Pulling self-avoiding walks from a surface.

Tony Guttmann

ARC Centre of Excellence for Mathematics and Statistics of Complex Systems Department of Mathematics and Statistics The University of Melbourne, Australia

ANZAMP Conference, November 2013

Pulling self-avoiding walks from a surface.

Joint work with Iwan Jensen (Melbourne) and Stu Whittington (Toronto)

INTRODUCTION

• Techniques such as AFM allow adsorbed polymer molecules to be pulled off a surface. Need theories of adsorbed polymers subject to a force.

- Earlier work focussed on random, directed and partially directed walk models. We consider the more realistic SAW model.
- Recently, vR & W established the existence of a phase boundary between an adsorbed phase and a ballistic phase when the force is applied normal to the surface.
- We give the first proof that this phase transition is first-order.

- Earlier work focussed on random, directed and partially directed walk models. We consider the more realistic SAW model.
- Recently, vR & W established the existence of a phase boundary between an adsorbed phase and a ballistic phase when the force is applied normal to the surface.
- We give the first proof that this phase transition is first-order.

- Earlier work focussed on random, directed and partially directed walk models. We consider the more realistic SAW model.
- Recently, vR & W established the existence of a phase boundary between an adsorbed phase and a ballistic phase when the force is applied normal to the surface.
- We give the first proof that this phase transition is first-order.

- We use exact enumeration and series analysis techniques to identify this phase boundary for SAWs on the square lattice.
- We give precise estimates of various critical points.
- And various critical exponents.
- A combination of three ingredients
- Ne rigorous results.
- Faster algorithms giving extended series data
- New numerical techniques.

- We use exact enumeration and series analysis techniques to identify this phase boundary for SAWs on the square lattice.
- We give precise estimates of various critical points.
- And various critical exponents.
- A combination of three ingredients
- Ne rigorous results.
- Faster algorithms giving extended series data
- New numerical techniques.

- We use exact enumeration and series analysis techniques to identify this phase boundary for SAWs on the square lattice.
- We give precise estimates of various critical points.
- And various critical exponents.
- A combination of three ingredients
- Ne rigorous results.
- Faster algorithms giving extended series data
- New numerical techniques.

- We use exact enumeration and series analysis techniques to identify this phase boundary for SAWs on the square lattice.
- We give precise estimates of various critical points.
- And various critical exponents.
- A combination of three ingredients
- Ne rigorous results.
- Faster algorithms giving extended series data
- New numerical techniques.

- We use exact enumeration and series analysis techniques to identify this phase boundary for SAWs on the square lattice.
- We give precise estimates of various critical points.
- And various critical exponents.
- A combination of three ingredients
- Ne rigorous results.
- Faster algorithms giving extended series data
- New numerical techniques.

- We use exact enumeration and series analysis techniques to identify this phase boundary for SAWs on the square lattice.
- We give precise estimates of various critical points.
- And various critical exponents.
- A combination of three ingredients
- Ne rigorous results.
- Faster algorithms giving extended series data
- New numerical techniques.

- We use exact enumeration and series analysis techniques to identify this phase boundary for SAWs on the square lattice.
- We give precise estimates of various critical points.
- And various critical exponents.
- A combination of three ingredients
- Ne rigorous results.
- Faster algorithms giving extended series data
- New numerical techniques.

14 STEPS, 3 CONTACTS, END-POINT AT HEIGHT 2 \implies $x^{14}a^3y^2$.

Pulling self-avoiding walks from a surface.

- Square lattice: vertex coordinates $(x_i, y_i), i = 0, 1, 2, ... n$.
- c_n is the number of *n*-step SAWs.

$$\lim_{n\to\infty}n^{-1}\log c_n=\log\mu$$

exists (HM54), where μ is the growth constant of SAWs.

• A *positive walk* is a SAW that starts at the origin and has $y_i \ge 0$ for all $0 \le i \le n$. Cardinality c_n^+ .

$$\lim_{n \to \infty} n^{-1} \log c_n^+ = \log \mu.$$
 (W75)

• Vertices of a positive walk with $y_i = 0$ are *visits* to the surface, (by convention we exclude the vertex at the origin).

