On the Yang-Baxter equation for the six-vertex model

Vladimir Mangazeev

The Australian National University

Second ANZAMP meeting, Mooloolaba, 26-29 November 2013

Collaboration:
V.Bazhanov (ANU) and S.Sergeev (UC, Canberra)

Outline

(1) The Tetrahedron Equation
(2) Dressed 3D R-matrix
(3) The 2-layer case and higher-spin R-matrices
(4) The main result
(5) Q-operator
(6) Non-compact case
(7) Conclusion

Tetrahedron Equation

The tetrahedron equation is a 3D generalization of the YBE equation

$$
R_{a b c} R_{a d e} R_{b d f} R_{c e f}=R_{c e f} R_{b d f} R_{a d e} R_{a b c}
$$

Consider a 3D cubic lattice $M \times L \times N$ with periodic BC. We label each vertex by a triple (i, j, k).

Solution of the TE

We consider a model where spin indices are assigned to the edges and can take any positive integer values $0,1,2, \ldots, \infty$.
Such a solution based on the Fock representation of the q-oscillator algebra has been proposed by (Bazhanov, Sergeev, 2006).
We use a solution based on the dual Fock representation (see M, Bazhanov, Sergeev, arXiv:1308.4773, J. Phys. A:46, 465206)

$$
\begin{aligned}
& R_{n_{1}, n_{2}, n_{3}}^{k_{1}, k_{2}, \delta_{3}} \delta_{n_{1}+n_{2}, k_{1}+k_{2}} \delta_{n_{2}+n_{3}, k_{2}+k_{3}} q^{n_{2}\left(n_{2}+1\right)-\left(n_{2}-k_{1}\right)\left(n_{2}-k_{3}\right)} \times \\
& \times \sum_{r=0}^{n_{2}} \frac{\left(q^{-2 k_{1}} ; q^{2}\right)_{n_{2}-r}}{\left(q^{2} ; q^{2}\right)_{n_{2}-r}} \frac{\left(q^{2+2 n_{1}} ; q^{2}\right)_{r}}{\left(q^{2} ; q^{2}\right)_{r}} q^{-2 r\left(n_{3}+k_{1}+1\right)}
\end{aligned}
$$

It is easy to rewrite this formula in the form of a terminated hypergeometric series ${ }_{2} \phi_{1}$. For $0<q<1$ all nonzero matrix elements of R are positive.

All R-matrices in the TE are the same! How to construct a commutative family ??

Dressed 3D R-matrix

Let us introduce a set of parameters $\left(\lambda_{i}, \mu_{i}, c_{i}\right)$ associated with the spaces $\mathcal{F}_{q}^{(i)}$ (Fock spaces) $i=1, \ldots, 6$.

$$
R_{124} R_{135} R_{236} R_{456}=R_{456} R_{236} R_{135} R_{124}
$$

It is easy to show that for a solution R_{123} of the TE given above we can define a "dressed" R-matrix

$$
\begin{gathered}
\mathrm{R}_{123}=\left(\frac{\mu_{3}}{\lambda_{1}}\right)^{\mathbf{N}_{2}} R_{123}\left(\frac{\lambda_{2}}{\lambda_{3}}\right)^{\mathbf{N}_{1}}\left(\frac{\mu_{1}}{\mu_{2}}\right)^{\mathbf{N}_{3}}, \\
R_{123}^{\prime}=c_{1}^{\mathbf{N}_{1}} c_{2}^{\mathbf{N}_{2}} c_{3}^{\mathbf{N}_{3}} R_{123} c_{1}^{-\mathbf{N}_{1}} c_{2}^{-\mathbf{N}_{2}} c_{3}^{-\mathbf{N}_{3}} \\
R_{n_{1}, n_{2}, n_{3}}^{k_{1}, k_{2}, k_{3}}(\phi)=\phi_{1}^{n_{1}} \phi_{2}^{n_{2}} \phi_{3}^{n_{3}} \phi_{4}^{k_{2}} R_{n_{1}, n_{2}, n_{3}}^{k_{1}, k_{2}, k_{3}} .
\end{gathered}
$$

The "layer-layer" TM will commute for two different sets of fields ϕ_{i} and ϕ_{i}^{\prime}.

