On a refactorisation of the QRT map

Pavlos Kassotakis ${ }^{1}$

This research was supported in part by the Australian Research Council through the grant \# DP110102001

The University of Sydney

Contents

Aim
Reveal from the QRT map itself the underlining algebraic structure $W\left(E_{8}^{(1)}\right)$ Japanese school: Okamoto (1979), Jimbo, Noumi, Sakai, Tsuda.. .

Introduction
Yang-Baxter maps
The QRT Mapping

QRT refactorisation
Refactorisation of the QRT involutions
From primitive involutions to QRT maps
Quadrirational maps

Conclusions

Reversible Yang-Bater maps

Let \mathbb{X} any set and R a map from $\mathbb{X} \times \mathbb{X}$ to itself

$$
R: \quad \mathbb{X} \times \mathbb{X} \ni(x, y) \rightarrow(X, Y) \in \mathbb{X} \times \mathbb{X}
$$

Let $R_{i j}: \mathbb{X}^{n} \rightarrow \mathbb{X}^{n}$ where $\mathbb{X}^{n}=\mathbb{X} \times \mathbb{X} \times \ldots \times \mathbb{X}$ the map that acts as R on the i, and j factors of \mathbb{X}^{n} and as identity to the others.
Example $\left(\mathrm{n}=3 \mathbb{X}=\mathbb{C P}^{1}\right)$
For $n=3$ let $R: \quad(X, Y)=(f(x, y), g(x, y))$, we have

$$
\begin{array}{ll}
R_{12}: & (X, Y, Z)=(f(x, y), g(x, y), z) \\
R_{13}: & (X, Y, Z)=(f(x, z), y, g(x, z)) \\
R_{23}: & (X, Y, Z)=(x, f(y, z), g(y, z)), \quad \text { also } \\
R_{21}: & (X, Y, Z)=(g(y, x), f(y, x), z) .
\end{array}
$$

Note $R_{21}=P \circ R_{12} \circ P$ where $P: \quad(X, Y)=(y, x)$.
The map R is called Yang-Baxter if

$$
R_{12} \circ R_{13} \circ R_{23}=R_{23} \circ R_{13} \circ R_{12} .
$$

If in addition $R_{12} \circ R_{21}=I d, R$ is a reversible Yang-Baxter map.

The F-list ${ }^{2}$ of Quadrirational Yang-Baxter maps

$$
\begin{array}{lll}
X=\alpha y P, & Y=\beta x P, & P=\frac{(1-\beta) x+\beta-\alpha+(\alpha-1) y}{\beta(1-\alpha) x+(\alpha-\beta) x y+\alpha(\beta-1) y} \\
X=\frac{y}{\alpha} P, & Y=\frac{x}{\beta} P, & P=\frac{\alpha x-\beta y+\beta-\alpha}{x-y}, \\
X=\frac{y}{\alpha} P, & Y=\frac{x}{\beta} P, & P=\frac{\alpha x-\beta y}{x-y}, \\
X=y P, & Y=x P, & P=1+\frac{\beta-\alpha}{x-y} \\
X=y+P, & Y=x+P, & P=\frac{\alpha-\beta}{x-y} \tag{V}
\end{array}
$$

[^0]
The QRT Mapping

The QRT mapping is defined by the composition of two non-commuting involutions i_{1}, i_{2}, which both preserve the same biquadratic integral

$$
I(x, y)=\frac{\mathbf{X}^{T} A_{0} \mathbf{Y}}{\mathbf{X}^{T} A_{1} \mathbf{Y}}
$$

where \mathbf{X}, \mathbf{Y} are vectors $\mathbf{X}^{\mathbf{T}}=\left(x^{2}, x, 1\right), \mathbf{Y}=\left(y^{2}, y, 1\right)^{T}$ and A_{0}, A_{1} are two 3×3 matrices,

$$
A_{i}=\left(\begin{array}{ccc}
\alpha_{i} & \beta_{i} & \gamma_{i} \\
\delta_{i} & \epsilon_{i} & \zeta_{i} \\
\kappa_{i} & \lambda_{i} & \mu_{i}
\end{array}\right)
$$