.

- Square lattice: vertex coordinates $(x_i, y_i), i = 0, 1, 2, ... n$.
- c_n is the number of *n*-step SAWs.

$$\lim_{n \to \infty} n^{-1} \log c_n = \log \mu$$

exists (HM54), where μ is the growth constant of SAWs.

• A *positive walk* is a SAW that starts at the origin and has $y_i \ge 0$ for all $0 \le i \le n$. Cardinality c_n^+ .

$$\lim_{n \to \infty} n^{-1} \log c_n^+ = \log \mu.$$
 (W75)

• Vertices of a positive walk with $y_i = 0$ are *visits* to the surface, (by convention we exclude the vertex at the origin).

.

- Square lattice: vertex coordinates $(x_i, y_i), i = 0, 1, 2, ... n$.
- c_n is the number of *n*-step SAWs.

$$\lim_{n\to\infty}n^{-1}\log c_n=\log\mu$$

exists (HM54), where μ is the growth constant of SAWs.

• A *positive walk* is a SAW that starts at the origin and has $y_i \ge 0$ for all $0 \le i \le n$. Cardinality c_n^+ .

$$\lim_{n \to \infty} n^{-1} \log c_n^+ = \log \mu.$$
 (W75)

• Vertices of a positive walk with $y_i = 0$ are *visits* to the surface, (by convention we exclude the vertex at the origin).

- Square lattice: vertex coordinates $(x_i, y_i), i = 0, 1, 2, ... n$.
- c_n is the number of *n*-step SAWs.

$$\lim_{n\to\infty}n^{-1}\log c_n=\log\mu$$

exists (HM54), where μ is the growth constant of SAWs.

• A *positive walk* is a SAW that starts at the origin and has $y_i \ge 0$ for all $0 \le i \le n$. Cardinality c_n^+ .

$$\lim_{n \to \infty} n^{-1} \log c_n^+ = \log \mu.$$
 (W75)

• Vertices of a positive walk with $y_i = 0$ are *visits* to the surface, (by convention we exclude the vertex at the origin).

- Square lattice: vertex coordinates $(x_i, y_i), i = 0, 1, 2, ... n$.
- c_n is the number of *n*-step SAWs.

$$\lim_{n\to\infty}n^{-1}\log c_n=\log\mu$$

exists (HM54), where μ is the growth constant of SAWs.

• A *positive walk* is a SAW that starts at the origin and has $y_i \ge 0$ for all $0 \le i \le n$. Cardinality c_n^+ .

$$\lim_{n \to \infty} n^{-1} \log c_n^+ = \log \mu.$$
 (W75)

• Vertices of a positive walk with $y_i = 0$ are *visits* to the surface, (by convention we exclude the vertex at the origin).

- Square lattice: vertex coordinates $(x_i, y_i), i = 0, 1, 2, ... n$.
- c_n is the number of *n*-step SAWs.

$$\lim_{n\to\infty}n^{-1}\log c_n=\log\mu$$

exists (HM54), where μ is the growth constant of SAWs.

• A *positive walk* is a SAW that starts at the origin and has $y_i \ge 0$ for all $0 \le i \le n$. Cardinality c_n^+ .

$$\lim_{n \to \infty} n^{-1} \log c_n^+ = \log \mu.$$
 (W75)

• Vertices of a positive walk with $y_i = 0$ are *visits* to the surface, (by convention we exclude the vertex at the origin).

۰

• The walk has *height* h if $y_n = h$.

- $c_n^+(v,h)$ is card. of positive walks of *n* steps, *v* visits, height *h*.
- The partition function is

$$C_n(a, y) = \sum_{v,h} c_n^+(v, h) a^v y^h.$$
 (1)

• ϵ is the energy associated with a visit and f is the force applied normally at the last vertex,

$$a = \exp[-\epsilon/k_B T]$$
 and $y = \exp[f/k_B T]$ (2)

• No force: y = 1 and the partition function is $C_n(a, 1)$,

- The walk has *height* h if $y_n = h$.
- $c_n^+(v,h)$ is card. of positive walks of *n* steps, *v* visits, height *h*.

