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Hard Hexagons

The hard hexagon model is defined on a triangular lattice.

Particles are placed on the sites of the lattice with the restriction that
particles are not allowed to occupy nearest neighbor sites.
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Baxter’s solution for real z

Baxter computed the fugacity z and the partition function per site

κ±(z) = lim
Lh→∞

λmax(z;Lh)
1/Lh

for positive z terms of an auxiliary variable x using the functions

G(x) =
∞∏

n=1

1
(1− x5n−4)(1− x5n−1)

,

H(x) =
∞∏

n=1

1
(1− x5n−3)(1− x5n−2)

,

Q(x) =
∞∏

n=1

(1− xn).

Regions 0 ≤ z ≤ zc ≤ z <∞ with zc = (11 + 5
√

5)/2 = 11.090168 · · ·

Iwan Jensen (University of Melbourne) Hard Hexagons ANZAMP 2013 3 / 19



Baxter’s solution for real z

Baxter computed the fugacity z and the partition function per site

κ±(z) = lim
Lh→∞

λmax(z;Lh)
1/Lh

for positive z terms of an auxiliary variable x using the functions

G(x) =
∞∏

n=1

1
(1− x5n−4)(1− x5n−1)

,

H(x) =
∞∏

n=1

1
(1− x5n−3)(1− x5n−2)

,

Q(x) =
∞∏

n=1

(1− xn).

Regions 0 ≤ z ≤ zc ≤ z <∞ with zc = (11 + 5
√

5)/2 = 11.090168 · · ·

Iwan Jensen (University of Melbourne) Hard Hexagons ANZAMP 2013 3 / 19



Partition functions per site

For high density where 0 < z−1 < z−1
c the results are

z =
1
x

(
G(x)
H(x)

)5

; κ+ =
1

x1/3

G3(x)Q2(x5)

H2(x)

∞∏
n=1

(1 − x3n−2)(1 − x3n−1)

(1 − x3n)2 .

As x increases from 0 to 1 the value of z−1 increases from 0 to z−1
c .

For low density where 0 ≤ z < zc

z = −x
(

H(x)
G(x)

)5

; κ− =
H3(x)Q2(x5)

G2(x)

∞∏
n=1

(1 − x6n−4)(1 − x6n−3)2(1 − x6n−2)

(1 − x6n−5)(1 − x6n−1)(1 − x6n)2 .

As x decreases from 0 to −1, the value of z increases from 0 to zc .

κ±(z) have singularities at zc , zd = −1/zc and∞.
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The equimodular curve |κ−(z)| = |κ+(z)|
If the two eigenvalues κ−(z) and κ+(z) suffice to describe the partition
function in the entire complex z plane then there will be zeros on the
equimodular curve |κ−(z)| = |κ+(z)|.

We numerically computed the
curve from the parametric expressions of Baxter.
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Partition functions zeros

The partition function on a lattice with Lv rows and Lh columns is

ZLv ,Lh(z) =
∑

g(N) zN ,

where g(N) is the number of allowed configurations with N particles.

We use periodic boundary conditions in the horizontal direction such
that Lh + 1 ≡ 1 and free boundary conditions in the vertical direction.

We restricted our attention to Lh/3 integer valued, commensurate with
hexagonal ordering in the high density phase.

By definition on a finite lattice the partition function is a polynomial
which can be described by its zeros zk as

∏
(1− z/zk ).

Much qualitative and quantitative information can be gained from the
distribution of these zeros.

Numerically we compute the partition function using a transfer matrix
algorithm to build the finite lattice site-by-site.
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Hard hexagon partition function zeros
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Hard hexagon partition function zeros
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1. There is a ’necklace’ on the left side. Baxter’s solution does not tell
the whole story.