From $I(\tilde{x}, y)-I(x, y)=0$ and $I(x, \bar{y})-I(x, y)=0$ we have

$$
i_{1}:\left\{\begin{array}{l}
\tilde{x}=\frac{f_{1}(y)-f_{2}(y) x}{f_{2}(y)-f_{3}(y) x} \\
\tilde{y}=y
\end{array}, \quad i_{2}:\left\{\begin{array}{l}
\bar{x}=x \\
\bar{y}=\frac{g_{1}(x)-g_{2}(x) y}{g_{2}(x)-g_{3}(x) y}
\end{array}\right.\right.
$$

where

$$
\begin{aligned}
\left(f_{1}(y), f_{2}(y), f_{3}(y)\right)^{T} & =\left(A_{0} \mathbf{Y}\right) \times\left(A_{1} \mathbf{Y}\right) \\
\left(g_{1}(x), g_{2}(x), g_{3}(x)\right)^{T} & =\left(A_{0}^{T} \mathbf{X}\right) \times\left(A_{1}^{T} \mathbf{X}\right)
\end{aligned}
$$

The QRT ${ }^{3}$ map preserves a linear pencil of biquadratics curves $h(x, y ; t)=\mathbf{X}^{T} A_{0} \mathbf{Y}-t \mathbf{X}^{T} A_{1} \mathbf{Y}=0$.

- Base points of the linear pencil of curves $B(x, y ; t)=0$

The set of base points is the set of points (x, y) that are contained on all curves of the linear pencil of biquadratic curves $(B(x, y ; t))$. Is given by

$$
\begin{equation*}
x=\frac{f_{1}(y)}{f_{2}(y)}=\frac{f_{2}(y)}{f_{3}(y)}, \quad \text { or } \quad y=\frac{g_{1}(x)}{g_{2}(x)}=\frac{g_{2}(x)}{g_{3}(x)} \tag{1}
\end{equation*}
$$

- Singular points of the QRT map

Singular points of the QRT map are the points (x, y) where the QRT map is not defined (both numerators and denominators of the QRT map are zero of infinity). The singular points of the QRT map are exactly the base points of the linear pencil of bi-quadratic curves that the map bi-rationally preserves.

[^1]

Figure: The QRT map ${ }^{4}$

Figure: The QRT map ${ }^{4}$

Refactorisation of the QRT actions

For the integral $I(x, y)=\frac{\mathbf{X}^{T} A_{0} \mathbf{Y}}{\mathbf{X}^{T} A_{1} \mathbf{Y}}$, or equivalently for the pencil of bi-quadratic curves $B(x, y ; t):=\mathbf{X}^{T} A_{0} \mathbf{Y}-t \mathbf{X}^{T} A_{1} \mathbf{Y}$ where \mathbf{X}, \mathbf{Y} are vectors $\mathbf{X}=\left(x^{2}, x, 1\right)^{T}, \mathbf{Y}=\left(y^{2}, y, 1\right)^{T}$ and A_{0}, A_{1} are two 3×3 matrices,

$$
A_{0}=\left(\begin{array}{ccc}
\alpha & \beta & \gamma \tag{2}\\
\delta & \epsilon & \zeta \\
\kappa & \lambda & \mu
\end{array}\right), \quad A_{1}=\left(\begin{array}{ccc}
\left|A_{0}\right|_{33} & 2\left|A_{0}\right|_{32} & \left|A_{0}\right|_{31} \\
2\left|A_{0}\right|_{23} & 4\left|A_{0}\right|_{22} & 2\left|A_{0}\right|_{21} \\
\left|A_{0}\right|_{13} & 2\left|A_{0}\right|_{12} & \left|A_{0}\right|_{11}
\end{array}\right)
$$

where $\left|A_{0}\right|_{i j}$ the $(i j)$-minor determinant of the matrix A_{0}, we have:

- the QRT involutions i_{1}, i_{2} which preserve $I(x, y)$,
- the primitive-QRT involutions $j_{1}, j_{2}, k_{1}, k_{2}$, which anti-preserve $I(x, y)$

$$
\begin{aligned}
& k_{1}:\left\{\begin{array}{l}
X=x \\
Y=-\frac{2\left(\gamma x^{2}+\zeta x+\mu\right)+\left(\beta x^{2}+\epsilon x+\lambda\right) y}{\beta x^{2}+\epsilon x+\lambda+2\left(\alpha x^{2}+\delta y+\kappa\right) x}
\end{array}\right. \\
& X=x \\
& k_{2}:\left\{\begin{array}{l}
\\
Y
\end{array}=-\frac{2\left(\left|A_{0}\right|_{31} x^{2}+\left|A_{0}\right|_{21} x+\left|A_{0}\right|_{11}\right)+\left(\left|A_{0}\right|_{32} x^{2}+\left|A_{0}\right|_{22} x+\left|A_{0}\right|_{12}\right) y}{\left|A_{0}\right|_{32} x^{2}+\left|A_{0}\right|_{22} x+\left|A_{0}\right|_{12}+2\left(\left|A_{0}\right|_{33} x^{2}+\left|A_{0}\right|_{23} x+\left|A_{0}\right|_{13}\right) y}\right.
\end{aligned}
$$

Proof.

1. The solution of $I(X, y)-I(x, y)=0$ and $I(x, Y)-I(x, y)=0$, apart the trivial solutions $X=x$ and $Y=y$, gives respectively the QRT involutions i_{1}, i_{2}.
2. There is

$$
I(x, y)=\frac{\mathbf{X}^{T} A_{0} \mathbf{Y}}{\mathbf{X}^{T} A_{1} \mathbf{Y}}=\frac{a(y) x^{2}+b(y) x+c(y)}{a_{1}(y) x^{2}+b_{1}(y) x+c_{1}(y)}=\frac{A(x) y^{2}+B(x) y+C(x)}{A_{1}(x) y^{2}+B_{1}(x) y+C_{1}(x)}
$$

The quadratic equation $I(X, y)+I(x, y)=0$ has two rational solutions for X when its discriminant is a perfect square. This is true when

$$
b b_{1}=2\left(a_{1} c+a c_{1}\right)
$$

Similarly for the equation $I(x, Y)+I(x, y)=0$

$$
B B_{1}=2\left(A_{1} C+A C_{1}\right)
$$

Quartic polynomials in y and x respectively. Equating their coefficients to zero essentially we arrive to 8 equations. A solution of these equations after an appropriate gauge is exactly the form of the matrix A_{1}.

From primitive involutions to QRT maps

For the primitive-QRT involutions $j_{i}, k_{i} i=1,2$ the following holds:

- $j_{1} \circ j_{2}=i_{1}, k_{1} \circ k_{2}=i_{2}$, where i_{1}, i_{2} the QRT involutions associated to the parameter matrices A_{0}, A_{1} of (2). Hence the QRT mapping $\phi=i_{2} \circ i_{1}=k_{1} \circ k_{2} \circ i_{1} \circ i_{2}$ refactorises as the product of the primitive-QRT involutions.

Figure: The QRT map as a composition of primitive involutions

From primitive involutions to QRT maps

For the primitive-QRT involutions $j_{i}, k_{i} i=1,2$ the following holds:

- $j_{1} \circ j_{2}=i_{1}, k_{1} \circ k_{2}=i_{2}$, where i_{1}, i_{2} the QRT involutions associated to the parameter matrices A_{0}, A_{1} of (2). Hence the QRT mapping $\phi=i_{2} \circ i_{1}=k_{1} \circ k_{2} \circ i_{1} \circ i_{2}$ refactorises as the product of the primitive-QRT involutions.

Figure: The QRT map as a composition of primitive involutions

From primitive involutions to QRT maps

For the primitive-QRT involutions $j_{i}, k_{i} i=1,2$ the following holds:

- $j_{1} \circ j_{2}=i_{1}, k_{1} \circ k_{2}=i_{2}$, where i_{1}, i_{2} the QRT involutions associated to the parameter matrices A_{0}, A_{1} of (2). Hence the QRT mapping $\phi=i_{2} \circ i_{1}=k_{1} \circ k_{2} \circ i_{1} \circ i_{2}$ refactorises as the product of the primitive-QRT involutions.

