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Outline of the talk

I The O(n) loop model on the honeycomb lattice

I Smirnov’s parafermionic observable away from criticality

I The winding angle distribution and critical exponents



O(n) loop model
I Closed non-intersecting loops on the honeycomb lattice. Each loop

contributes a weight n = 2cosφ, φ ∈ [−2, 2] and each loop segment x .
I Partition function given by the sum over all configurations,

Z =
∑

g∈G nc(g)x l(g).

I Some much-studied models at particular values of n: n→ 0 (SAW),
n→ 1 (Ising), n = 2 (classical XY model).

I Conjectured critical points and critical exponents (Nienhuis ’82).



Winding angle distribution of the O(n) model
Duplantier and Saleur (’88) calculated the winding angle distribution of the
walk component in the O(n) loop model, where n = −2cos( 4π

κ
).

P(θ) = (2πνκ log `)−1/2 exp(− θ2

2νκ log `
), ν =

1

4− κ .
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Parafermionic observable
Smirnov (’08) defined the following function at the mid-edges of the lattice.

Fσ(z) =
∑
γ

P(γ)e−iσW (γ).

I σ is the parafermionic spin (related to the central charge in CFT and κ in
SLE).

I W (γ) is the winding angle of the loop segment from a to z .
I P(γ) is the total weight of the configuration γ.
I Ω is the set of all mid-edges and ∂Ω is the set of all boundary mid-edges.
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Discrete holomorphicity

We say that F (z) is (partially) discrete holomorphic if around a given vertex v
it satisfies the following linear condition.

p

q

r

(p− v)F (p) + (q − v)F (q) + (r − v)F (r) = 0.

I Discrete analogue of
∮
f (z)dz = 0. Not sufficient to determine Fσ(z)

given its boundary values.
I Square-lattice Ising fermionic observable satisfies a much stronger

condition. Used to prove various conformal invariance conjectures about
the Ising model (Chelkak, Hongler, Smirnov)

I If the scaling limit of Fσ(z)/δσ is a holomorphic function conformal
invariance of corresponding lattice model follows. (Smirnov ’07).



Discrete holomorphicity

For a loop segment entering the vertex via a given mid-edge there are two sets
of configurations.

For each set we calculate:

(p − v)F (p) + (q − v)F (q) + (r − v)F (r) = 0.



Discrete holomorphicity

Define λ = e−πσi/3 as the weight of a left turn and j = eπi/3. From the first
set of configurations,

we have

P(γ1)(−n + j̄ λ̄4 + jλ4) = 0.

Recalling that n = 2cosφ and solving for σ we find two sets of solutions:

σ =
π − 3φ

4π
, or σ =

π + 3φ

4π
.



Discrete holomorphicity
Second set of configurations:

We obtain the following equation

P(γ2)(−1 + jλ+ j̄ λ̄) = 0.

Solving for x we find

x−1 = x−1
c = 2cos(

π + φ

4
), x−1 = x−1

c = 2cos(
π − φ

4
),

corresponding to dense and dilute phases respectively.
I These are the critical values of the O(n) model predicted by Nienhuis.

(’82)
I The n = 0 (SAW) case was rigorously proven only recently

(Duminil-Copin and Smirnov ’10),

x−1
c =

√
2 +
√

2.



Off-critical discrete holomorphicity
Relax the discrete holomorphicity condition: σ fixed fixed but x < xc . This
leads to

(p − v)F (p) + (q − v)F (q) + (r − v)F (r) = (x − xc)G(v),

The vertex observable G(v) is defined by

G(v) = (p − v)F (p; v) + (q − v)F (q; v) + (r − v)F (r ; v),

where F (p; v) consists of walks terminating at the mid-edge p before the vertex
v and where there is no loop connected to the remaining mid-edges. A similar
off-critical observable for the Ising model was considered by Beffara and
Duminil-Copin (’12)
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Identity between boundary and bulk walks

By summing the discrete holomorphicity condition over all vertices of the
domain, Duminil-Copin and Smirnov (’10) derived the following identity
between walks terminating on the boundary and the interior∑