• The partition function is

$$C_n(a, y) = \sum_{v,h} c_n^+(v, h) a^v y^h.$$
 (1)

• ϵ is the energy associated with a visit and f is the force applied normally at the last vertex,

$$a = \exp[-\epsilon/k_B T]$$
 and $y = \exp[f/k_B T]$ (2)

• No force: y = 1 and the partition function is $C_n(a, 1)$,

- The walk has *height h* if $y_n = h$.
- $c_n^+(v,h)$ is card. of positive walks of *n* steps, *v* visits, height *h*.
- The partition function is

$$C_n(a, y) = \sum_{v,h} c_n^+(v, h) a^v y^h.$$
 (1)

• ϵ is the energy associated with a visit and f is the force applied normally at the last vertex,

$$a = \exp[-\epsilon/k_B T]$$
 and $y = \exp[f/k_B T]$ (2)

• No force: y = 1 and the partition function is $C_n(a, 1)$,

- The walk has *height* h if $y_n = h$.
- $c_n^+(v,h)$ is card. of positive walks of *n* steps, *v* visits, height *h*.
- The partition function is

$$C_n(a, y) = \sum_{v,h} c_n^+(v, h) a^v y^h.$$
 (1)

• ϵ is the energy associated with a visit and f is the force applied normally at the last vertex,

$$a = \exp[-\epsilon/k_B T]$$
 and $y = \exp[f/k_B T]$ (2)

• No force: y = 1 and the partition function is $C_n(a, 1)$,

- The walk has *height* h if $y_n = h$.
- $c_n^+(v,h)$ is card. of positive walks of *n* steps, *v* visits, height *h*.
- The partition function is

$$C_n(a, y) = \sum_{v,h} c_n^+(v, h) a^v y^h.$$
 (1)

• ϵ is the energy associated with a visit and f is the force applied normally at the last vertex,

$$a = \exp[-\epsilon/k_B T]$$
 and $y = \exp[f/k_B T]$ (2)

- No force: y = 1 and the partition function is $C_n(a, 1)$,
- No surface interaction: a = 1. The partition function is $C_n(1, y)$.

- The walk has *height* h if $y_n = h$.
- $c_n^+(v,h)$ is card. of positive walks of *n* steps, *v* visits, height *h*.
- The partition function is

$$C_n(a, y) = \sum_{v,h} c_n^+(v, h) a^v y^h.$$
 (1)

• ϵ is the energy associated with a visit and f is the force applied normally at the last vertex,

$$a = \exp[-\epsilon/k_B T]$$
 and $y = \exp[f/k_B T]$ (2)

- No force: y = 1 and the partition function is $C_n(a, 1)$,
- No surface interaction: a = 1. The partition function is $C_n(1, y)$.

• HTW1982 proved (no force)

$$\lim_{n\to\infty} n^{-1}\log C_n(a,1) \equiv \kappa(a)$$

- There exists $a = a_c^o > 1$ such that $\kappa(a) = \log \mu$ for $a \le a_c^o$. $\kappa(a)$ is strictly monotone increasing for $a > a_c^o$.
- So $\kappa(a)$ is non-analytic at $a = a_c^o$.
- For $a < a_c^o$, $\langle v \rangle = o(n)$. For $a > a_c^o$, (the adsorbed phase,)

$$\lim_{n\to\infty}\frac{\langle v\rangle}{n}>0$$

• HTW1982 proved (no force)

$$\lim_{n\to\infty} n^{-1}\log C_n(a,1) \equiv \kappa(a)$$

- There exists $a = a_c^o > 1$ such that $\kappa(a) = \log \mu$ for $a \le a_c^o$. $\kappa(a)$ is strictly monotone increasing for $a > a_c^o$.
- So $\kappa(a)$ is non-analytic at $a = a_c^o$.
- For $a < a_c^o$, $\langle v \rangle = o(n)$. For $a > a_c^o$, (the adsorbed phase,)

