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1 Introduction

String theory can impose a specific non-trivial kinetic behavior through the Dirac-Born-Infeld
(DBI) action that arises naturally in consideration of Dp-brane motion within a warped
compactification [1–3]. The field properties are related to the geometric position of a three-
dimensional brane within higher dimensions, and the brane tension and potential functions
are (in principle) given by string theory, through the AdS/CFT correspondence [4–10].

Field theories of the DBI type have attracted much attention in recent years, which
is due to their critical role in inflationary models based on string theory [11–15]. These
scenarios indicate that the inflaton relates with the Dp-brane moving on a 6-dimensional
compact submanifold of spacetime, which means that the inflaton is interpreted as an open
string mode. This interpretation of the inflaton implies that the effective field theory is well
motivated by string computations.

Since the dynamics of a Dp-brane is described by a DBI action in string theory and
characterized by a nonstandard kinetic term, the inflation could turn out with steep poten-
tials in contrast with usual slow-roll inflation. Many models of the inflation are based on the
motion of D-branes in a higher-dimensional spacetime with DBI action [7, 16–18]. The DBI
inflation concludes a more general class, i.e., k-inflation models [19–21].

Furthermore, DBI inflation has the additional nice feature of a natural ending when the
branes collide, where the collision itself is useful for reheating and the possible production
of cosmic strings [22–25]. String theory dictates both the dynamics of the inflation and
its potential, so that one can make precise cosmological predictions from a given set of
background parameters [26]. The calculability and the limited numbers of the parameters
make brane inflation be an interesting arena to explore the possibilities for cosmology in
string theory. Therefore, it is possible to set up a cosmic evolution model, which satisfies the
data and is coincident with the fundamental theory. There has been a great deal of work
done in a variety of inflationary scenarios and in understanding the inflationary fields [27–34].

In the review of [35], branes and antibranes or branes without the same supersymmetry
are both present in different parts of the compact space M. The candidate inflaton is the
distance between the branes and antibranes on M [36], while the inflationary potential is
generated by interbrane Ramond-Ramond (RR) and gravitational forces. On the other hand,
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the exit from inflation can occur when the brane and antibrane reach a distance as the length
of string from one another, where the lightest stretched string becomes tachyonic. Such brane
inflation models were generalized and explored by many studies [37–44].

In this paper, we deduce the DBI potential and DBI Lagrangian, which are different
from refs. [45–49]. We show that there always exists a general function potential in the DBI
inflation action, and deduce the DBI inflation Lagrangian, where the determinant of the
induced metric naturally includes the kinetic energy and the potential energy. In particular,
the result is consistent with the form in the non-linear classical physics, since the kinetic
energy and potential energy can convert into each other.

The arrangements of this paper are: section 2 is the Lagrangian of DBI inflation; section
3 is the general Lagrangian relative to Phantom, K-essence and Quintessence and correspond-
ing generalized Klein-Gordon equation; the last section is summary and conclusion.

2 The Lagrangian of DBI inflation

In the usual DBI inflation scenario, the Lagrangian of the system is in the case of single field
DBI inflation, where the determinant of the induced metric only contains kinetic energy. The
Lagrangian of the usual DBI infaltion arises in type IIB string theory, in terms of the volume
swept out by a D3-brane in a warped geometry coupled to gravity [25]. The DBI Lagrangian
presenting in previous works ignores the possibility that the potential energy can convert into
kinetic energy in the determinant. The potential energy and kinetic energy can not convert
into each other at any order, which is not in agreement with the limit of classical physics.

On the other hand, the non-canonical kinetic term in DBI models leads to the loop
corrections, which are enhanced by slow-varying parameter and small sound speed. Thus,
in general the loop-corrections in multi-DBI models can be large [9]. String theory is a
developing theory in particle physics that attempts to reconcile quantum mechanics and
general relativity. String theory is a theory of everything, a manner of describing the known
fundamental forces and matter in a mathematically complete system. And the results of
string theory are consistent with quantum mechanics and classical physics.

In this section, we derive the generic DBI action different from the previous works [1–3],
by rescaling the metric. In order to make potential energy and kinetic energy in this set-up
consistently appear, we show that the determinant of the induced metric could naturally
include the kinetic energy and potential energy. In this case, the potential energy and the
kinetic energy can convert into each other, and match the limitation of classical mechanics.