2. Starting with 30× 30 zeros start to appear in the necklace and
separated regions begin to be apparent.

3. It is unknown what will happen as L→∞. Will the zeros fill the
entire necklace region?
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Transfer Matrix Eigenvalues

An alternative representation of the partition function on a finite lattice
is given in terms of the eigenvalues of the transfer matrix TLh(z).

When the transfer matrix is diagonalizable the partition function may
be written in terms of the eigenvalues λk and eigenvectors vk of the
transfer matrix TLh(z) as

ZLv ,Lh(z) =
∑

k

λLv
k (z;Lh)ck

where
ck = (vB · vk)(vk · v′B).

and vB and v′B are suitable vectors for the boundary conditions on
rows 1 and Lv .
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Zeros and Equimodular Curves

In the case where Lv →∞ with Lh fixed we are looking at infinite strips.

The zeros will accumulate on curves where the leading transfer matrix
eigenvalues have equal modulus

|λ1(z;Lh)| = |λ2(z;Lh)|

On this curve λ1(z;Lh)/λ2(z;Lh) = eiφ(z) with φ(z) real.

The density of zeros on this curve is proportional to dφ(z)/dz.
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Calculating Equimodular Curves

We don’t actually calculate the eigenvalues directly from TLh(z).

We use iterative diagonalisation methods where one studies not T
itself but rather its repeated action on a suitable set of vectors.

We work with vectors Tnw produced by the power method.

An iterative scheme that works well even in the presence of complex
and degenerate eigenvalues is known as Arnoldi’s method.

We make use of the public domain software package ARPACK
implementing Arnoldi’s method with suitable subtle stopping criteria.

The ARPACK package allows one to calculate eigenvalues (and
eigenvectors) based on various criteria, including the one relevant to
our calculations, namely the eigenvalues of largest modulus.

We developed routines to automatically trace equimodular curves.
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Hard hexagon equimodular curves
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Hard hexagon equimodular curves
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Dominant eigenvalue crossings in red; |κ−(z)| = |κ+(z)| in black.
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Just for fun. Some Hard Squares results
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It’s not just about pretty pictures

According to finite-size scaling the free energy per site corresponding
to the j-th eigenvalue of the transfer matrix has the scaling form

1
L

fj
(
|z − zc |Ly ,uL−|y

′|
)
,

where zc is the critical point, y is the leading relevant eigenvalue and u
is the coupling to an irrelevant operator with eigenvalue y ′ < 0, which
implies at leading order that

|z − zc | = AL−y + BuL−y−|y ′| + . . . ,

where A and B are non-universal constants.

To higher orders, terms on the RHS involve powers of L−1 that can be
any non-zero linear combination of y and |y ′| with non-negative integer
coefficients.
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Finite-size behaviour at zc

The critical point zc > 0 of hard hexagons is known to be in the same
universality class as the three-state ferromagnetic Potts model.

This provides the dominant eigenvalue y = 6/5 with subdominant
eigenvalues y ′ = −4/5 and y ′′ = −4 respectively.

Our numerical analysis of |zc(L)| − zc for L up to 39 gives good
evidence for the scaling form

|zc(L)| − zc = a0L−6/5 + a1L−2 + a2L−14/5 + . . .

The powers of L−1 appearing on the right-hand side can be identified
with y , y + |y ′| and y + 2|y ′|.

This is compatible with the above general result.

However, note that powers such as y + 1 = 11/5 and 2y = 12/5,
which are possible in principle, are not observed numerically.
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Finite-size behaviour at zd

The CFT of the Lee-Yang point zd < 0 is much simpler. There is only
one non-trivial primary operator leading to the eigenvalue y = 12/5.

Our numerical analysis of |zd(L)− zd | gives strong evidence for the
scaling form

|zd(L)− zd | = b0L−12/5 + b1L−17/5 + b2L−22/5 + . . .

The powers of L−1 on the right-hand side can be identified with y ,
y + 1 and y + 2.

The integer shifts can be related to descendent operators in the CFT,
since |y ′| is a positive integer for descendents of the identity operator.
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