Commuting transfer-matrices

$$
\mathbb{R P}_{\mathbf{\prime}}^{\prime} \mathbf{m}^{\prime}=\mathrm{m}^{\prime}
$$

The 2-layer case

n in the 3rd direction corresponds to the $s /(n)$ algebra. We consider $n=2$.

Conservation laws
field λ

The sum over n_{0} from 0 to ∞ is the geometric progression with converges provided $|\lambda|<q^{2\left(\mathbf{I}_{1}+\mathbf{I}_{2}\right)}$.

This construction gives the $U_{q}(s /(2)) R$-matrix $R^{\left(\mathbf{l}_{1}, \mathbf{l}_{2}\right)}(\lambda)$ in the horizontal field ϕ acting in the tensor product of representations with spins $\mathbf{I}_{\mathbf{1}} / \mathbf{2}$ and $I_{2} / 2$.

The higher-spin R-matrix

The matrix elements of the $\left(I_{1}+1\right) \times\left(I_{2}+1\right) R$-matrix are given by

$$
\begin{aligned}
& {\left[R^{\left(l_{1}, l_{2}\right)}(\lambda)\right]_{i_{1}, i_{2}}^{j_{1}, j_{2}}=\delta_{i_{1}+i_{2}, j_{1}+j_{2}} \phi^{2 i_{1}-l_{1}} \frac{q^{i_{2}^{2}+\left(l_{2}-i_{2}\right)\left(l_{1}-j_{1}\right)-j_{2}\left(j_{2}-i_{1}\right)+2 l_{2}+\frac{1}{2} l_{1} l_{2}-\frac{1}{2} m\left(l_{1}, l_{2}\right)}}{\left(q^{2} ; q^{2}\right)_{i_{2}}\left(q^{2} ; q^{2}\right)_{l_{2}-i_{2}}}} \\
& \times \lambda^{i_{2}-j_{2}-m\left(l_{1}, l_{2}\right)}\left(\lambda^{2} q^{-l_{1}-l_{2}} ; q^{2}\right)_{m\left(l_{1}, l_{2}\right)+1} \sum_{k=0}^{i_{2}} \sum_{l=0}^{l_{2}-i_{2}} \frac{(-1)^{k+l} q^{2 k\left(j_{2}-i_{1}\right)-2 l\left(l_{1}-l_{2}-i_{1}+i_{2}\right)}}{\left(1-\lambda^{2} q^{\left.l_{2}-l_{1}-2 k-2 l\right)}\right) q^{k(k+1)+l(l+1)}} \\
& \times \frac{\left(q^{-2 i_{2}}, q^{2+2 i_{1}}\right.}{\left(q^{2} ; q^{2}\right)_{k}\left(q^{-2 j_{1}} ; q^{2}\right)_{i_{2}-k}} \frac{\left(q^{-2\left(l_{2}-i_{2}\right)}, q^{2\left(1+l_{1}-i_{1}\right)} ; q^{2}\right)!\left(q^{-2\left(l_{1}-j_{1}\right)} ; q^{2}\right)_{2}-i_{2}-l}{\left(q^{2} ; q^{2}\right)_{l}}
\end{aligned}
$$

where

$$
m(i, j)=\min (i, j)
$$

and $i_{1}, j_{1}=0, \ldots, l_{1}, i_{2}, j_{2}=0, \ldots, l_{2}$.
This is the simplest formula for $R^{\left(l_{1}, l_{2}\right)}(\lambda)$ we know. It satisfies the Yang-Baxter equation

$$
R_{12}^{\left(l_{1}, l_{2}\right)}(\lambda) R_{13}^{\left(l_{1}, l_{3}\right)}(\lambda \mu) R_{23}^{\left(l_{2}, l_{3}\right)}(\mu)=R_{23}^{\left(l_{2}, l_{3}\right)}(\mu) R_{13}^{\left(l_{1}, l_{3}\right)}(\lambda \mu) R_{12}^{\left(l_{1}, l_{2}\right)}(\lambda)
$$

Fusion procedure or spectral decomposition lead to more complicated formulas.