Figure: The QRT map as a composition of primitive involutions

From primitive involutions to QRT maps

For the primitive-QRT involutions $j_{i}, k_{i} i=1,2$ the following holds:

- $j_{1} \circ j_{2}=i_{1}, k_{1} \circ k_{2}=i_{2}$, where i_{1}, i_{2} the QRT involutions associated to the parameter matrices A_{0}, A_{1} of (2). Hence the QRT mapping $\phi=i_{2} \circ i_{1}=k_{1} \circ k_{2} \circ i_{1} \circ i_{2}$ refactorises as the product of the primitive-QRT involutions.

Figure: The QRT map as a composition of primitive involutions

From primitive involutions to QRT maps

For the primitive-QRT involutions $j_{i}, k_{i} i=1,2$ the following holds:

- $j_{1} \circ j_{2}=i_{1}, k_{1} \circ k_{2}=i_{2}$, where i_{1}, i_{2} the QRT involutions associated to the parameter matrices A_{0}, A_{1} of (2). Hence the QRT mapping $\phi=i_{2} \circ i_{1}=k_{1} \circ k_{2} \circ i_{1} \circ i_{2}$ refactorises as the product of the primitive-QRT involutions.

Figure: The QRT map as a composition of primitive involutions

- They form a group $G=\left\{j_{1}, j_{2}, k_{1}, k_{2} \mid j_{i}^{2}=k_{i}^{2}=\left(j_{1} \circ j_{2}\right)^{2}=\right.$ $\left.\left(k_{1} \circ k_{2}\right)^{2}=\left(j_{i} \circ k_{i+1}\right)^{2}=i d, i=1,2\right\}$. There is $G \subset G^{\prime}$, with $G^{\prime}=\left\{J, R, S \mid J^{2}=R^{2}=S^{2}=(R \circ S)^{2}=(J \circ S)^{4}=\right.$ $\left.(R \circ S \circ R)^{4}=i d\right\}, G^{\prime} \subset T(2,4, \infty)$ where

$$
\begin{aligned}
& J:\left(x, y ; A_{0}\right) \mapsto\left(-\frac{2\left(\kappa y^{2}+\lambda y+\mu\right)+\left(\delta y^{2}+\epsilon y+\zeta\right) x}{\delta y^{2}+\epsilon y+\zeta+2\left(\alpha y^{2}+\beta y+\gamma\right) x}, y ; A_{0}\right), \\
& R:\left(x, y ; A_{0}\right) \mapsto\left(y, x ; A_{0}^{T}\right), \\
& S:\left(x, y ; A_{0}\right) \mapsto\left(y, x ; A_{2}\right),
\end{aligned}
$$

where

$$
A_{2}=\frac{1}{\operatorname{det}\left(A_{0}\right)}\left(\begin{array}{ccc}
4\left|A_{0}\right|_{33} & 2\left|A_{0}\right|_{23} & 4\left|A_{0}\right|_{13} \\
2\left|A_{0}\right|_{32} & \left|A_{0}\right|_{22} & 2\left|A_{0}\right|_{12} \\
4\left|A_{0}\right|_{31} & 2\left|A_{0}\right|_{21} & 4\left|A_{0}\right|_{11}
\end{array}\right) .
$$

- There is $j_{1}=J, j_{2}=R \circ S \circ J \circ R \circ S, k_{1}=R \circ J \circ R$, $k_{2}=S \circ J \circ S$.
- G^{\prime} acts on the invariant I as

$$
I \circ J=-I, \quad I \circ R=I \quad I \circ S=1 / I
$$

Using the generators of the group G we can construct the following maps
$\Upsilon_{i}=j_{i} \circ j_{i+1} \circ k_{i}, \quad \Phi_{i}=k_{i} \circ k_{i+1} \circ j_{i}, \quad \Psi_{i}=j_{i} \circ k_{i} \Omega_{i}=j_{i} \circ k_{i+1} \quad i=1,2$.
On the group G^{\prime} the mappings above read

$$
\begin{array}{ll}
\Upsilon_{1}=(J \circ R \circ S)^{2} R \circ J \circ R, & \Phi_{1}=(R \circ J \circ S)^{2} \circ J, \\
\Upsilon_{2}=(J \circ R \circ S)^{2} S \circ J \circ S, & \Phi_{1}=(R \circ J \circ S)^{2} \circ R \circ S \circ J \circ R \circ S, \\
\Psi_{1}=(J \circ R)^{2}, & \Omega_{1}=(J \circ S)^{2}, \\
\Psi_{2}=(R \circ S \circ J \circ S)^{2}, & \Omega_{2}=(R \circ S \circ J \circ R)^{2} .
\end{array}
$$

- The maps $\Upsilon_{i}, \Phi_{i}, \Psi_{i}$, are of infinite order
- Mappings Ω_{i} are involutions and furthermore quadrirational maps.