In a general field DBI inflation, the field φ responsible for inflation is relative to the
degree of freedom associated with a (3+1)-dimensional world volume with metric ds24 moving
in a six-dimensional “throat”, where the (3+1)-dimensional volume looks like a particle
moving along the radial r and compacted by a 5-dimensional orbifold, the corresponding
metric is [48]

ds210=h2(r)ds24+h−2(r)(dr2+r2ds2x5
). (2.1)

By rescaling the metric, we generalize eq. (2.1) to a more general symmetry situation

ds210=h2(r)U(r)ds24+h−2(r)U(r)(dr2+r2ds2x5
). (2.2)

For U(r) = 1, eq. (2.2) is reduced into eq. (2.1). In principle, our universe may exist in
various parts of compactification, including other warped throats. The construction involves
wrapped D-branes and orientifold planes [11, 33, 38].

– 2 –

d
高亮

d
高亮

d
高亮

d
高亮

d
高亮

d
高亮

d
高亮

d
高亮

d
高亮



J
C
A
P
1
1
(
2
0
1
1
)
0
5
0

Then the induced metric on D3-brane is

Gαβ=h2(r)U(r)gµν
∂xµ

∂σα

∂xν

∂σβ
+h−2(r)U(r)

∂r

∂σα

∂r

∂σβ
+ h−2(r)U(r)r2gab

∂xa

∂σα

∂xb

∂σβ
, (2.3)

where µ, ν, α, β(= 0, 1, 2, 3) describe the geometry of our universe; x4 = r; a, b = 5, 6, 7, 8, 9
are relative to the geometry of sx5

. Because xa, xb are not dependent on σα, σβ, we have

h−2(r)U(r)r2gab
∂xa

∂σα

∂xb

∂σβ
=0. (2.4)

From the first term of eq. (2.3), the potential is equal to the product of the general
scalar function and the prime Newton potential in the limit of classic physics, i.e. g′00 = Λg00.
This potential comes from the geometry of the DBI background.

Therefore, we get the DBI action on D3-brane as follows

SDBI = −T

∫

d4σ

√

−det

[

h2(r)gµνU(r)+h−2(r)U(r)
∂r

∂σµ

∂r

∂σν

]

= −T

∫

d4σ
√

−det[h2gµα]

√

det

[

δανU(r) + h−4(r)U(r)gαβ
∂r

∂σβ

∂r

∂σν

]

(2.5)

in which U is an arbitrary function of r.
We define the scalar field φ=

√

TP 3
r and the brane tension TP3

is a function of the string
scale ms and the string coupling gs, then we have [31]

TDp
=

1

gs(2π)
p(α′)(p+1)/2

ms

gs
= TD0

=
1

gs
√

α′
(2.6)

and then we obtain

TP 3
=

m4
s

(2π)3gs
. (2.7)

Therefore, we have the DBI action

SDBI=−TP 3

∫

d4σh4(φ)
√

−detgµα

√

det[δανU(φ)+U(φ)h−4(φ)T−1
P 3

gαβ∂βφ∂νφ], (2.8)

and the DBI Lagrangian is

LDBI = −TP3
h4(φ)

√

−detgµα

√

det[δανU(φ) + U(φ)h−4(φ)T−1
P3

gαβ∂βφ∂νφ]

= −f−1(φ)
√

−detgµα

√

det[δανU(φ) + U(φ)f(φ)gαβ∂βφ∂νφ], (2.9)

where the inverse brane tension f(φ) is relative to eq. (2.7) and the warp factor h by

f(φ)=
1

TP 3
h4(φ)

(2.10)
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When we consider
√

−detgµνd
4σ as the invariant volume element of the integral eq. (2.8)

and add an integral constant term Tp3

∫

d4σh4(φ)
√

−detgµν=
∫

d4σ
√

−detgµνf
−1(φ) into

eq. (2.8), we finally achieve a DBI new Lagrangian

LDBI=−f−1(φ)
√

det[U(φ)(δαν + f(φ)gαβ∂βφ∂νφ)]+f−1(φ). (2.11)

Defining U(φ) = 1 + V ′(φ), we have

LDBI = −f−1(φ)

√

det

[

δαν + U(φ)

(

f(φ)gαβ∂βφ∂νφ+
V ′(φ)

U(φ)
δαν

)]

+f−1(φ), (2.12)

taking linear approximation, we obtain

LDBI=−f−1(φ)

√

1+U(φ)

[

f(φ)gµν∂µφ∂νφ+
V ′(φ)