Symmetries of the R-matrix

$$
\begin{aligned}
& \mathcal{P}_{12} R^{\left(l_{1}, l_{2}\right)}(\lambda) \mathcal{P}_{12}=R^{\left(l_{2}, l_{1}\right)}(\lambda) \quad \text { at } \quad \phi=1 \\
& R^{\left(l_{1}, l_{2}\right)}(\lambda ; \phi)_{i_{1}, i_{2}}^{j_{1}, j_{2}}=R^{\left(l_{1}, l_{2}\right)}\left(\lambda ; \phi^{-1}\right)_{l_{1}-i_{1}, l_{2}-i_{2}}^{l_{1}-j_{1}, l_{2}-j_{2}} .
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& {\left[R^{\left(l_{1}, l_{2}\right)}(\lambda)\right]_{i_{1}, i_{2}}^{j_{1}, j_{2}}=\delta_{i_{1}+i_{2}, j_{1}+j_{2}} q^{i_{2}^{2}+\left(l_{2}-i_{2}\right)\left(l_{1}-j_{1}\right)-j_{2}\left(j_{2}-i_{1}\right)+2 l_{2}+\frac{1}{2} l_{1} l_{2}-\frac{1}{2} m\left(l_{1}, l_{2}\right)} \times} \\
& \phi^{2 i_{1}-l_{1}} \lambda^{i_{2}-j_{2}-m\left(l_{1}, l_{2}\right)}\left(\lambda^{2} q^{-l_{1}-l_{2}} ; q^{2}\right)_{m\left(l_{1}, l_{2}\right)+1} \frac{\left(q^{-2 j_{1}} ; q^{2}\right)_{i_{2}}\left(q^{-2\left(l_{1}-j_{1}\right)} ; q^{2}\right)_{l_{2}-i_{2}}}{\left(q^{2} ; q^{2}\right)_{i_{2}}\left(q^{2} ; q^{2}\right) l_{2}-i_{2}} \times \\
& \sum_{s=0}^{l_{2}} q^{2 j_{2} s} \frac{\left.\left(q^{-2 l_{2}}, q^{2\left(1+l_{1}-i_{1}-i_{2}\right)} ; q^{2}\right)_{s 4} \phi_{3}\binom{q^{-2 s}, q^{-2 i_{2}}, q^{-2 j_{2}}, q^{2\left(1+l_{1}-l_{2}+s\right)}}{q^{-2 l_{2}}, q^{2\left(1+i_{1}-j_{2}\right)}, q^{2\left(1+l_{1}-i_{1}-i_{2}\right)}} q^{2}, q^{2}\right)}{\left(1-\lambda^{2} q^{l_{2}-l_{1}-2 s}\right)\left(q^{2}, q^{2\left(1-i_{1}+j_{2}+l_{1}-l_{2}\right)} ; q^{2}\right)_{s}}
\end{aligned}
$$

It follows by applying a sequence of Sears' transformations for terminated balanced ${ }_{4} \phi_{3}$ series.

The main result

There is the explicit expression for the R-matrix which in not restricted to the case of integer I and J, i.e. works for Verma modules. It is polynomial in λ and can be expressed in terms of continuous q-Hahn polynomials.

$$
\left[R^{\prime, J}(\lambda ; \phi)\right]_{i, j}^{i^{\prime}, j^{\prime}}=\delta_{i+j, i^{\prime}+j^{\prime}} c_{i, j}^{i^{\prime}, j^{\prime}}(\lambda){ }_{4} \bar{\phi}_{3}\left(\left.\begin{array}{c}
q^{-2 i} ; q^{-2 i^{\prime}}, \lambda^{-2} q^{J-1}, \lambda^{2} q^{2+J-1} \\
q^{-2 l}, q^{2\left(1+j^{\prime}-i\right)}, q^{2(1+J-i-j)}
\end{array} \right\rvert\, q^{2}, q^{2}\right)
$$

where $c_{i, j}^{i^{\prime}, j^{\prime}}(\lambda)$ ia some simple product of q-Pochhammer symbols and ${ }_{4} \bar{\phi}_{3}$ is a regularized hypergeometric function.

