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I will present a brief review of quantum systems related with
Painlevé transcendents. I will present results on a quantum system
involving the fourth Painlevé transcendent and how this
Hamiltonian is connected with supersymmetric quantum mechanics
and also superintegrability. I will explain how this system in the
reducible case contains families of systems related to Hermite
exceptionnal orthogonal polynomials. I will show how we can
construct new ladder operators in such case and how this is
important in regard of applications in context of superintegrable
systems and algebraic derivation of their energy spectrum.
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Outline

Painlevé transcendents, Painlevé transcendents in quantum
mechanics

Systems with fourth the Painlevé transcendent P4

– SUSYQM
– Superintegrability
– Rational solutions and generalized Hermite polynomials

1-step and 2-step extensions of Harmonic oscilaltor

– EOP Xm,standard operator with 1 singlet and new ladder
operators for 1-step with only infinite sequence

– EOP Xm1,m2
standard operators with 2 singlet, new ladder

operators with doublet or infinite sequence

Application to superintegrable systems and systems with
fourth Painlevé transcendent and algebraic calculation of the
energy spectrum

Concluding remarks
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The Painlevé transcendents

The Painlevé transcendents arise in the study of ordinary
differential equations.

Painlevé found 50 equations whose only movable singularities
are poles. (d

2w
dz2

= F (z ,w , dw
dz

))

The most interesting of the fifty types are those which are
irreducible and serve to define new transcendents (Painlevé
transcendents )

The other 44 can be integrated in terms of classical functions
and transcendents or transformed into the remaining six
equations.

Only the first three were found by Painlevé. The last three
were subsequently added by Gambier and Fuchs.
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Gromak, Laine and Shimomura Painlevé differential equations
in the complex plane (2002)

P ′′
1 (z) = 6P2

1 (z) + z

P ′′
2 (z) = 2P2(z)

3 + zP2(z) + α

P3(z)
′′ =

P′
3(z)

2

P3(z)
− P′

3(z)
z

+
αP2

3 (z)+β
z

+ γP3
3 (z) +

δ
P3(z)

P
′′

4 (z) =
P

′2
4 (z)

2P4(z)
+ 3

2P
3
4 (z) + 4zP2

4 (z) + 2(z2 − α)P4(z) +
β

P4(z)

P ′′
5 (z) = ( 1

2P5(z)
+ 1

P5(z)−1)P
′
5(z)

2 − 1
z
P ′
5(z) +

(P5(z)−1)2

z2
(
aP2

5 (z)+b

P5(z)
)

+ cP5(z)
z

+ dP5(z)(P5(z)+1)
P5(z)−1

P ′′
6 (z) =

1
2(

1
P6(z)

+ 1
P6(z)−1 + 1

P6(z)−z
)P ′

6(z)
2 − ( 1

z
+ 1

z−1 + 1
P6(z)−z

)P ′
6(z)

+P6(z)(P6(z)−1)(P6(z)−z)
z2(z−1)2

(γ1 +
γ2z

P6(z)2
+ γ3(z−1)

(P6(z)−1)2
+ γ4z(z−1)

(P6(z)−z)2
)

Statistical mechanics, quantum field theory, relativity,
symmetry reduction of various equations (Kdv, Boussineq,
Sine-Gordon, Kadomstev-Petviashvile, nonlinear Schrödinger).
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Painlevé transcendents in quantum mechanics

Dressing chains method : (Veselov and Shabat 1993 and
2001) : P4 , Willox and Hietarinta (2003) : P3 , P4 and P5

Higher symmetries : (Fushchych and Nikitin, 1997) : P1 , P2

and P4

Superintegrability : Gravel and Winternitz (2004), Marquette
and Winternitz (2008), Marquette (2009,2010,2011),
Tremblay and Winternitz (2010) : P1 , P2 , P4, P5 and P6 .