Example (The mapping Ψ_{1})

There is $\Psi_{1}=(J \circ R)^{2}$, where $J \circ R$ reads:

$$
J \circ R:\left(x, y ; A_{0}\right) \mapsto\left(-\frac{2\left(\gamma x^{2}+\zeta x+\mu\right)+\left(\beta x^{2}+\epsilon x+\lambda\right) y}{\beta x^{2}+\epsilon x+\lambda+2\left(\alpha x^{2}+\delta x+\kappa\right) y}, x ; A_{0}^{T}\right) .
$$

For this map the parameters vary as $A_{0} \mapsto A_{0}^{T}$, hence we can integrate to obtain that α, ϵ, μ are constants and

$$
\begin{array}{ll}
\beta=c_{1}\left(1+(-1)^{n}\right)+c_{2}\left(1-(-1)^{n}\right), & \delta=c_{1}\left(1-(-1)^{n}\right)+c_{2}\left(1+(-1)^{n}\right) \\
\gamma=c_{3}\left(1+(-1)^{n}\right)+c_{4}\left(1-(-1)^{n}\right), & \kappa=c_{3}\left(1-(-1)^{n}\right)+c_{4}\left(1+(-1)^{n}\right), \\
\lambda=c_{5}\left(1+(-1)^{n}\right)+c_{6}\left(1-(-1)^{n}\right), & \zeta=c_{5}\left(1-(-1)^{n}\right)+c_{6}\left(1+(-1)^{n}\right)
\end{array}
$$

where $c_{i}, i=1 \ldots, 6$ constants as well. We have the non-autonomous 3 -point map

$$
y_{n+1}=-\frac{2\left(\gamma y_{n}^{2}+\zeta y_{n}+\mu\right)+\left(\beta y_{n}^{2}+\epsilon y_{n}+\lambda\right) y_{n-1}}{\beta y_{n}^{2}+\epsilon y_{n}+\lambda+2\left(\alpha y_{n}^{2}+\delta y_{n}+\kappa\right) y_{n-1}}
$$

Setting $A_{0}=A_{0}^{T}$, this map becomes autonomous and exactly the $(1,1)$ reduction of Viallet's Q_{V} integrable partial difference equation. Further specialisation of the parameters leads to the $(1,1)$ reduction of the Adler's $Q 4$ partial difference equation.