$$\lim_{n\to\infty}\frac{\langle v\rangle}{n}>0$$

• HTW1982 proved (no force)

$$\lim_{n\to\infty} n^{-1}\log C_n(a,1)\equiv\kappa(a)$$

- There exists $a = a_c^o > 1$ such that $\kappa(a) = \log \mu$ for $a \le a_c^o$. $\kappa(a)$ is strictly monotone increasing for $a > a_c^o$.
- So $\kappa(a)$ is non-analytic at $a = a_c^o$.
- For $a < a_c^o$, $\langle v \rangle = o(n)$. For $a > a_c^o$, (the adsorbed phase,)

$$\lim_{n\to\infty}\frac{\langle v\rangle}{n}>0$$

• HTW1982 proved (no force)

$$\lim_{n\to\infty} n^{-1}\log C_n(a,1)\equiv\kappa(a)$$

- There exists $a = a_c^o > 1$ such that $\kappa(a) = \log \mu$ for $a \le a_c^o$. $\kappa(a)$ is strictly monotone increasing for $a > a_c^o$.
- So $\kappa(a)$ is non-analytic at $a = a_c^o$.
- For $a < a_c^o$, $\langle v \rangle = o(n)$. For $a > a_c^o$, (the adsorbed phase,)

$$\lim_{n\to\infty}\frac{\langle v\rangle}{n}>0$$

• Similarly

$$\lim_{n\to\infty} n^{-1}\log C_n(1,y) \equiv \lambda(y)$$

exists and $\lambda(y)$ is a convex function of log y.

1

- There is a critical point $y_c^o \ge 1$ such that $\lambda(y) = \log \mu$ for $y \le y_c^o$ and $\lambda(y)$ is strictly monotone increasing for $y > y_c^o$ (R09).
- At y_c^o : Transition from a free phase, $(\langle h \rangle = o(n))$ to a ballistic phase where

$$\lim_{n\to\infty}\frac{\langle h\rangle}{n}>0$$

• Similarly

$$\lim_{n \to \infty} n^{-1} \log C_n(1, y) \equiv \lambda(y)$$

exists and $\lambda(y)$ is a convex function of log *y*.

- There is a critical point $y_c^o \ge 1$ such that $\lambda(y) = \log \mu$ for $y \le y_c^o$ and $\lambda(y)$ is strictly monotone increasing for $y > y_c^o$ (R09).
- At y_c^o : Transition from a free phase, $(\langle h \rangle = o(n))$ to a ballistic phase where

$$\lim_{n\to\infty}\frac{\langle h\rangle}{n}>0.$$

• Similarly

$$\lim_{n \to \infty} n^{-1} \log C_n(1, y) \equiv \lambda(y)$$

exists and $\lambda(y)$ is a convex function of log y.

- There is a critical point y^o_c ≥ 1 such that λ(y) = log μ for y ≤ y^o_c and λ(y) is strictly monotone increasing for y > y^o_c (R09).
- At y_c^o : Transition from a free phase, $(\langle h \rangle = o(n))$ to a ballistic phase where

$$\lim_{n\to\infty}\frac{\langle h\rangle}{n}>0.$$

• Similarly

$$\lim_{n \to \infty} n^{-1} \log C_n(1, y) \equiv \lambda(y)$$

exists and $\lambda(y)$ is a convex function of log y.