All symmetry properties are now a simple consequence of Sears' transformations for terminating balanced $4 \phi_{3}$ series.

$$
\begin{aligned}
& \mathcal{P}_{12} R^{\left(l_{1}, l_{2}\right)}(\lambda) \mathcal{P}_{12}=R^{\left(l_{2}, l_{1}\right)}(\lambda) \quad \text { at } \quad \phi=1 \\
& R^{\left(l_{1}, l_{2}\right)}(\lambda ; \phi)_{i_{1}, i_{2}}^{j_{1}, j_{2}}=R^{\left(l_{1}, l_{2}\right)}\left(\lambda ; \phi^{-1}\right)_{l_{1}-i_{1}, l_{2}-i_{2}}^{l_{1}-j_{1}, l_{2}-j_{2}} .
\end{aligned}
$$

Example

Consider $I_{1}=1$ case. Then we get a 2×2 Lax operator in the $I_{2}+1$-dim representation.

$$
\left[R^{\left(1, l_{2}\right)}(\lambda)\right]_{i_{1}, i_{2}}^{j_{1}, j_{2}}=\left(\begin{array}{ll}
\delta_{i_{2}, j_{2}} \phi^{-1}\left[\lambda q^{\frac{1+l_{2}}{2}-j_{2}}\right] & \delta_{i_{2}, j_{2}+1} \phi^{-1}\left[q^{l_{2}-j_{2}}\right] q^{j_{2}-\frac{l_{2}-1}{2}} \\
\delta_{i_{2}+1, j_{2}} \phi\left[q^{j_{2}}\right] q^{\frac{l_{2}+1}{2}-j_{2}} & \delta_{i_{2}, j_{2}} \phi\left[\lambda q^{\frac{1-l_{2}}{2}+j_{2}}\right]
\end{array}\right)_{i_{1}+1, j_{1}+1}
$$

where $[x]=x-x^{-1}$.
Conjugating by $\sigma_{x}^{(1)}$ we get the standard $U_{q}(s /(2)) L$-operator $L(\mu)$ in the field ϕ

$$
L(\mu)=\sigma_{x}^{(1)} \mathbf{R}^{\left(1, l_{2}\right)}(\lambda) \sigma_{x}^{(1)}=\left(\begin{array}{ll}
\phi^{-1}\left[\mu K^{1 / 2}\right] & \phi^{-1}[q] F \\
\phi[q] E & \phi\left[\mu K^{-1 / 2}\right]
\end{array}\right)
$$

where $\mu=\lambda q^{1 / 2}$ and

$$
K v_{j}=q^{j-l_{2} / 2} v_{j}, \quad F v_{j}=\phi q^{\frac{1+l_{2}}{2}-j} \frac{\left[q^{j}\right]}{[q]} v_{j-1}, \quad E v_{j}=\phi^{-1} q^{\frac{1-l_{2}}{2}+j} \frac{\left[q^{l_{2}-j}\right]}{[q]} v_{j+1}
$$

Q-operator

field λ

In the 3D picture we take the limit $I_{2} \rightarrow \infty$ keeping n_{1} and n_{2} finite. Then the second 3D R-matrix degenerates into the product of q-Pochhammer symbols.

In this way we arrive to the local Baxter's Q-operator. The Q-operator of the spin I (the trace is taken over the q-oscillator representation labeled by n_{1}, n_{2}, \ldots)

$$
Q_{+}^{(I)}(\lambda)=\operatorname{Tr}_{n}\left[Q_{+}^{(I))}\right]_{1 n}(\lambda) \ldots\left[Q_{+}^{(I)}\right]_{M n}(\lambda)
$$

Two Q-operators

Taking the limit $I_{2} \rightarrow \infty$ in our general expression for the R-matrix we immediately derive the local Q - operator acting in the tensor product of the spin / representation and q-oscillator representation

$$
Q_{+}^{(1)}(\lambda)_{k_{1}, n_{1}}^{k_{2}, n_{2}}=\delta_{k_{1}+n_{1}, k_{2}+n_{2}} \frac{q^{3 k_{1}\left(k_{2}-n_{1}\right)+k_{2} n_{1}-k_{1}^{2}-k_{2}^{2}+l\left(k_{1}+n_{1}\right)}}{\phi^{2 n_{1}}(q \lambda)^{\frac{k_{1}+k_{2}}{2}}\left(q^{2} ; q^{2}\right)_{k_{1}}} 3\left(\begin{array}{c}
q^{-2 k_{1}} ; q^{-2 k_{2}}, \lambda^{2} q^{1-1} \\
q^{-2 l}, q^{2\left(1+n_{1}-k_{2}\right)}
\end{array} q^{2}, q^{2}\right)
$$