Supersymmetric quantum mechanics : Cannata, Ioffe, Junker
and Nishnianidze (1999) : P2

Andrianov, Cannata, Ioffe and Nishnianidze (2000) : P4

Carballo, Fernandez, Negro and Nieto (2004) : P5
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2D Superintegrable systems involving Painlevé

transcendents

Va(x , y) = ~
2(ω2

1P1(ω1x) + ω2
2P1(ω2y))

Vb(x , y) = ay + ~
2ω2

1P1(ω1x)

Vc(x , y) = bx + ay + (2~b)
2
3P2

2 ((
2b
~2
)
1
3 x , 0)

Vd(x , y) = ay + (2~2b2)
1
3 (P ′

2((
−4b
~2

)
1
3 x , α) + P2

2 ((
−4b
~2

)
1
3 x), α)

Ve(x , y) =
ω2

2 (x2+y2)+ ~2

2 P
2
4 (
√

ω
~
x , α, β)+2ω

√
ω~P4(

√

ω
~
x , α, β)

+ ǫ~ω
2 P

′

4(
√

ω
~
x , α, β) + ~ω

3 (ǫ− α)

Vf (r , θ) =
1

r2
(~2W ′(sin2(

θ

2
))−±8~2cos(θ)W (sin2( θ2)) + 4β1 + ~

2

4sin2(θ)
)

W ′ = x(1−x)
4P6(P6−1)(P

′
6−

√
2γ1

P6(P6−1)
x(x−1) )2−( γ2

2(x−1)P6
+ γ3

2x(P6−1))(P6−x)
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Fourth Painleve transcendent systems

H1L
†
1 = L

†
1(H2 + ~ω), H1L

†
2 = L

†
2H2

L1 order 1 and L2 order 2 : SUSYQM Factorization,
interwining, ....

The solution is given in term of P4 : reducible/irreducible

We can construct A† = L
†
1L2 (with [H1,A

†] = ~ωA†).

[a, a†] = P(+)(H(+) + λ)− P(+)(H(+))

The zero modes can be written (Aψ
(0)
k = 0 and A†φ

(0)
k = 0)

as (F1(P4,P
′
4)e

∫ x
F2(P4,P

′
4)dx

′
)

Ei are written in terms of α and β

1,2,3 infinite sequence of levels, singlet , doublet

(A†,A) allow to construct superintegrable systems
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N dimensional Euclidean space

Marquette (2011)

V =
∑N

i

ω2
i

2 (x2i ) +
~2

2 P
2
4 + 2ωi

√
ωi~P4 + ǫ~ω

2 P
′

4 +
~ωi

3 (ǫi − αi )

V =
N
∑

i

ω2
i

8
(1+

4(P5 + ǫiP
′
5)

2 − P2
5

(P5 − 1)2P5
)x2i +

~
2

x2i
(ai−bi−

1

8
+
bi − aiP

2
5

P5
)

−~ωi (1 +
(1 + 2ciP5)

2(P5 − 1)
)

with

P4 = P4(

√

ω

~
xi , αi , βi ), P5 = P5(

ω

~
x2i , ai , bi , ci ,−

1

8
)

Do we have algebraic structures that explain the degenerate
energy spectrum ?
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Application superintegrability

A 2D system with separation of variables in Cartesian coordinates :

H = Hx + Hy = − d2

dx2
− d2

dy2
+ Vx(x) + Vy (y)

with ladder operators that satisfy PHA

[Hx , a
†
x ] = λxa

†
x , [Hx , ax ] = −λxax

axa
†
x = Q(Hx + λx), a†xax = Q(Hx)

[Hy , a
†
y ] = λya

†
y , [Hy , ay ] = −λyay

aya
†
y = S(Hy + λy ), a†yay = S(Hy )

λx and λy , Q(x) and S(y) are polynomials

integrals of motion ( k1n1 + k2n2 ) for n1λx = n2λy = λ,
n1,n2 ∈ Z

∗

related recurrence approach Kalnins, Kress, Miller (2011,2012)
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K =
1

2λ
(Hx − Hy ), I− = an1x a†n2y , I+ = a†n1x an2y .