- There is a critical point $y_c^o \ge 1$ such that $\lambda(y) = \log \mu$ for $y \le y_c^o$ and $\lambda(y)$ is strictly monotone increasing for $y > y_c^o$ (R09).
- At y_c^o : Transition from a free phase, $(\langle h \rangle = o(n))$ to a ballistic phase where

$$\lim_{n\to\infty}\frac{\langle h\rangle}{n}>0.$$

MORE GENERAL MODEL

• For the two variable model, vRW2013 proved the existence of the free energy

$$\psi(a, y) = \lim_{n \to \infty} n^{-1} \log C_n(a, y).$$

• Further, $\psi(a, y)$ is a convex function of log *a* and log *y* and

 $\psi(a, y) = \max[\kappa(a), \lambda(y)].$

- This implies that there is a *free phase* when a < a_c^o and y < y_c^o where ⟨v⟩ = o(n) and ⟨h⟩ = o(n), and a strictly monotone curve y = y_c(a) through the point (a_c^o, y_c^o) separating two phases:
 an *adsorbed phase* when a > a_c^o and y < y_c(a), and
 - 2 a *ballistic phase* when $y > \max[y_c^o, y_c(a)]$.
- Moreover, $y_c(a)$ is asymptotic to y = a as $a \to \infty$. (SQ).

MORE GENERAL MODEL

• For the two variable model, vRW2013 proved the existence of the free energy

$$\psi(a, y) = \lim_{n \to \infty} n^{-1} \log C_n(a, y).$$

• Further, $\psi(a, y)$ is a convex function of $\log a$ and $\log y$ and

$$\psi(a, y) = \max[\kappa(a), \lambda(y)].$$

- This implies that there is a *free phase* when a < a^o_c and y < y^o_c where ⟨v⟩ = o(n) and ⟨h⟩ = o(n), and a strictly monotone curve y = y_c(a) through the point (a^o_c, y^o_c) separating two phases:
 an *adsorbed phase* when a > a^o_c and y < y_c(a), and
 a *ballistic phase* when y > max[y^o_c, y_c(a)].
- Moreover, $y_c(a)$ is asymptotic to y = a as $a \to \infty$. (SQ).
MORE GENERAL MODEL

• For the two variable model, vRW2013 proved the existence of the free energy

$$\psi(a, y) = \lim_{n \to \infty} n^{-1} \log C_n(a, y).$$

• Further, $\psi(a, y)$ is a convex function of $\log a$ and $\log y$ and

$$\psi(a, y) = \max[\kappa(a), \lambda(y)].$$

- This implies that there is a *free phase* when a < a_c^o and y < y_c^o where ⟨v⟩ = o(n) and ⟨h⟩ = o(n), and a strictly monotone curve y = y_c(a) through the point (a_c^o, y_c^o) separating two phases:
 an *adsorbed phase* when a > a_c^o and y < y_c(a), and
 a *ballistic phase* when y > max[y_c^o, y_c(a)].
- Moreover, $y_c(a)$ is asymptotic to y = a as $a \to \infty$. (SQ).

MORE GENERAL MODEL

• For the two variable model, vRW2013 proved the existence of the free energy

$$\psi(a, y) = \lim_{n \to \infty} n^{-1} \log C_n(a, y).$$

• Further, $\psi(a, y)$ is a convex function of $\log a$ and $\log y$ and

$$\psi(a, y) = \max[\kappa(a), \lambda(y)].$$

- This implies that there is a *free phase* when a < a_c^o and y < y_c^o where ⟨v⟩ = o(n) and ⟨h⟩ = o(n), and a strictly monotone curve y = y_c(a) through the point (a_c^o, y_c^o) separating two phases:
 an *adsorbed phase* when a > a_c^o and y < y_c(a), and
 a *ballistic phase* when y > max[y_c^o, y_c(a)].
- Moreover, $y_c(a)$ is asymptotic to y = a as $a \to \infty$. (SQ).

SCHEMATIC PHASE DIAGRAM. (VAN RENSBURG & WHITTINGTON)

- The algorithm is based on the CEG (1993) SAW algorithm.
- The TM algorithm keeps track of the way partially constructed SAWs are connected to the left of a cut-line.
- Recently Clisby and Jensen (2012) devised a more efficient implementation of the algorithm for SAPs.
- They kept track of how a partially constructed SAP must connect up to the right of the cut-line.
- Jensen recently extended this approach to SAWs.