The second Q -operator is obtained by applying the transformation

$$
Q_{-}^{(I)}(\lambda)_{k_{1}, n_{1}}^{k_{2}, n_{2}}=\left.\delta_{n_{1}-k_{1}, n_{2}-k_{2}} Q_{+}^{(I)}(\lambda)_{l-k_{1}, n_{1}}^{I-k_{2}, n_{2}}\right|_{\phi \rightarrow \phi^{-1}}
$$

One can derive the expression for $Q_{-}^{(I)}$ valid for general /

$$
\begin{aligned}
Q_{-}^{(I)}(\lambda)_{k_{1}, n_{1}}^{k_{2}, n_{2}}= & \delta_{n_{1}-k_{1}, n_{2}-k_{2}} \phi^{2 n_{1}}(-1)^{k_{1}+k_{2}} q^{k_{2}^{2}+k_{1} n_{1}-3 k_{2} n_{2}+l\left(n_{1}+k_{2}\right)+k_{1}-k_{2}}(q \lambda)^{\frac{k_{1}+k_{2}}{2}-।} \\
& \times \frac{\left(q^{2} ; q^{2}\right)_{n_{2}}\left(\lambda^{2} q^{1-I+2\left(k_{1}-n_{1}\right)} ; q^{2}\right)_{I-k_{1}-k_{2}}}{\left(q^{2} ; q^{2}\right)_{n_{1}}\left(q^{2} ; q^{2}\right)_{k_{1}}}\left(\left.\begin{array}{l}
q^{-2 k_{1}} ; q^{-2 k_{2}}, \lambda^{2} q^{1-1} \\
q^{-2 l}, q^{2\left(1+n_{1}-k_{1}\right)}
\end{array} \right\rvert\, q^{2}, q^{2}\right)
\end{aligned}
$$

TQ-relation

For the case $I=1(\operatorname{spin}=1 / 2)$ this Q-operator reproduces the formula by Bazhanov, Lukyanov and Zamolodchikov (1996).

$$
\begin{equation*}
Q_{-}^{(I)}(\lambda)_{k_{1}, n_{1}}^{k_{2}, n_{2}}=\left.\delta_{n_{1}-k_{1}, n_{2}-k_{2}} Q_{+}^{(I)}(\lambda)_{I-k_{1}, n_{1}}^{I-k_{2}, n_{2}}\right|_{\phi \rightarrow \phi^{-1}} \tag{1}
\end{equation*}
$$

Since

$$
R^{\left(l_{1}, l_{2}\right)}(\lambda ; \phi)_{i_{1}, i_{2}}^{j_{1}, j_{2}}=R^{\left(l_{1}, l_{2}\right)}\left(\lambda ; \phi^{-1}\right)_{l_{1}-i_{1}, l_{2}-i_{2}}^{l_{1}-j_{1}, l_{2}-j_{2}} .
$$

we have the following TQ-relations for the spin I:

$$
T_{1}^{(l)}(\lambda) Q_{ \pm}^{(l)}(\lambda)=(-\phi)^{ \pm M}\left[\lambda q^{\frac{1-1}{2}}\right]^{M} Q_{ \pm}^{(l)}(q \lambda)+(-\phi)^{\mp M}\left[\lambda q^{\frac{1+1}{2}}\right]^{M} Q_{ \pm}^{(l)}(\lambda / q)
$$

Wronskian relation

$$
\phi^{M} Q_{+}^{(I)}\left(\lambda q^{1 / 2}\right) Q_{-}^{(I)}\left(\lambda q^{-1 / 2}\right)-\phi^{-M} Q_{-}^{(I)}\left(\lambda q^{1 / 2}\right) Q_{+}^{(I)}\left(\lambda q^{-1 / 2}\right)=\prod_{k=1}^{l}\left[\lambda q^{k-1 / 2}\right]^{M} \mathrm{Wr}[\phi]
$$

where

$$
\operatorname{Wr}[\phi]=\frac{(-1)^{M I}}{q^{M I+n}\left(q^{M I-2 n} \phi^{-M}-\phi^{M}\right)}
$$

where n is the sum over all M outgoing spins.