the method allows to generate a polynomial algebra of order
k1n1 + k2n2 − 1

[K , I±] = ±I±, [I−, I+] = Fn1,n2(K + 1,H)− Fn1,n2(K ,H),

F =

n1
∏

i=1

Q

(

H

2
+ λK − (n1 − i)λx

) n2
∏

j=1

S

(

H

2
− λK + jλy

)

a generalised deformed oscillator algebra (Daskaloyannis
(1991,2001))

b† = I+, b = I−, N = K − u and Φ(H, u,N) = Fn1,n2(K ,H)

Problem in the case of singlet and doublet ( not all spectrum
and degeneracies )
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1-step,2-step and fourth Painleve

Gromak (2002) : P4 has families of rational solutions ( related
to reducible case )

P4 has rational solution if and only if

α = m, β = 2(1 + 2n −m)2

α = m, β = −2

9
(1 + 6n − 3m)3,m, n ∈ Z

There are three families of rational solution of the form

w1(z , α1, β1) = P1,n−1/Q1,n

w2(z , α2, β2) = −2z + P2,n−1/Q2,n

w3(z , α3, β3) = −2

3
z + P3,n−1/Q3,n
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Generalized Hermite polynomials

Pj ,n−1 Qj ,n are polynomial of degree n

associated with a different set of α and β

They can be rewritten in other form

In the case of −2z and − 1
z
hierarchies involve Hm,n

Hm,n are generalized Hermite polynomials of Noumi and
Yamada Hm,n

also in the form of determinant τm,n = cm,nHm,n

Hm,n they satisfy the recurrence relation

2mHm+1,nHm−1,n − Hm,nH
′′
m,n + (H ′

m,n)
2 + 2mH2

m,n

with H0,0 = H1,0 = H0,1 = 1,H1,1 = 2z
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Hm(x) is a pseudo or twisted Hermite polynomial
((−i)mHm(ix))

Clarkson (2003)

w I
m,n = w(z , αI

m,n, β
I
m,n) = − d

dz
(ln(

Hm,n+1

Hm,n
))

w II
m,n = w(z , αII

m,n, β
II
m,n) = − d

dz
(ln(

Hm,n+1

Hm,n
))

We can use formula on Wronskian from (Odake and Sasaki
(2013))

For m=1
H1,n ∝ W (H1,H2, ...,Hn) ∝ Hn

For m = 2

H2,n ∝ W (H2,H3, ...,Hn+1) ∝ W (Hn,Hn+1)
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SUSYQM, 1-step, EOP

Marquette and Quesne(JMP 2013, JPA 2013)

H(+) = − d2

dx2
+ x2 + 2m + 1 = A†A,

H(−) = − d2

dx2
+ x2 − 2(

H′′
m

Hm

− (
H′

m

Hm

)) + 2m − 1 = AA†,

A =
d

dx
+ q0(x) =

d

dx
− x − H′

m

Hm

The interwining and factorisation relation of SUSYQM are

AH(+) = H(−)A, A†H(−) = H(+)A†

H(+) − E = A†A, H(−) − E = AA†,E = −(2m + 1)

The corresponding boud state energies are

E (+)
ν = 2(ν +m + 1), ν = 0, 1, 2, 3, ...

E (−)
ν = 2(ν +m + 1), ν = −m − 1, 0, 1, 2, 3, ...
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The SUSYQM is constructed using seed solution (φm(x))

φm(x) = Hm(x)e
1
2
x2 , q0(x) = −φ

′
m

φm

The seed solution is nodeless on the real line if we take
m = 0, 2, 4, 6, . . ., its inverse φ−1

m (x) is an acceptable physical
wavefunction of the superpartner potential

ψ(−)
ν = N(−)

ν

e−
1
2
x2

Hm

y
(m)
ν+m+1(x), ν = −m − 1, 0, 1, 2, ...

y
(m)
0 (x) = 1 y

(m)
ν+m+1(x) = −HmHν+1 − 2mHm−1Hν

Hermite EOP yn(x) (with n = m + ν + 1)
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The supercharges relate the wavefunction and give the
isospectral property and relate ladder operators

