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Reversible Yang-Bater maps

Let X any set and R a map from X× X to itself

R : X× X ∋ (x, y) → (X,Y ) ∈ X× X.

Let Rij : Xn → Xn where Xn = X× X× . . .× X the map that acts as
R on the i, and j factors of Xn and as identity to the others.

Example (n=3 X = CP
1)

For n = 3 let R : (X,Y ) = (f(x, y), g(x, y)) , we have

R12 : (X,Y, Z) = (f(x, y), g(x, y), z)
R13 : (X,Y, Z) = (f(x, z), y, g(x, z))
R23 : (X,Y, Z) = (x, f(y, z), g(y, z)) , also
R21 : (X,Y, Z) = (g(y, x), f(y, x), z) .

Note R21 = P ◦R12 ◦ P where P : (X,Y ) = (y, x).
The map R is called Yang-Baxter if

R12 ◦R13 ◦R23 = R23 ◦R13 ◦R12.

If in addition R12 ◦R21 = Id, R is a reversible Yang-Baxter map.



The F-list2 of Quadrirational Yang-Baxter maps

X = αyP, Y = βxP, P =
(1− β)x+ β − α+ (α− 1)y

β(1− α)x+ (α − β)xy + α(β − 1)y
, (FI)

X = y
α
P, Y = x

β
P, P =

αx− βy + β − α

x− y
, (FII)

X = y
α
P, Y = x

β
P, P =

αx− βy

x− y
, (FIII)

X = yP, Y = xP, P = 1 +
β − α

x− y
, (FIV )

X = y + P, Y = x+ P, P =
α− β

x− y
, (FV )

2Adler, Bobenko, Suris 2004



The QRT Mapping

The QRT mapping is defined by the composition of two non-commuting
involutions i1, i2, which both preserve the same biquadratic integral

I(x, y) =
X

TA0Y

XTA1Y
,

where X, Y are vectors XT = (x2, x, 1), Y = (y2, y, 1)T and A0, A1 are
two 3× 3 matrices,

Ai =





αi βi γi
δi ǫi ζi
κi λi µi



.

From I(x̃, y)− I(x, y) = 0 and I(x, y)− I(x, y) = 0 we have

i1 :







x̃ =
f1(y)− f2(y)x

f2(y)− f3(y)x

ỹ = y

, i2 :







x = x

y =
g1(x)− g2(x)y

g2(x)− g3(x)y

,

where
(f1(y), f2(y), f3(y))

T = (A0Y)× (A1Y),

(g1(x), g2(x), g3(x))
T = (AT

0 X)× (AT
1 X).



The QRT3 map preserves a linear pencil of biquadratics curves
h(x, y; t) = X

TA0Y − tXTA1Y = 0.

◮ Base points of the linear pencil of curves B(x, y; t) = 0
The set of base points is the set of points (x, y) that are contained
on all curves of the linear pencil of biquadratic curves (B(x, y; t)). Is
given by

x =
f1(y)

f2(y)
=

f2(y)

f3(y)
, or y =

g1(x)

g2(x)
=

g2(x)

g3(x)
. (1)

◮ Singular points of the QRT map

Singular points of the QRT map are the points (x, y) where the
QRT map is not defined (both numerators and denominators of the
QRT map are zero of infinity ). The singular points of the QRT
map are exactly the base points of the linear pencil of bi-quadratic
curves that the map bi-rationally preserves.

3Quispel, Roberts, Thompson 1988
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Figure: The QRT map4

4Tsuda 2004



Refactorisation of the QRT actions

For the integral I(x, y) =
X

TA0Y

XTA1Y
, or equivalently for the pencil of

bi-quadratic curves B(x, y; t) := X
TA0Y − t XTA1Y where X, Y are

vectors X = (x2, x, 1)T , Y = (y2, y, 1)T and A0, A1 are two 3× 3
matrices,

A0 =





α β γ
δ ǫ ζ
κ λ µ



, A1 =





|A0|33 2|A0|32 |A0|31
2|A0|23 4|A0|22 2|A0|21
|A0|13 2|A0|12 |A0|11



 (2)

where |A0|ij the (ij)−minor determinant of the matrix A0, we have:

◮ the QRT involutions i1, i2 which preserve I(x, y),



◮ the primitive-QRT involutions j1, j2, k1, k2, which anti-preserve
I(x, y)

j1 :











X = −
2(κy2 + λy + µ) + (δy2 + ǫy + ζ)x

δy2 + ǫy + ζ + 2(αy2 + βy + γ)x

Y = y

j2 :











X = −
2(|A0|13y2 + |A0|12y + |A0|11) + (|A0|23y2 + |A0|22y + |A0|21)x

|A0|23y2 + |A0|22y + |A0|21 + 2(|A0|33y2 + |A0|32y + |A0|31)x

Y = y

,

k1 :















X = x

Y = −
2(γx2 + ζx+ µ) + (βx2 + ǫx+ λ)y

βx2 + ǫx+ λ+ 2(αx2 + δy + κ)x

k2 :















X = x

Y = −
2(|A0|31x2 + |A0|21x+ |A0|11) + (|A0|32x2 + |A0|22x+ |A0|12)y

|A0|32x2 + |A0|22x+ |A0|12 + 2(|A0|33x2 + |A0|23x+ |A0|13)y

,



Proof.