Functional relations

There are two expressions for the transfer-matrices in terms of the Q-operators for compact spins

$$
T_{i}^{(j)}(\lambda)=Q_{ \pm}^{(j)}\left(\lambda q^{-\frac{i+1}{2}}\right) Q_{ \pm}^{(j)}\left(\lambda q^{\frac{i+1}{2}}\right) \sum_{l=0}^{i} \frac{(-\phi)^{ \pm M(i-2 l)}\left(F_{i j ; l}\left(\lambda q^{I-\frac{i}{2}}\right)\right)^{M}}{Q_{ \pm}^{(j)}\left(\lambda q^{I-\frac{i+1}{2}}\right) Q_{ \pm}^{(j)}\left(\lambda q^{I-\frac{i-1}{2}}\right)}
$$

where

$$
F_{i j ; \prime}(\lambda)=(-1)^{i+j} \frac{\prod_{k=1}^{j}\left[\lambda q^{k-\frac{j}{2}}\right]}{\prod_{k=0}^{j-i-1}\left[\lambda^{-1} q^{1+k-\frac{j}{2}}\right]}
$$

or

$$
T_{i}^{(j)}(\lambda)=\frac{\phi^{(i+1) M} Q_{+}^{(j)}\left(\lambda q^{\frac{i+1}{2}}\right) Q_{-}^{(j)}\left(\lambda q^{-\frac{i+1}{2}}\right)-\phi^{-(i+1) M} Q_{-}^{(j)}\left(\lambda q^{\frac{i+1}{2}}\right) Q_{+}^{(j)}\left(\lambda q^{-\frac{i+1}{2}}\right)}{\operatorname{Wr}[\phi] h_{i j}(\lambda)^{M}}
$$

where

$$
h_{i j}(\lambda)=(-1)^{j} \prod_{k=0}^{j-i-1}\left[\lambda^{-1} q^{k+\frac{i-j}{2}}\right]
$$

Non-compact case

The expression for the local Q-matrix $Q_{+}^{(I)}(\lambda)$

$$
\begin{aligned}
& Q_{+}^{(I)}(\lambda)_{k_{1}, n_{1}}^{k_{2}, n_{2}}=\delta_{k_{1}+n_{1}, k_{2}+n_{2}} q^{k_{1}^{2}+\left(k_{1}-k_{2}\right)\left(k_{2}-n_{1}\right)+l\left(n_{1}-k_{1}\right)-\left(k_{1}+k_{2}\right) / 2} \phi^{-2 n_{1}} \lambda^{-\left(k_{1}+k_{2}\right) / 2} \times \\
& \times \frac{\left(q^{-2 n_{2}} ; q^{2}\right)_{k_{1}}\left(q^{2} ; q^{2}\right) /}{\left(q^{2} ; q^{2}\right)_{k_{1}}\left(q^{2} ; q^{2}\right)_{l-k_{1}}}{ }_{3} \phi_{2}\left(\begin{array}{lll|l}
\lambda^{2} q^{1-1}, & q^{-2 k_{1}}, & q^{-2 k_{2}} & q^{2}, q^{2} \\
q^{-2 l}, & q^{2+2 n_{1}-2 k_{2}} & q^{2}
\end{array}\right)
\end{aligned}
$$

$k_{1}, k_{2}=0, \ldots, l, l \in \mathbb{Z}_{\geq 1}$.
When I is non-integer, there is no pole and $k_{1}, k_{2}=0, \ldots, \infty$.
Therefore, the action of this Q-operator can be generalized to non-compact spins and in the limit $I \rightarrow 1,2, \ldots$ this action is non-singular and gives the correct $(I+1) \times(I+1)$-dim irreducible block.
There is an alternative "saw" construction of the Q-operator. It is based on the factorization property of the $U_{q}(s /(2))$ L-operator (Korepin, Tarasov).
The idea goes back to Bazhanov and Stroganov (1987) (XXZ, $q^{N}=1$). For the non-compact case $X X X$ case it has been done by Kuznetsov, Sklyanin; Derkachov (1999). The deformed case was studied recently by Chicherin, Derkachov, et al (2011). It works well for the non-compact case. However, in the compact spin limit the action of the "saw"-like Q-operator becomes singular and it is not clear how to extract a finite-dimensional block.

Conclusions/prospects

- We constructed the higher spin R-matrix for the XXZ chain which works for both compact and non-compact representations.
- This leads to explicit expressions for two Q-operators for any representation with arbtrary spin $/$.
- There is no analog of the q-oscillator and "field" for the elliptic case. However, the "saw" type Q-operator can still be constructed.
- Are there elliptic versions of the higher spin R-matrix and $3 \phi_{2}$ Q-matrix representations ?