Quadrirational maps

- A rational map $\mathbb{C P}^{1} \times \mathbb{C P}^{1} \ni(x, y) \rightarrow(X, Y) \in \mathbb{C P}^{1} \times \mathbb{C P}^{1}$ is called quadrirational if the maps $(X, Y) \rightarrow(x, y),(X, y) \rightarrow(x, Y)$, and $(x, Y) \rightarrow(X, y)$ are rational maps as well.
Mappings Ω_{i} are quadrirational and they explicitly read:
$\Omega_{1}: j_{1} \circ k_{2}:\left\{\begin{array}{l}X=-\frac{2\left(\kappa y^{2}+\lambda y+\mu\right)+\left(\delta y^{2}+\epsilon y+\zeta\right) x}{\delta y^{2}+\epsilon y+\zeta+2\left(\alpha y^{2}+\beta y+\gamma\right) x} \\ Y=-\frac{2\left(\left|A_{0}\right|_{31} x^{2}+\left|A_{0}\right|_{21} x+\left|A_{0}\right|_{11}\right)+\left(\left|A_{0}\right|_{32} x^{2}+\left|A_{0}\right|_{22} x+\left|A_{0}\right|_{12}\right) y}{\left|A_{0}\right|_{32} x^{2}+\left|A_{0}\right|_{22} x+\left|A_{0}\right|_{12}+2\left(\left|A_{0}\right|_{33} x^{2}+\left|A_{0}\right|_{23} x+\left|A_{0}\right|_{13}\right) y}\end{array}\right.$
$\Omega_{2}: j_{2} \circ k_{1}:\left\{\begin{aligned} X & =-\frac{2\left(\left|A_{0}\right|_{13} y^{2}+\left|A_{0}\right|_{12} y+\left|A_{0}\right|_{11}\right)+\left(\left|A_{0}\right|_{23} y^{2}+\left|A_{0}\right|_{22} y+\left|A_{0}\right|_{21}\right) x}{\left|A_{0}\right|_{23} y^{2}+\left|A_{0}\right|_{22} y+\left|A_{0}\right|_{21}+2\left(\left|A_{0}\right|_{33} y^{2}+\left|A_{0}\right|_{32} y+\left|A_{0}\right|_{31}\right) x} \\ Y & =-\frac{2\left(\gamma x^{2}+\zeta x+\mu\right)+\left(\beta x^{2}+\epsilon x+\lambda\right) y}{\beta x^{2}+\epsilon x+\lambda+2\left(\alpha x^{2}+\delta y+\kappa\right) y}\end{aligned}\right.$
Note that
- $\Omega_{1}^{2}=\Omega_{2}^{2}=i d$
- $\Omega_{1}=j_{1} \circ k_{2}=J \circ S \circ J \circ S=(J \circ S)^{2}=\omega_{1}^{2}$ and $\Omega_{2}=j_{2} \circ k_{1}=R \circ S \circ J \circ R \circ S \circ R \circ J \circ R=(R \circ S \circ J \circ R)^{2}=\omega_{2}^{2}$.
- There is $\left(\omega_{1}\right)^{4}=\left(\omega_{2}\right)^{4}=i d$, so $\omega_{1}=J \circ S$ and $\omega_{2}=R \circ S \circ J \circ R$ are period 4 maps.

Example (The F_{I} Yang-Baxter map and its dual)

Choosing the parameter matrix A_{0} as

$$
A_{0}=\left(\begin{array}{lll}
0 & p-q & q(1-p) \\
0 & 2 p(q-1) & 0 \\
p(1-p) & p(p-q) & 0
\end{array}\right)
$$

The integral reads

$$
I(x, y)=\frac{-q x^{2}+p q x^{2}-p^{2} y+p q y+2 p x y-2 p q x y-p x^{2} y+q x^{2} y-p y^{2}+p^{2} y^{2}}{p q x-q^{2} x-q x^{2}+q^{2} x^{2}+2 q x y-2 p q x y-p y^{2}+p q y^{2}+p x y^{2}-q x y^{2}}
$$

The map Ω_{1} becomes exactly the (F_{I}) Yang-Baxter map, while its dual Ω_{2} is a new map that we will denote it as $\left(\hat{F}_{I}\right)$

$$
\begin{equation*}
R_{x y}: \quad X=p y P, \quad Y=q x P, \quad P=\frac{(1-q) x+q-p+(p-1) y}{q(1-p) x+(p-q) x y+p(q-1) y} \tag{I}
\end{equation*}
$$

and the dual map $\left(\hat{F}_{I}\right)$

$$
L_{x y}: \begin{aligned}
& X=y+W(x, y, p, q) \\
& Y=x+W(y, x, q, p) \\
& \\
& W(x, y, p, q)=\frac{(q-p)\left(q(x+y-2 x y)+y^{2}(x+y-2)\right)}{q(p-q) 2 q x(q-1)+y(2 q-2 p q+(p-q) y)}
\end{aligned}
$$

- $\left(F_{I}\right)$ is a Yang-Baxter map but $\left(\hat{F}_{I}\right)$ is not. So $\left(F_{I}\right)$ satisfies:

$$
R_{i j}^{2}=i d, \quad\left(R_{x_{y}} \circ R_{x z} \circ R_{y z}\right)^{2}=i d
$$