1. The solution of I(X, y)− I(x, y) = 0 and I(x, Y )− I(x, y) = 0,
apart the trivial solutions X = x and Y = y, gives respectively the
QRT involutions i1, i2.

2. There is

I(x, y) =
X

T A0Y

XT A1Y

=
a(y)x2 + b(y)x + c(y)

a1(y)x2 + b1(y)x + c1(y)
=

A(x)y2 + B(x)y + C(x)

A1(x)y2 + B1(x)y + C1(x)
.

The quadratic equation I(X, y) + I(x, y) = 0 has two rational
solutions for X when its discriminant is a perfect square. This is
true when

bb1 = 2(a1c+ ac1).

Similarly for the equation I(x, Y ) + I(x, y) = 0

BB1 = 2(A1C +AC1).

Quartic polynomials in y and x respectively. Equating their
coefficients to zero essentially we arrive to 8 equations. A solution
of these equations after an appropriate gauge is exactly the form of
the matrix A1.



From primitive involutions to QRT maps

For the primitive-QRT involutions ji, ki i = 1, 2 the following holds:

◮ j1 ◦ j2 = i1, k1 ◦ k2 = i2, where i1, i2 the QRT involutions
associated to the parameter matrices A0, A1 of (2). Hence the
QRT mapping φ = i2 ◦ i1 = k1 ◦ k2 ◦ i1 ◦ i2 refactorises as the
product of the primitive-QRT involutions.

Figure: The QRT map as a composition of primitive involutions
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From primitive involutions to QRT maps

For the primitive-QRT involutions ji, ki i = 1, 2 the following holds:
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◮ They form a group G = {j1, j2, k1, k2|j
2
i = k2i = (j1 ◦ j2)

2 =
(k1 ◦ k2)

2 = (ji ◦ ki+1)
2 = id, i = 1, 2}. There is G ⊂ G′, with

G′ = {J,R, S|J2 = R2 = S2 = (R ◦ S)2 = (J ◦ S)4 =
(R ◦ S ◦R)4 = id}, G′ ⊂ T (2, 4,∞) where

J : (x, y;A0) 7→

(

−
2(κy2 + λy + µ) + (δy2 + ǫy + ζ)x

δy2 + ǫy + ζ + 2(αy2 + βy + γ)x
, y;A0

)

,

R : (x, y;A0) 7→
(

y, x;AT
0

)

,

S : (x, y;A0) 7→ (y, x;A2) ,

where

A2 =
1

det(A0)





4|A0|33 2|A0|23 4|A0|13
2|A0|32 |A0|22 2|A0|12
4|A0|31 2|A0|21 4|A0|11



 .

◮ There is j1 = J, j2 = R ◦ S ◦ J ◦R ◦ S, k1 = R ◦ J ◦R,
k2 = S ◦ J ◦ S.

◮ G′ acts on the invariant I as

I ◦ J = −I, I ◦R = I I ◦ S = 1/I



Using the generators of the group G we can construct the following maps

Υi = ji◦ji+1◦ki, Φi = ki◦ki+1◦ji, Ψi = ji◦ki Ωi = ji◦ki+1 i = 1, 2.

On the group G′ the mappings above read

Υ1 = (J ◦R ◦ S)2R ◦ J ◦R,
Υ2 = (J ◦R ◦ S)2S ◦ J ◦ S,

Φ1 = (R ◦ J ◦ S)2 ◦ J,
Φ1 = (R ◦ J ◦ S)2 ◦R ◦ S ◦ J ◦R ◦ S,

Ψ1 = (J ◦R)2,
Ψ2 = (R ◦ S ◦ J ◦ S)2,

Ω1 = (J ◦ S)2,
Ω2 = (R ◦ S ◦ J ◦R)2.

◮ The maps Υi,Φi,Ψi, are of infinite order

◮ Mappings Ωi are involutions and furthermore quadrirational maps.



Example (The mapping Ψ1)
There is Ψ1 = (J ◦R)2, where J ◦R reads:

J ◦R : (x, y;A0) 7→

(

−
2(γx2 + ζx + µ) + (βx2 + ǫx+ λ)y

βx2 + ǫx+ λ+ 2(αx2 + δx+ κ)y
, x;AT

0

)

.