- The algorithm is based on the CEG (1993) SAW algorithm.
- The TM algorithm keeps track of the way partially constructed SAWs are connected to the left of a cut-line.
- Recently Clisby and Jensen (2012) devised a more efficient implementation of the algorithm for SAPs.
- They kept track of how a partially constructed SAP must connect up to the right of the cut-line.
- Jensen recently extended this approach to SAWs.

- The algorithm is based on the CEG (1993) SAW algorithm.
- The TM algorithm keeps track of the way partially constructed SAWs are connected to the left of a cut-line.
- Recently Clisby and Jensen (2012) devised a more efficient implementation of the algorithm for SAPs.
- They kept track of how a partially constructed SAP must connect up to the right of the cut-line.
- Jensen recently extended this approach to SAWs.

- The algorithm is based on the CEG (1993) SAW algorithm.
- The TM algorithm keeps track of the way partially constructed SAWs are connected to the left of a cut-line.
- Recently Clisby and Jensen (2012) devised a more efficient implementation of the algorithm for SAPs.
- They kept track of how a partially constructed SAP must connect up to the right of the cut-line.
- Jensen recently extended this approach to SAWs.

GEOMETRY OF RECTANGLE

- We count the number of walks in rectangles $W \times L$ unit cells.
- A spanning walk has length at least W + L steps.
- We add contributions from all rectangles of width $W \le W_{\text{max}}$, and length $W \le L \le 2W_{\text{max}} - W + 1$
- This gives the number of walks for an infinite lattice correctly up to length $N = 2W_{\text{max}} + 1$.

GEOMETRY OF RECTANGLE

- We count the number of walks in rectangles $W \times L$ unit cells.
- A spanning walk has length at least W + L steps.
- We add contributions from all rectangles of width $W \le W_{\text{max}}$, and length $W \le L \le 2W_{\text{max}} - W + 1$
- This gives the number of walks for an infinite lattice correctly up to length $N = 2W_{\text{max}} + 1$.

- We count the number of walks in rectangles $W \times L$ unit cells.
- A spanning walk has length at least W + L steps.
- We add contributions from all rectangles of width $W \le W_{\text{max}}$, and length $W \le L \le 2W_{\text{max}} - W + 1$
- This gives the number of walks for an infinite lattice correctly up to length $N = 2W_{\text{max}} + 1$.

- We count the number of walks in rectangles $W \times L$ unit cells.
- A spanning walk has length at least W + L steps.
- We add contributions from all rectangles of width $W \le W_{\text{max}}$, and length $W \le L \le 2W_{\text{max}} - W + 1$
- This gives the number of walks for an infinite lattice correctly up to length $N = 2W_{\text{max}} + 1$.

Example of a SAW in a rectangle

Figure: An example of a self-avoiding walk on a 10×8 rectangle. The walk is tethered to the surface, has the end-point at h = 5 and four vertices (other than the start-point) in the surface.

Basic idea: Any SAW has exactly two end-points.

OUTLINE OF THE ALGORITHM

Cutting the SAW by a vertical line (dashed), the SAW is broken into pieces to the left and right of the cut-line. On *either* side of the line are a set of arcs connecting two edges on the cut-line and at most two line pieces connected to the end-points of the SAW.

Figure: Examples of cut-lines through the SAW such that the signature of the incomplete section to the right of the cut-line (black lines) contains, respectively, two, one and no free edges.

Moving through the rectangle-building the TM

- At every stage a configuration of occupied edges along the cut-line can be described in two ways.
- The edges are connected forming either arcs or line pieces to the left or right of the cut-line.
- Moving the cut-line from left to right we can keep track of how the pieces are connected to the left (the past). This is the traditional TM.
- Tracking how edges can be connected to the right of the cut-line so as to form a valid SAW (the future), is the basis of the new algorithm.
- Looking at a given SAW and cut-line, the partial SAW to the right of this line consists of a number of arcs connecting two edges and at most two *free* edges which are not connected to any occupied edge on the current cut-line.