U(φ)

]

+f−1(φ), (2.13)

where deducing details of eq. (2.13) see appendix A.
The term U(φ) can arise in different places within the string theory. Firstly if the brane

is actually a non-BPS one [7], then the scalar field mode is actually tachyonic and the poten-
tial is therefore of the usual runaway form. If there are N multiple coincident branes, then
the world-volume field theory is a U(N) non-Abelian gauge theory and the potential term is
simply a reflection of the additional degrees of freedom. Through the dielectric effect, one
can also see that this configuration is related to a D5-brane wrapping a two-cycle within
the compact space and carrying a non-zero magnetic flux along this cycle. Both of these
configurations lead to an additional potential multiplying the usual DBI kinetic term [1–3].

Further, we generally define V ′(φ) = f(φ)ξV (φ) (ξ is a general parameter). Thus,
eq. (2.13) can be rewritten as

LDBI=−f−1(φ)

√

1+U(φ)f(φ)

[

gµν∂µφ∂νφ+ξ
V (φ)

U(φ)

]

+f−1(φ). (2.14)

One expects open or closed string interactions to generate a scalar potential V ; however,
the precise form of such an interaction depends upon many factors such as the number of
additional branes and geometric moduli, the number of nontrivial cycles in the compact space,
and the choice of embedding for branes on these cycles. Typically, one can only compute
this in special cases in the full string theory. There are also additional terms coming from
coupling of the brane to any background Ramond-Ramond form fields.

Eq. (2.14) shows the potential energy and kinetic energy can convert into each other in
any order when expanding the expression. Eq. (2.14), or eq. (2.11), is quite different from
the usual DBI Lagrangian [25, 34]

LDBI=−f−1(φ)
√

1+f(φ)gµν∂µφ∂νφ+f−1(φ) + V(φ). (2.15)

By defining the new inverse brane tension F (φ) = f(φ)U(φ) and f−1 = F−1(φ)/U−1(φ),
we have

LDBI=−

F−1(φ)

U−1(φ)

√

1+F (φ)

[

gµν∂µφ∂νφ+ξ
V (φ)

U(φ)

]

+
F−1(φ)

U−1(φ)
. (2.16)
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Taking Taylor expansion of eq. (2.16), we have

LDBI = −

F−1(φ)

U−1(φ)

[

1+
1

2
F

(

φ)(gµν∂νφ∂νφ+ξ
V (φ)

U(φ)

)]

+
F−1(φ)

U−1(φ)

+
F−1(φ)

U−1(φ)

1

8

[

F (φ)

(

gµν∂νφ∂νφ+ξ
V (φ)

U(φ)

)]2

(2.17)

−

F−1(φ)

U−1(φ)

1

16

[

F (φ)

(

gµν∂νφ∂νφ+ξ
V (φ)

U(φ)

)]3

+ ......

Eq. (2.17) reveals that the potential energy can convert into kinetic energy in any order, and
the potential energy emerges from the Lagrangian eq. (2.16) naturally.

Taking linear approximation of eq. (2.17), we have

LDBI=−U(φ)

(

1

2
gµν∂µφ∂νφ+

1

2
ξ
V (φ)

U(φ)

)

. (2.18)

The Taylor expansion eq. (2.17) of eq. (2.16) is consistent with the form in the non-linear
classical physics, since the kinetic energy and potential energy can convert into each other in
any order in the non-linear classical physics. This is an important example, which shows us
that the results in string theory can return to the classical physics seen detailed in section 4.

In this section, we derive the action eq. (2.12), or eq. (2.13), in a different way from
that given in the literatures [1–3], by rescaling the metric. This dependence is seen from
the DBI action, which involves the pullback of the metric onto the worldvolume of a Dp-
brane. Therefore, we can see that there is a general potential function in the DBI action
with a more general symmetry, by rescaling the metric. We deduce the Lagrangian eq. (2.12),
or eq. (2.13), with potential U(φ) in a new way, where the determinant of induced metric
naturally includes the kinetic energy and potential energy.

In addition, we obtain the linear approximation eq. (2.18) of Lagrangian eq. (2.16)
for the DBI Lagrangian corresponding to eq. (2.13). It shows that the DBI Lagrangian in
eq. (2.16) includes the usual one [25], which is a special example of eq. (2.18). Furthermore,
eq. (2.16) guarantees that the kinetic energy and the potential energy can transform into
each other in any order, and never suffers from the problem of not corresponding in high
order. The forms of the Lagrangian eqs. (2.13) and (2.16) will play an important role in the
following sections of this paper.