For this map the parameters vary as A0 7→ AT
0 , hence we can integrate

to obtain that α, ǫ, µ are constants and

β = c1(1 + (−1)n) + c2(1− (−1)n), δ = c1(1 − (−1)n) + c2(1 + (−1)n)
γ = c3(1 + (−1)n) + c4(1 − (−1)n), κ = c3(1 − (−1)n) + c4(1 + (−1)n)
λ = c5(1 + (−1)n) + c6(1− (−1)n), ζ = c5(1 − (−1)n) + c6(1 + (−1)n)

,

where ci, i = 1 . . . , 6 constants as well. We have the non-autonomous
3-point map

yn+1 = −
2(γy2n + ζyn + µ) + (βy2n + ǫyn + λ)yn−1

βy2n + ǫyn + λ+ 2(αy2n + δyn + κ)yn−1
.

Setting A0 = AT
0 , this map becomes autonomous and exactly the (1, 1)

reduction of Viallet’s QV integrable partial difference equation. Further
specialisation of the parameters leads to the (1, 1) reduction of the
Adler’s Q4 partial difference equation.



Quadrirational maps

◮ A rational map CP
1 × CP

1 ∋ (x, y) → (X,Y ) ∈ CP
1 × CP

1 is
called quadrirational if the maps (X,Y ) → (x, y), (X, y) → (x, Y ),
and (x, Y ) → (X, y) are rational maps as well.

Mappings Ωi are quadrirational and they explicitly read:

Ω1 : j1◦k2 :



















X = −
2(κy2 + λy + µ) + (δy2 + ǫy + ζ)x

δy2 + ǫy + ζ + 2(αy2 + βy + γ)x

Y = −
2(|A0|31x2 + |A0|21x+ |A0|11) + (|A0|32x2 + |A0|22x+ |A0|12)y

|A0|32x2 + |A0|22x+ |A0|12 + 2(|A0|33x2 + |A0|23x+ |A0|13)y

,

Ω2 : j2◦k1 :



















X = −
2(|A0|13y2 + |A0|12y + |A0|11) + (|A0|23y2 + |A0|22y + |A0|21)x

|A0|23y2 + |A0|22y + |A0|21 + 2(|A0|33y2 + |A0|32y + |A0|31)x

Y = −
2(γx2 + ζx+ µ) + (βx2 + ǫx+ λ)y

βx2 + ǫx+ λ+ 2(αx2 + δy + κ)y

Note that

◮ Ω2
1 = Ω2

2 = id

◮ Ω1 = j1 ◦ k2 = J ◦ S ◦ J ◦ S = (J ◦ S)2 = ω2
1 and

Ω2 = j2 ◦ k1 = R ◦S ◦J ◦R ◦S ◦R ◦J ◦R = (R ◦S ◦J ◦R)2 = ω2
2 .

◮ There is (ω1)
4 = (ω2)

4 = id, so ω1 = J ◦ S and ω2 = R ◦ S ◦ J ◦R
are period 4 maps.



Example (The FI Yang-Baxter map and its dual)
Choosing the parameter matrix A0 as

A0 =





0 p− q q(1 − p)
0 2p(q − 1) 0
p(1− p) p(p− q) 0



 ,

The integral reads

I(x, y) =
−qx2 + pqx2 − p2y + pqy + 2pxy − 2pqxy − px2y + qx2y − py2 + p2y2

pqx− q2x− qx2 + q2x2 + 2qxy − 2pqxy − py2 + pqy2 + pxy2 − qxy2

The map Ω1 becomes exactly the (FI) Yang-Baxter map, while its dual

Ω2 is a new map that we will denote it as (F̂I)

Rxy : X = pyP, Y = qxP, P =
(1 − q)x+ q − p+ (p− 1)y

q(1− p)x+ (p − q)xy + p(q − 1)y
, (FI)

and the dual map (F̂I)

Lxy :

X = y +W (x, y, p, q),
Y = x+W (y, x, q, p),

W (x, y, p, q) =
(q − p)

(

q(x+ y − 2xy) + y2(x+ y − 2)
)

q(p − q)2qx(q − 1) + y (2q − 2pq + (p − q)y)



◮ (FI) is a Yang-Baxter map but (F̂I) is not. So (FI) satisfies:

R2
ij = id, (Rxy

◦Rxz ◦Ryz)
2 = id



◮ (FI) is a Yang-Baxter map but (F̂I) is not. So (FI) satisfies:

R2
ij = id, (Rxy

◦Rxz ◦Ryz)
2 = id

◮ Is there a common property that both maps share?



◮ (FI) is a Yang-Baxter map but (F̂I) is not. So (FI) satisfies:

R2
ij = id, (Rxy

◦Rxz ◦Ryz)
2 = id

◮ Is there a common property that both maps share?