The Hamiltonian has ladder operators of the form

b = AaA†, b† = Aa†A†

ψ
(+)
ν+1

a
��

A //
ψ
(−)
ν+1

A†

oo

b
��

ψ
(+)
ν

a†

OO

A //
ψ
(−)
ν

A†

oo

b†

OO

We can also use the following diagram

we come back by the same path ( also for a† )

H(+)a 88
A -- H(−)

A†
mm
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We can relate H(+) to H(−) by a chain of m first order
SUSYQM transformations with supercharges

Âi =
d

dx
+ Ŵi (x), Â

†
i = − d

dx
+ Ŵi (x), Ŵi = x +

H′
i−1

Hi−1
− H′

i

Hi

i =, 1, 2, ...,m.

Ĥi = − d2

dx2
+ x2 − 2(

H′′
i−1

Hi−1
− (

H′
i−1

Hi−1
)2)− 3, i = 1, 2, ...,m + 1

We have

Â
†
i Âi = Ĥi , Âi Â

†
i = Ĥi+1 + 2, Âi Ĥi = (Ĥi+1 + 2)Âi

H(+) = Ĥ1 + 2m + 4, H(−) = Ĥm+1 + 2m + 2,
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ÂmÂm−1...Â1H
(+) = (H(−) + 2m + 2)ÂmÂm−1...Â1

H(+)Â
†
1...Â

†
m−1Â

†
m = Â

†
1...Â

†
m−1Â

†
m(H

(−) + 2m + 2)

Ĥ1
Â1−→ Ĥ2 + 2

Â2−→ Ĥ3 + 4
Â3−→ · · · Âm−1−−−→ Ĥm + 2m − 2

Âm−−→ Ĥm+1 + 2m

H(+) Âm···Â2Â1−−−−−−→ H(−) + 2m

some of the intermediate Ĥi are singular

The ladder operators for H(−) can be obtained by combining
2 types of supercharges

c = Âm...Â2Â1A
†, c† = AÂ

†
1Â

†
2...Â

†
m
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H(−)

c

88
A†

//H(+) Âm···Â2Â1 //H(−) + 2m + 2

The operator H(−),c and c† satisfy a PHA of order m

[H(−), c†] = (2m + 2)c†, [H(+), c] = −(2m + 2)c

[c , c†] = Q(H(−) + 2m + 2)− Q(H(−)),

Q(H(−)) = H(−)
m
∏

i

(H(−) − 2m − 2− 2i)

action of the raising operator c† on ψ
(−)
ν (x)

c†ψ
(−)
−m−1 ∝ ψ

(−)
0 , c†ψ(−)

ν ∝ ψ
(−)
ν+m+1, ν = 0, 1, 2, . . . .

cψ(−)
ν = 0, ν = −m − 1, 1, 2, . . . ,m,

the PHA generated by H(−), c†, and c has m + 1
infinite-dimensional unirreps
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2-step systems and new ladder

H(1) and H(2) related by second order supercharges A† and A
reducible : A† = A(1)†A(2)†

with

A(i)† = −d/dx +W (i)(x),A(i) = d/dx +W (i)(x), i = 1, 2,

seed eigenfunctions φ(1)(x) and φ(2)(x) as
W (i)(x) = −

(

φ(i)(x)
)′
, i = 1,2

φ(1)(x) = φ1(x) and φ
(2)(x) = A(1)φ2(x) = W(φ1, φ2)/φ1,

where W(φ1, φ2)

factorization energy E1 = −2m1 − 1 being less than the
ground-state of starting system

with E2 = −2m2 − 1 and φ2(x) = φm2(x) = Hm2(x)e
x2/2

with m2 odd ( m2 > m1 )
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W (1)(x) = −x − H′
m1

Hm1

, W (2)(x) = −x +
H′

m1

Hm1

−
g ′
µ

gµ
,

The potentials

V (1)(x) = x2 +m1 +m2 + 1,

V (x) = x2 − 2

[

H′′
m1

Hm1

−
(H′

m1

Hm1

)2
]