3 The general Lagrangian relative to phantom, K-essence and quintessence

and corresponding generalized Klein-Gordon equation

Using U(φ) = 1 + f(φ)ξV (φ), from eq. (2.18) we have

LDBI L = Lp + Lk (3.1)

where

LP = −

1

2
gµν∂µφ∂νφ−

ξ

2
V (φ), (3.2)

LK = W (φ)X(φ), (3.3)
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in which W (φ) = −f(φ)ξV (φ), X(φ) = 1
2g

µν∂µφ∂νφ.

When ξ = 2, the eq. (3.2) is the Lagrangian of Phantom [25]. Eq. (3.3) is the Lagrangian
of k-essence with one order X(φ) [21].

For f(φ)V (φ) = −1 and ξ = 2, using eq. (3.1), eq. (3.2) and eq. (3.3), we have

LDBI L=
1

2
gµν∂µφ∂νφ−V (φ), (3.4)

eq. (3.4) is the same as Quintessence [30]. Eqs. (3.1)–(3.4) reveal that the model of metric
eq. (2.2) contains Phantom, Quintessence and k-essence with one order X(φ) naturally. Spe-
cially, when considering the non-linear Lagrangian eq. (2.17) and simliar to the discussion
above in this section, we can deduce k-essence with high order X(φ) naturally.

On the other hand, eq. (2.18) can be rewritten as

LDBI L = −(1 + f(φ)ξV (φ))
1

2
gµν∂µφ∂νφ−

1

2
ξV (φ), (3.5)

From eq. (3.5) we achieve the generalized Klein-Gordon Equation

∂µ[(1 + f(φ)ξV (φ))∂µφ]−
1

2
ξ
∂V (φ)

∂φ
− ξ

1

2
gµν∂µφ∂νφ

∂(f(φ)V (φ))

∂φ
= 0. (3.6)

When f(φ)V (φ) = 1 and ξ = 1, we have

∂µ∂µφ−

1

4

∂V (φ)

∂φ
= 0. (3.7)

When V (φ) = −
4
3m

2φ3, we have

∂µ∂µφ+m2φ2 = 0. (3.8)

This is the usual Klein-Gordon Equation.

Using eq. (2.14) and similar to the studies in this section,people can achieve more general
results and richer equations from the DBI general Lagrangian.

According to Einstein equation

Rµν −
1

2
gµνR = kTµν , (3.9)

one can see that different matter tensor Tµν will cause different curved spacetime Gµν . That
is, matter tells spacetime how to curve. Therefore, different matter models will cause different
geometric metrics, i.e., different gravitational models, the discussions above in this paper give
the different gravitational models by using the DBI Lagrangian. Because this paper derives
different matter Lagrangians, e.g., the Phantom, K-essence and Quintessence, by which one
can derive the corresponding different matter tensor Tµν , then which will cause different
geometric metrics, i.e., give the corresponding different gravitational models.
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4 The Lagrangian of classical mechanics

Inserting φ =
√

TP3
r in the paragraph above eq. (2.6) into eq. (2.18), we have the Lagrangian

of classical mechanics

LDBI L = −[1 + f(φ)ξV (φ)]
1

2
gµν∂µφ∂νφ−

1

2
ξV (φ)

= −[1 + f(
√

TP3
r)ξV (

√

TP3
r)]TP3

1

2
[g00∂0r∂0r + 2g0i∂0r∂ir + gij∂ir∂jr]

−

1

2
ξV (

√

TP3
r). (4.1)

For simplicity and convenience, we reduce eq. (4.1) to the Lagrangian of classical point
particle in(1+1)-dimensional spacetime and take r = x(t) and gµν = (1,−1), then we have

L = −

1

2
[1 + f(x)ξV1(x)]TP0

∂0x∂0x−

1

2
ξV1(x) +

1

2
[1 + f(x)ξV1(x)]TP0

(4.2)

where V1(x) = V (φ(x)) is in one dimension, f(x) = f(φ(x)) in one dimension. For classi-
cal point particle, we need to use eq. (2.6), and when ξf(x)V1(x) = −g − 1, we derive the
relationship

[1 + f(x)ξV1(x)]TP0
= −m (4.3)

where for point particle we have denoted ms = m and gs = g.
For ξ = 2 and neglecting the last term in eq. (4.2), which now is a constant term and a

correction term from the DBI action, then we achieve the classical Lagrangian

L =
1

2
m∂0x∂0x− V1(x) (4.4)

Making the similar discussions deducing eq. (4.4) for eq. (2.17), then we may obtain
the corresponding results relative to eq. (4.4), thus people can deduce the non-linear classical
Lagrangian, i.e., which shows the non-linear classical physics from eq. (2.17). This is an im-
portant example, which shows us that the results in string theory can return to the classical
physics.

