$-u_{4}$

Fusion hierarchies in RSOS models

\longrightarrow Height model with L values
\hookrightarrow Large family of commuting fused transfer matrices $T^{p, q}(u, \lambda)\left(\right.$ with $\left.\lambda=\frac{\pi}{L+1}\right)$:

$$
\left[T^{p, q}(u, \lambda), T^{p, q^{\prime}}(v, \lambda)\right]=0
$$

Fusion hierarchy

$$
T_{0}^{p, q} T_{q}^{p, 1}=f_{q}^{p} T_{0}^{p, q-1}+f_{q-1}^{p} T_{0}^{p, q+1} \quad \text { where } \quad T_{k}^{p, q}=T^{p, q}(u+k \lambda, \lambda)
$$

Fusion closure

$$
T_{0}^{p, L-1}=f_{L-1}^{p} R, \quad T_{0}^{p, L}=0
$$

Y-system

$$
t_{0}^{p, q} t_{1}^{p, q}=\left(1+t_{1}^{p, q-1}\right)\left(1+t_{0}^{p, q+1}\right) \quad \text { where } \quad t_{0}^{p, q}=\frac{T_{1}^{p, q-1} T_{0}^{p, q+1}}{f_{-1}^{p} f_{q}^{p}}
$$

Functional relations for loop models

Fusion closure on the cylinder $\left[\lambda=\frac{\left(p^{\prime}-p\right) \pi}{p^{\prime}}\right]$

$$
\begin{gathered}
\boldsymbol{T}_{0}^{m, p^{\prime}}=h_{0} h_{p^{\prime}-2} \boldsymbol{T}_{1}^{m, p^{\prime}-2}+2 a \boldsymbol{J}^{m}, \quad \boldsymbol{J}^{m}=\frac{1}{2}\left(\boldsymbol{F}^{m, p^{\prime}}-\boldsymbol{F}^{m, p^{\prime}-2}\right) \\
a=e^{i \theta} \prod_{j=0}^{p^{\prime}-1} h_{j}, \quad \theta=\frac{1}{2} N m\left(p^{\prime}-p\right) \pi
\end{gathered}
$$

Functional relation in determinant form

$\left|\begin{array}{ccccc}\boldsymbol{T}_{0}^{m, 1} & h_{-1} & 0 & 0 & h_{0} \\ h_{1} & \boldsymbol{T}_{1}^{m, 1} & h_{0} & 0 & 0 \\ 0 & h_{2} & \ddots & \ddots & 0 \\ 0 & 0 & \ddots & \boldsymbol{T}_{p^{\prime}-2}^{m, 1} & h_{p^{\prime}-3} \\ h_{p^{\prime}-2} & 0 & 0 & h_{p^{\prime}-1} & \boldsymbol{T}_{p^{\prime}-1}^{m,-1}\end{array}\right|=a\left|\begin{array}{ccccc}\boldsymbol{F}^{m, 1} & 1 & 0 & 0 & e^{-\mathrm{i} \theta} \\ 1 & \boldsymbol{F}^{m, 1} & 1 & 0 & 0 \\ 0 & 1 & \ddots & \ddots & 0 \\ 0 & 0 & \ddots & \boldsymbol{F}^{m, 1} & 1 \\ e^{\mathrm{i} \theta} & 0 & 0 & 1 & \boldsymbol{F}^{m, 1}\end{array}\right|$

Universal Y-system

On the cylinder $[\lambda \in \mathbb{R}]$

$$
\boldsymbol{t}_{0}^{m, n} \boldsymbol{t}_{1}^{m, n}=\left(\boldsymbol{I}^{m}+\boldsymbol{t}_{0}^{m, n+1}\right)\left(\boldsymbol{I}^{m}+\boldsymbol{t}_{1}^{m, n-1}\right)
$$

where

$$
\boldsymbol{t}_{k}^{m, n}=\frac{\boldsymbol{T}_{k+1}^{m, n-1} \boldsymbol{T}_{k}^{m, n+1}}{\mu_{k}}, \quad \mu_{k}=\prod_{j=k}^{n+k-1} h_{j+1} h_{j-1}, \quad k \in \mathbb{Z}^{n}
$$

Closure of the Y-system $\left[\lambda=\frac{\left(p^{\prime}-p\right) \pi}{p^{\prime}}\right]$

$$
\begin{aligned}
& t_{0}^{m, \frac{3 p^{\prime}-1}{2}}=t_{\frac{p^{\prime}+1}{2}}^{m, \frac{p^{\prime}-3}{2}}+U_{2}\left(J^{m}\right)\left(t_{0}^{m, \frac{p^{\prime}}{2}-1}-t_{\frac{t^{\prime}}{2}}^{m} \frac{p^{\prime}-3}{2}\right), \quad p^{\prime} \text { odd }
\end{aligned}
$$

Summary and outlook

Summary

\rightarrow TL loop models described by $\boldsymbol{T}(u)$ and $\boldsymbol{D}(u)[\lambda \in \mathbb{R}]$
\longrightarrow Fusion hierarchies of fused transfer tangles $[\lambda \in \mathbb{R}]$
\rightarrow Functional relations for $\boldsymbol{T}(u)$ and $\boldsymbol{D}(u) \quad\left[\lambda=\frac{\left(p^{\prime}-p\right) \pi}{p^{\prime}}\right]$
\longrightarrow Universal Y-system $[\lambda \in \mathbb{R}]$
\rightarrow All computations are performed in the planar algebra. The results are therefore valid for all possible representations.

Outlook

\hookrightarrow Examine the Y-system in the continuum scaling limit
\leftrightarrows Explore the representation theory of fused loop models and the corresponding (logarithmic) conformal field theories
\hookrightarrow Extend to dilute loop models
\hookrightarrow Extend to models allowing crossings, using BMW algebras

Some references

Temperley-Lieb algebras

Temperley, Lieb (1971); Martin, Saleur (1993); Jones (1999)
Loop models
Nienhuis (1987); Blöte, Nienhuis (1989)
Fused loop models
Fendley, Read (2002); Zinn-Justin (2007)
Fusion hierarchies and Y-systems (rational CFT models)
Bazhanov, Reshetikhin (1989); Klümper, Pearce (1992);
Kuniba, Nakanishi, Suzuki $(1994,2011)$
Logarithmic minimal models
Pearce, Rasmussen, Zuber (2006); Pearce, Rasmussen (2007, ...);
AMD, Saint-Aubin $(2011,2013)$
Work in progress
AMD, Pearce, Rasmussen, Fusion hierarchies and Y-systems of logarithmic minimal models, in preparation (2013)