+m1 +m2 − 1,

V (2)(x) = x2 − 2

[

g ′′
µ

gµ
−
(

g ′
µ

gµ

)2
]

+m1 +m2 − 3,

The Wronskian therefore becomes (µth-degree polynomial)

gµ(x) = W(Hm1 ,Hm2), µ = m1 +m2 − 1
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From SUSYQM, we directly get the energy spectra of H(1), H and
H(2) in the form

E (1)
ν = 2ν +m1 +m2 + 2, ν = 0, 1, 2, . . . ,

Eν = 2ν +m1 +m2 + 2, ν = −m1 − 1, 0, 1, 2, . . . ,

E (2)
ν = 2ν +m1 +m2 + 2, ν = −m2 − 1,−m1 − 1, 0, 1, 2, . . . .

wavefunctions given by (n = ν + µ+ 2)

ψ(2)
ν (x) = N (2)

ν

e−
1
2
x2

gµ(x)
y
(µ)
n (x), ν = −m2 − 1,−m1 − 1, 0, 1, 2, . . . ,

y
(µ)
n (x) is an nth-degree polynomial ( Xm1,m2 )

y
(µ)
m1 (x) = Hm1 ,

y
(µ)
m2 (x) = Hm2 ,

y
(µ)
m1+m2+ν+1(x) = (m2 −m1)Hm1Hm2Hν+1 + . . .Hν , ν = 0, 1, 2, . . . ,
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[

d2

dx2
− 2

(

x +
g ′
µ

gµ

)

d

dx
+ 2n + 2

ḡµ−2

gµ

]

y
(µ)
n (x) = 0,

ḡµ−2(x) = W(H′
m1
,H′

m2
).

The order of φ1 and φ2 may be changed without affecting the
final results

φ̄1(x) = φ2(x), φ̄2(x) = φ1(x), Ā
(i)

V̄ (1)(x) = V (1)(x) = x2 +m1 +m2 + 1,

V̄ (x) = x2 − 2

[

H′′
m2

Hm2

−
(H′

m2

Hm2

)2
]

+m1 +m2 − 1,

V̄ (2)(x) = V (2)(x) = x2 − 2

[

g ′′
µ

gµ
−
(

g ′
µ

gµ

)2
]

+m1 +m2 − 3,
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factorizations can be summarized in the following
commutative diagram

H̄ can be useful to construct ladder operators for H(2)

H(1)

A(1)

��

Ā(1)
//

Âi

((

Âj

��

H̄

Ā(2)

��
H

A(2)
// H(2)

Maybe we need introduce new path ?

H(1)

A(1)

��

Ā(1)
// H̄

Ā(2)

��
H

A(2)
//

?

<<②②②②②②②②②②
H(2)

H(1)

A(1)

��

Ā(1)
//

?

""❊
❊❊

❊❊
❊❊

❊ H̄

Ā(2)

��
H

A(2)
// H(2)
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alternative ladder operators for H(2) from possibility of going
from H to H̄ (up to some additive constant) by a chain of
ℓ = m2 −m1 with supercharges

Â
†
i = − d

dx
+ Ŵi (x), Âi =

d

dx
+ Ŵi (x),

Ŵi (x) = x +
H′

m1+i−1

Hm1+i−1
−

H′
m1+i

Hm1+i

, i = 1, 2, . . . , ℓ.