5 Summary and conclusion

In this paper, we derive the action eq. (2.12) or eq. (2.13) in a different way from that
given in the literatures [1–3], by rescaling the metric. This dependence is seen from the DBI
action, which involves the pullback of the metric onto the worldvolume of a Dp-brane. The
determinant of the induced metric naturally includes the kinetic energy and potential energy.

One of our motivations is to study the potential in DBI action, and find a natural way to
guarantee that the potential energy in DBI action can convert into kinetic energy in any order.
And the Lagrangian in eq. (2.16) for the DBI action naturally includes potential energy. The
Taylor expansion of eq. (2.16) is consistent with the form in the non-linear classical physics,
since the kinetic energy and potential energy can convert into each other in any order.

The technical difference between this work and previous is that we present the induced
metric with a generic symmetry by rescaling the metric, where the potential arises in the
determinant naturally. Meanwhile, the important feature in our treatment is that kinetic
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energy and potential energy varies in any order, and never suffers from the problem of not
corresponding in any high order. We deduce the Phantom, K-essence, Quintessence and
Generalized Klein-Gordon Equation from the DBI model.

We show that the DBI Lagrangian in eq. (2.16) includes the usual one [25], which is a
special example of eq. (2.18). We deduce the linear and non-linear Lagrangians, i.e., which
may show the corresponding linear and non-linear classical physics from eq. (2.17). These
are important examples, which shows us that the results in string theory can return to the
classical physics. These investigations in this paper are the support for the statement that
the results of string theory are consistent with quantum mechanics and classical physics.
Using the deduced Lagrangians eq. (2.12), eq. (2.16) and eq. (2.18), a lots of works about
cosmological investigations may be done, e.g., this paper naturally derives out the Phantom,
K-essence, Quintessence ( which are largely utilized in the research relative to our universe)
and Generalized Klein-Gordon Equation from the DBI model.
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A Linear approximation of general determinant

In general case, we have the relation Aν
µ = Bν

µ + Cν
µ. Then we obtain the relation

detAµ
ν =

1

4!
δµ0µ1µ2µ3

ν0ν1ν2ν3 Aν0
µ0
Aν1

µ1
Aν2

µ2
Aν3

µ3

=
1

4!
δµ0µ1µ2µ3

ν0ν1ν2ν3 [(Bν0
µ0

+ Cν0
µ0
)(Bν1

µ1
+ Cν1

µ1
)(Bν2

µ2
+ Cν2

µ2
)(Bν3

µ3
+ Cν3

µ3
)]

=
1

4!
δµ0µ1µ2µ3

ν0ν1ν2ν3 Bν0
µ0
Bν1

µ1
Bν2

µ2
Bν3

µ3
+

1

4!
δµ0µ1µ2µ3

ν0ν1ν2ν3 (Cν0
µ0
Bν1

µ1
Bν2

µ2
Bν3

µ3

+Bν0
µ0
Cν1
µ1
Bν2

µ2
Bν3

µ3
+Bν0

µ0
Bν1

µ1
Cν2
µ2
Bν3

µ3
+Bν0

µ0
Bν1

µ1
Bν2

µ2
Cν3
µ3
) + ...... (A.1)

where we omit the high order terms about Cµ
ν .

For eq. (2.12), Bα
ν = δαν , C

α
ν = U(φ)(f(φ)gαβ∂βφ∂νφ+ V ′(φ)

U(φ) δ
α
ν ), we have

detAα
ν = 1 + U(φ)(f(φ)gαβ∂αφ∂βφ+

V ′(φ)

U(φ)
) + ...... (A.2)

in which we have utilized δµ0µ1µ2µ3

ν0ν1ν2ν3 = 4!, δµ0µ1µ2µ3

ν0µ1ν2ν3 Cν0
µ0

= δµ0

ν0 3!C
ν0
µ0

etc.
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