- $\left(F_{I}\right)$ is a Yang-Baxter map but $\left(\hat{F}_{I}\right)$ is not. So $\left(F_{I}\right)$ satisfies:

$$
R_{i j}^{2}=i d, \quad\left(R_{x_{y}} \circ R_{x z} \circ R_{y z}\right)^{2}=i d
$$

- Is there a common property that both maps share?
- $\left(F_{I}\right)$ is a Yang-Baxter map but $\left(\hat{F}_{I}\right)$ is not. So $\left(F_{I}\right)$ satisfies:

$$
R_{i j}^{2}=i d, \quad\left(R_{x_{y}} \circ R_{x z} \circ R_{y z}\right)^{2}=i d
$$

- Is there a common property that both maps share?
- Yes both ω_{i}, remember $\Omega_{i}=\left(\omega_{i}\right)^{2}$, satisfy a modified Yang-Baxter relation

$$
M_{i j}^{4}=i d, \quad\left(M_{x_{y}} \circ M_{x z} \circ M_{y z}\right)^{4}=i d .
$$

- For $\left(F_{I}\right)$ there is

$$
\begin{array}{rll}
& X=q x W(y, x, q, p), & Y=x \\
\omega_{1} \equiv r_{x y}: & P=q, & Q=p \\
& W(x, y, p, q)=\frac{(1-q) x+q-p+(p-1) y}{q(1-p) x+(p-q) x y+p(q-1) y} &
\end{array}
$$

- For $\left(\hat{F}_{I}\right)$ there is

$$
\begin{array}{rlr}
& X=x+W(y, x, q, p), & Y=x \\
\omega_{2} \equiv l_{x y}: & P=q, & Q=p \\
& W(x, y, p, q)=\frac{(q-p)\left(q(x+y-2 x y)+y^{2}(x+y-2)\right)}{q(p-q) 2 q x(q-1)+y(2 q-2 p q+(p-q) y)} &
\end{array}
$$

	A_{0}	$R_{x y}$	$r_{x y}$
F_{I}	$\left(\begin{array}{lll}0 & p-q & q(1-p) \\ 0 & 2 p(q-1) & 0 \\ p(1-p) & p(p-q) & 0\end{array}\right)$	$\begin{aligned} & X=p y W(x, y, p, q), \quad W(x, y, p, q)=\frac{(1-q) x+q-p+(p-1) y}{q(1-p) x+(p-q) x y+p(q-1) y} \\ & Y=q x W(x, y, p, q) \end{aligned}$	$\begin{array}{ll} X=q x W(y, x, q, p), & Y=x \\ P=q, & Q=p \end{array}$
$F_{I I}$	$\left(\begin{array}{lll}0 & 0 & p \\ 0 & -2 p & 0 \\ q & (p-q) & 0\end{array}\right)$	$\begin{aligned} & X=y / p W(x, y, p, q), \quad W(x, y, p, q)=\frac{p x-q y+q-p}{x-y} \\ & Y=x / q W(x, y, p, q) \end{aligned}$	$\begin{array}{ll} X=x / q W(y, x, q, p), & Y=x \\ P=q, & Q=p \end{array}$
$F_{I I I}$	$\left(\begin{array}{lll}0 & 0 & p \\ 0 & -2 p & 0 \\ q & 0 & 0\end{array}\right)$	$\begin{aligned} & X=y / p W(x, y, p, q), \quad W(x, y, p, q)=\frac{p x-q y}{x-y} \\ & Y=x / q W(x, y, p, q) \end{aligned}$	$\begin{array}{ll} X=x / q W(y, x, q, p), & Y=x \\ P=q, & Q=p \end{array}$
$F_{I V}$	$\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & -2 & 0 \\ -1 & (p-q) & 0\end{array}\right)$	$\begin{aligned} & X=y W(x, y, p, q), \quad W(x, y, p, q)=1-\frac{p-q}{x-y} \\ & Y=x W(x, y, p, q) \end{aligned}$	$\begin{array}{ll} X=x W(y, x, q, p), & Y=x \\ P=q, & Q=p \end{array}$
F_{V}	$\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & q-p\end{array}\right)$	$\begin{aligned} & X=y+W(x, y, p, q), \quad W(x, y, p, q)=\frac{p-q}{x-y} \\ & Y=x+W(x, y, p, q) \end{aligned}$	$\begin{array}{ll} X=x+W(y, x, q, p), & Y=x \\ P=q, & Q=p \end{array}$