Ĥi = − d2

dx2
+ x2 − 2

[

H′′
m1+i−1

Hm1+i−1
−
(H′

m1+i−1

Hm1+i−1

)2
]

− 3,

i = 1, 2, . . . , ℓ+ 1,

Â
†
i Âi = Ĥi , Âi Â

†
i = Ĥi+1 + 2, i = 1, 2, . . . , ℓ,
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as Âi Ĥi = (Ĥi+1 + 2)Âi for i = 1, 2, . . . , ℓ

H = Ĥ1 +m1 +m2 + 2, H̄ = Ĥℓ+1 +m1 +m2 + 2,

Âℓ · · · Â2Â1H = (H̄ + 2ℓ)Âℓ · · · Â2Â1,

HÂ
†
1Â

†
2 · · · Â

†
ℓ = Â

†
1Â

†
2 · · · Â

†
ℓ(H̄ + 2ℓ),

In diagrammatic form

Ĥ1
Â1−→ Ĥ2 + 2

Â2−→ Ĥ3 + 4
Â3−→ · · · Âℓ−1−−−→ Ĥℓ + 2ℓ− 2

Âℓ−→ Ĥℓ+1 + 2ℓ

H
Âℓ···Â2Â1−−−−−−→ H̄ + 2ℓ

conbine ℓth-order SUSYQM from H to H̄ + 2ℓ with other going
from H(2) to H or from H̄ to H(2) (cH(2) = (H(2) + 2ℓ)c)

c† = A(2)Â
†
1Â

†
2 · · · Â

†
ℓĀ

(2)†, c = Ā(2)Âℓ · · · Â2Â1A
(2)†,
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In diagrammatic form

H(2)

c

55
A(2)†

//H
Âℓ···Â2Â1 //H̄ + 2ℓ

Ā(2)
//H(2) + 2ℓ

The operators H(2), c† and c satisfy the commutation relations

[H(2), c†] = 2ℓc†, [H(2), c] = −2ℓc , [c , c†] = Q(H(2)+2ℓ)−Q(H(2)),

Q(H(2)) = (H(2) − 3ℓ)

[

ℓ
∏

i=1

(H(2) − 2m1 − ℓ− 2i)

]

(H(2) + ℓ)

a PHA of (ℓ+ 1)th order
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PHA of (m2 −m1 + 1)th order and zero modes of c and c†

can be obtained

one 2-dime unirreps spanned by doublet {ψ(2)
−m2−1, ψ

(2)
−m1−1}

ℓ infinite-dimensional ones spanned by {ψ(2)
i+ℓj | j = 0, 1, 2, . . .}

with i = 0, 1, . . . , ℓ− 1

cψ
(2)
−m2−1 = cψ

(2)
0 = cψ

(2)
1 = · · · = cψ

(2)
m2−m1−1 = 0,

cψ
(2)
−m1−1 = (m2 −m1)

(

2m2−m1+2m2!

m1!

)1/2

ψ
(2)
−m2−1,

cψ(2)
ν =

(

2m2−m1+2ν!(ν + 2m1 −m2 + 1)(ν +m2 + 1)

(ν +m1 −m2)!

)1/2

ψ
(2)
ν+m1−m2

,

ν = m2 −m1,m2 −m1 + 1, . . . .
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Ladder operators without singlet ou doublet can be found and
written in term of Wronskian

The action is the following

cψ
(2)
−m2−1 = cψ

(2)
−m1−1 = cψ

(2)
1 = · · · = ... = cψ

(2)
m2−m1−1 = 0,

= cψ
(2)
m2−m1−1 = cψ

(2)
m2−m1+1 = ... = cψ

(2)
m2 = 0,

cψ
(2)
0 =

(

2m2+1(m2 + 1)!
m1 + 1

m2 −m1

)1/2

ψ
(2)
−m2−1,

cψ
(2)
m2−m1

∝ ψ
(2)
−m1−1,

cψ(2)
ν ∝ ψ

(2)
ν−m2−1,

ν = m2 + 1,m2 + 2, . . . .
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A family of 2D superintegrable systems H

We use method discuss earlier based on ladder operators

H = Hx + Hy

Hx = − d2

dx2
+ x2 − 2

[

H′′
m

Hm

−
(H′

m

Hm

)2

+ 1

]

, m even,

Hy = − d2

dy2
+ y2.

This family is a particvular case of the superintegrable systems
involving the fourth Painleve transcendent.