γ:a→z∈∂Ω\{a}

ei(1−σ)W (γ)x |γ|nc(γ) −
∑
γ:a→a

x |γ|nc(γ) = 0.
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Off-critical identity

In the off-critical case, the same summation leads to∑
γ:a→z∈∂Ω\{a}

ei(1−σ)W (γ)x |γ|nc(γ) + (1− x/xc)
∑

γ:a→z∈Ω\∂Ω

ei(1−σ)W (γ)x |γ|nc(γ)

=
∑
γ:a→a

x |γ|nc(γ),

which we write more concisely as

HΩ(x)︸ ︷︷ ︸
Boundary

+(1− x

xc
)
∑
θ

ei(1−σ)θ GΩ,θ(x)︸ ︷︷ ︸
Interior

= CΩ(x)︸ ︷︷ ︸
Loops

,

where

GΩ,θ(x) =
∑

γ:a→z∈Ω\∂Ω,W (γ)=θ

x |γ|nc(γ), HΩ(x) =
∑

γ:a→z∈∂Ω\{a}

ei(1−σ)W (γ)x |γ|nc(γ).



Off-critical identity: critical exponents

HΩ(x) + (1− x

xc
)
∑
θ

ei(1−σ)θGΩ,θ(x) = CΩ(x).

Surprisingly this simple off-critical deformation allows us to relate critical
exponents. Dividing through by CΩ(x) and taking the width and length of the
domain to ∞ (the domain then becomes a half-plane) we find

H∗(x) + (1− x

xc
)
∑
θ

ei(1−σ)θG∗θ (x) = 1.

Assuming the following (standard) asymptotic form of H∗(x)

H∗(x) ∼ 1 + const× (1− x/xc)−γ11 .

and therefore∑
θ

ei(1−σ)θG∗θ (x) = (1− H∗(x)) ∼ const× (1− x/xc)−γ11−1.



Critical exponents

We denote by aθ(j) the number of walks of length j with winding angle θ. We
then write

G∗θ (x) =
∞∑
j=0

aθ(j)x j .

G∗θ (x) has the asymptotic form∑
θ

G∗θ (x) ∼ const× (1− x/xc)−γ1 .

This gives the asymptotics of the coefficients aθ(j):∑
θ

aθ(j) ∼ const× x−j
c jγ1−1,

∑
θ

ei(1−σ)θaθ(j) ∼ const× x−j
c jγ11 .

.



Winding angle exponent

For a walk of length j the winding angle distribution is defined as

P(θ, j) =
aθ(j)∑
θ aθ(j)

,

and the Fourier transform is given by

∑
θ

eiσ̄θP(θ, j) =

∑
θ e

iσ̄θaθ(j)∑
θ aθ(j)

.

Using the result from before:∑
θ

aθ(j) ∼ const× x−j
c jγ1−1,

∑
θ

ei(1−σ)θaθ(j) ∼ const× x−j
c jγ11 ,

we arrive at (with σ̄ = 1− σ = 5/8 for SAW)∑
θ

ei(1−σ)θP(θ, j) ∼ const× jγ11−γ1+1.



Winding angle distribution of the O(n) model

Recall the predicted winding angle distribution of the O(n) model has the
asymptotic form

P(θ) ∝ exp(− θ2

2κν log `
), `→∞,

Consider the Fourier transform:∫ ∞
−∞

ei(1−σ)θP(θ, `) ∝ `−ω,

We find the winding angle exponent in terms of the bulk and boundary critical
exponents:

γ1 − γ11 − 1 = ω.



Wedge exponents
The argument can be extended to wedge shaped domains with opening angle α.
In this case we have wedge exponents γ2(α), γ21(α) which satisfy the relation

γ21(α)− γ2(α) + 1 = ω,

where ω is the winding angle exponent from before. Setting α = π gives the
previous results.

α



Summary

I Off-critical observables lead to an off-critical generating function identity
I Gives relation between critical exponents and winding angle exponent
I Nothing other than a simple linear condition satisfied by Fσ(z) is required.

Further work:

I Can Fσ(z) be calculated explicitly?

I Understand the relations satisfied by the vertex observable G(v).

I For the square lattice Ising model, G(v) is known. In this case can the
elliptic integrable weights be determined from discrete complex analysis?