◮ Yes both ωi, remember Ωi = (ωi)
2, satisfy a modified Yang-Baxter

relation
M4

ij = id, (Mxy
◦Mxz ◦Myz)

4 = id.

◮ For (FI) there is

ω1 ≡ rxy :

X = qxW (y, x, q, p), Y = x
P = q, Q = p

W (x, y, p, q) = (1−q)x+q−p+(p−1)y
q(1−p)x+(p−q)xy+p(q−1)y

◮ For (F̂I) there is

ω2 ≡ lxy :

X = x+W (y, x, q, p), Y = x
P = q, Q = p

W (x, y, p, q) =
(q−p)(q(x+y−2xy)+y2(x+y−2))

q(p−q)2qx(q−1)+y(2q−2pq+(p−q)y)



A0 Rxy rxy

FI





0 p− q q(1− p)
0 2p(q − 1) 0
p(1− p) p(p− q) 0





X = pyW (x, y, p, q),
Y = qxW (x, y, p, q)

W (x, y, p, q) = (1−q)x+q−p+(p−1)y
q(1−p)x+(p−q)xy+p(q−1)y

X = qxW (y, x, q, p), Y = x
P = q, Q = p

FII





0 0 p
0 −2p 0
q (p− q) 0





X = y/pW (x, y, p, q),
Y = x/qW (x, y, p, q)

W (x, y, p, q) = px−qy+q−p

x−y

X = x/qW (y, x, q, p), Y = x
P = q, Q = p

FIII





0 0 p
0 −2p 0
q 0 0





X = y/pW (x, y, p, q),
Y = x/qW (x, y, p, q)

W (x, y, p, q) = px−qy

x−y

X = x/qW (y, x, q, p), Y = x
P = q, Q = p

FIV





0 0 1
0 −2 0
−1 (p− q) 0





X = yW (x, y, p, q),
Y = xW (x, y, p, q)

W (x, y, p, q) = 1− p−q

x−y

X = xW (y, x, q, p), Y = x
P = q, Q = p

FV





0 0 1
0 −2 0
1 0 q − p





X = y +W (x, y, p, q),
Y = x+W (x, y, p, q)

W (x, y, p, q) = p−q

x−y

X = x+W (y, x, q, p), Y = x
P = q, Q = p

◮ R2
ij = id (Rxy ◦Rxz ◦Ryz)

2 = id,

◮ r4ij = id (rxy ◦ rxz ◦ ryz)
4 = id,



A0 Lxy lxy

F̂I





0 p− q q(1− p)
0 2p(q − 1) 0
p(1− p) p(p− q) 0





X = y +W (x, y, p, q),
Y = x+W (y, x, q, p),

W (x, y, p, q) =
(q − p)

(

q(x+ y − 2xy) + y2(x+ y − 2)
)

q(p− q)2qx(q − 1) + y (2q − 2pq + (p− q)y)

X = x+W (y, x, q, p), Y = x
P = q, Q = p

F̂II





0 0 p
0 −2p 0
q (p− q) 0





X = y +W (x, y, p, q),
Y = x+W (x, y, p, q)

W (x, y, p, q) =
(q − p)(x + y − 2xy)

p− q − 2px+ 2qy

X = x+W (y, x, q, p), Y = x
P = q, Q = p

F̂III





0 0 p
0 −2p 0
q 0 0





X = qyW (x, y, p, q),
Y = pxW (x, y, p, q)

W (x, y, p, q) =
x− y

px− qy

X = pxW (y, x, q, p), Y = x
P = q, Q = p

F̂IV





0 0 1
0 −2 0
−1 (p− q) 0





X = y +W (x, y, p, q),
Y = x+W (x, y, p, q)

W (x, y, p, q) =
(q − p)(x + y)

p− q − 2x− 2y

X = x+W (y, x, q, p), Y = x
P = q, Q = p

F̂V





0 0 1
0 −2 0
1 0 q − p





X = y +W (x, y, p, q),
Y = x+W (x, y, p, q)
W (x, y, p, q) = − p−q

x−y

X = x+W (y, x, q, p), Y = x
P = q, Q = p

◮ L2
ij = id (Lxy ◦ Lxz ◦ Lyz)

2 6= id,

◮ l4ij = id (lxy ◦ lxz ◦ lyz)
4 = id,

◮ Modified entwining Yang-Baxter relations are satisfied as well eg.

r4ij = l4ij = id, (lxy ◦ rxz ◦ lyz)
4 = id,



Conclusions

◮ Refactorisation of the QRT involutions

◮ Primitive involutions

◮ QRT/non-QRT maps
◮ Inner non-QRT maps. Recently Roberts produced outer

non-QRT maps.
◮ Quadrirational maps
◮ After the refactorisation of each primitive involution to 2

consecutive ones, we arrive at a set of 8 involutions.
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