The integrals will be product of ladder operators and a
polynomial algebra can be constructed from PHA
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Integrals from standard ladder

One important properties of superintegrable systems is the
symmetry algebra that ”explain” the degenerate energy
spectrum

Unirreps from deformed oscillator algebra realization of the
polynomial algebra

u p Energy E Structure function Φ Physical states

1 u1 N 2(p + 1) 16x(p + 1− x)(x +m)(x + 1 +m) νx = 0, 1, 2, . . .,
νy = 0, 1, 2, . . .

2 u3 0 2(p −m) 16x(p + 1− x)(x − 1−m)(x − 1) νx = −m − 1
νy = 0

we obtain the ground state but not all the states

do not recover all degeneracies

E = Ex+Ey = 2(νx+νy+1), νx = −m−1, 0, 1, 2, . . . , νy = 0, 1, 2, . . .
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Integrals from new ladder

The finite-dimensional unirreps

E1 = 2[(m + 1)p + 1− k]

E2 = 2[(m + 1)(p + 1) + l − k + 1],

Φ1 = 22(m+1)(m + 1)x

m
∏

i=1

[(m + 1)x −m − 1− i ]

×
m+1
∏

j=1

[(m + 1)(p + 1− x)−m + j − k]

Φ2 = 22(m+1)[(m + 1)x +m + 1 + l ]
m
∏

i=1

[(m + 1)x + l − i ]

×
m+1
∏

j=1

[(m + 1)(p + 1− x) + j − k]
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Direct approach

an analysis from the two solutions E1 and E2 allow to recover
the degeneracies and all the levels

E = Ex + Ey = 2(νx + νy + 1),

νx = −m − 1, 0, 1, 2, . . . , νy = 0, 1, 2, . . . .

we found the number of unirreps per level, the corresponding
set of p values with their number of occurrences and the total
degeneracy

(EN) =

{

1 if N = −m,−m + 1, . . . ,−1,

N + 1 if N = 0, 1, 2, . . ..

is the algebraic structure generated by integrals explains the
degenerate energy spectrum ?
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unirreps and energy spectrum

setting νx = (m + 1)nx + a1, νy = (m + 1)ny + a2, with
nx , ny ∈ N, a1 ∈ {−m − 1, 1, 2, . . . ,m}, and
a2 ∈ {0, 1, . . . ,m}

E can be rewritten as E = 2[(m + 1)(nx + ny ) + a1 + a2 + 1].

E1 and E2, correspond to E with nx + ny = p ∈ N,
a2 = m + 1− k ∈ {0, 1, . . . ,m}, and a1 = −m − 1 or
a1 = l ∈ {1, 2, . . . ,m}

m = 2 : nine unirreps for each p ∈ N, associated with the
energies 6p − 4, 6p − 2, 6p, 6p + 4, (6p + 6)2, (6p + 8)2, and
6p + 10

the sequence of energy levels with their degeneracy is
−4, −2, 0, 22, 43, 64, 85, 106, . . . .
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unirreps and degeneracies

Table : p occurrences, number N of unirreps per level, total level
degeneracy (N = (m + 1)λ+ µ)

λ µ p N (EN)

−1 1, 2, . . . ,m 0 1 1

0 0 0 1 1

0 1, 2, . . . ,m 1 µ N + 1

0µ−1

1, 2, . . . 0 λ m + 1 N + 1

(λ− 1)m

1, 2, . . . 1, 2, . . . ,m λ+ 1 m + 1 N + 1

λµ−1

(λ− 1)m−µ+1Ian Marquette Quantum systems involving P4, rational solutions and ladder



Conclusion

New ladder are created using two differents SUSYQM path

Wronskian , Darboux-Crum and Krein-Adler equivalence,

new ladder for k-step extension of harmonic oscillator and
singular oscillator related to type III Laguerre EOP, P5 ?

Moreover, we need also to create new integrals from ladder
operators with only infinite sequence (i.e. no multiplet)

We obtain all levels and degeneracies but for a given level the
degeneracies is given by taking into account union of unirreps

relations between integrals from (b, b†) and (c , c†) ?
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