- $R_{i j}^{2}=i d \quad\left(R_{x y} \circ R_{x z} \circ R_{y z}\right)^{2}=i d$,
- $r_{i j}^{4}=i d \quad\left(r_{x y} \circ r_{x z} \circ r_{y z}\right)^{4}=i d$,

	A_{0}	$L_{x y}$	$l_{x y}$
\hat{F}_{I}	$\left(\begin{array}{lll}0 & p-q & q(1-p) \\ 0 & 2 p(q-1) & 0 \\ p(1-p) & p(p-q) & 0\end{array}\right)$	$\begin{aligned} & X=y+W(x, y, p, q), \\ & Y=x+W(y, x, q, p), \\ & W(x, y, p, q)=\frac{(q-p)\left(q(x+y-2 x y)+y^{2}(x+y-2)\right)}{q(p-q) 2 q x(q-1)+y(2 q-2 p q+(p-q) y)} \end{aligned}$	$\begin{array}{ll} X=x+W(y, x, q, p), & Y=x \\ P=q, & Q=p \end{array}$
$\hat{F}_{I I}$	$\left(\begin{array}{lll}0 & 0 & p \\ 0 & -2 p & 0 \\ q & (p-q) & 0\end{array}\right)$	$\begin{aligned} & X=y+W(x, y, p, q), \\ & Y=x+W(x, y, p, q) \\ & W(x, y, p, q)=\frac{(q-p)(x+y-2 x y)}{p-q-2 p x+2 q y} \end{aligned}$	$\begin{array}{ll} X=x+W(y, x, q, p), & Y=x \\ P=q, & Q=p \end{array}$
$\hat{F}_{I I I}$	$\left(\begin{array}{lll}0 & 0 & p \\ 0 & -2 p & 0 \\ q & 0 & 0\end{array}\right)$	$\begin{aligned} & X=q y W(x, y, p, q), \\ & Y=p x W(x, y, p, q) \\ & W(x, y, p, q)=\frac{x-y}{p x-q y} \end{aligned}$	$\begin{array}{ll} X=p x W(y, x, q, p), & Y=x \\ P=q, & Q=p \end{array}$
$\hat{F}_{I V}$	$\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & -2 & 0 \\ -1 & (p-q) & 0\end{array}\right)$	$\begin{aligned} & X=y+W(x, y, p, q), \\ & Y=x+W(x, y, p, q) \\ & W(x, y, p, q)=\frac{(q-p)(x+y)}{p-q-2 x-2 y} \end{aligned}$	$\begin{array}{ll} X=x+W(y, x, q, p), & Y=x \\ P=q, & Q=p \end{array}$
\hat{F}_{V}	$\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & q-p\end{array}\right)$	$\begin{aligned} & X=y+W(x, y, p, q), \\ & Y=x+W(x, y, p, q) \\ & W(x, y, p, q)=-\frac{p-q}{x-y} \end{aligned}$	$\begin{array}{ll} X=x+W(y, x, q, p), & Y=x \\ P=q, & Q=p \end{array}$

- $L_{i j}^{2}=i d$
$\left(L_{x y} \circ L_{x z} \circ L_{y z}\right)^{2} \neq i d$,
- $l_{i j}^{4}=i d \quad\left(l_{x y} \circ l_{x z} \circ l_{y z}\right)^{4}=i d$,
- Modified entwining Yang-Baxter relations are satisfied as well eg.

$$
r_{i j}^{4}=l_{i j}^{4}=i d, \quad\left(l_{x y} \circ r_{x z} \circ l_{y z}\right)^{4}=i d,
$$

Conclusions

- Refactorisation of the QRT involutions
- Primitive involutions
- QRT/non-QRT maps
- Inner non-QRT maps. Recently Roberts produced outer non-QRT maps.
- Quadrirational maps
- After the refactorisation of each primitive involution to 2 consecutive ones, we arrive at a set of 8 involutions.

[^0]: ${ }^{2}$ Adler, Bobenko, Suris 2004

[^1]: ${ }^{3}$ Quispel, Roberts, Thompson 1988