Moving through the rectangle-building the TM

- At every stage a configuration of occupied edges along the cut-line can be described in two ways.
- The edges are connected forming either arcs or line pieces to the left or right of the cut-line.
- Moving the cut-line from left to right we can keep track of how the pieces are connected to the left (the past). This is the traditional TM.
- Tracking how edges can be connected to the right of the cut-line so as to form a valid SAW (the future), is the basis of the new algorithm.
- Looking at a given SAW and cut-line, the partial SAW to the right of this line consists of a number of arcs connecting two edges and at most two *free* edges which are not connected to any occupied edge on the current cut-line.

Moving through the rectangle-building the TM

- At every stage a configuration of occupied edges along the cut-line can be described in two ways.
- The edges are connected forming either arcs or line pieces to the left or right of the cut-line.
- Moving the cut-line from left to right we can keep track of how the pieces are connected to the left (the past). This is the traditional TM.
- Tracking how edges can be connected to the right of the cut-line so as to form a valid SAW (the future), is the basis of the new algorithm.
- Looking at a given SAW and cut-line, the partial SAW to the right of this line consists of a number of arcs connecting two edges and at most two *free* edges which are not connected to any occupied edge on the current cut-line.

MOVING THROUGH THE RECTANGLE–BUILDING THE TM

- At every stage a configuration of occupied edges along the cut-line can be described in two ways.
- The edges are connected forming either arcs or line pieces to the left or right of the cut-line.
- Moving the cut-line from left to right we can keep track of how the pieces are connected to the left (the past). This is the traditional TM.
- Tracking how edges can be connected to the right of the cut-line so as to form a valid SAW (the future), is the basis of the new algorithm.
- Looking at a given SAW and cut-line, the partial SAW to the right of this line consists of a number of arcs connecting two edges and at most two *free* edges which are not connected to any occupied edge on the current cut-line.

MOVING THROUGH THE RECTANGLE–BUILDING THE TM

- At every stage a configuration of occupied edges along the cut-line can be described in two ways.
- The edges are connected forming either arcs or line pieces to the left or right of the cut-line.
- Moving the cut-line from left to right we can keep track of how the pieces are connected to the left (the past). This is the traditional TM.
- Tracking how edges can be connected to the right of the cut-line so as to form a valid SAW (the future), is the basis of the new algorithm.
- Looking at a given SAW and cut-line, the partial SAW to the right of this line consists of a number of arcs connecting two edges and at most two *free* edges which are not connected to any occupied edge on the current cut-line.

LABELING RULES

Any configuration along the cut-line can thus be represented by a set of edge states {σ_i}, where

$$\sigma_i = \begin{cases} 0 & \text{empty edge,} \\ 1 & \text{lower edge,} \\ 2 & \text{upper edge.} \\ 3 & \text{free edge.} \end{cases}$$

Reading from bottom to top, the signature *S* along the cut-lines of the SAW above are, respectively, $S = \{030010230\}$, $S = \{300000000\}$, and $S = \{102001002\}$.

• Since crossings are not permitted this encoding uniquely describes how the occupied edges are connected.

LABELING RULES

Any configuration along the cut-line can thus be represented by a set of edge states {σ_i}, where

$$\sigma_i = \begin{cases} 0 & \text{empty edge,} \\ 1 & \text{lower edge,} \\ 2 & \text{upper edge.} \\ 3 & \text{free edge.} \end{cases}$$

Reading from bottom to top, the signature *S* along the cut-lines of the SAW above are, respectively, $S = \{030010230\}$, $S = \{300000000\}$, and $S = \{102001002\}$.

• Since crossings are not permitted this encoding uniquely describes how the occupied edges are connected.

- The most efficient implementation of the algorithm involves moving the cut-line so as to build up the lattice vertex by vertex.
- The sum over all contributing graphs is calculated as the cut-line is moved through the lattice.
- For each configuration of edges we keep a generating function *G_S* for partial walks with signature *S*.
- Clearly, G_S is a polynomial $G_S(x, a)$ where x, a is conjugate to the number of steps/surface vertices.
- Update: Each source signature *S* (before the boundary move) generates a few new target signatures *S'* as k = 0, 1 or 2 new edges are inserted with m = 0 or 1 surface visits.
- This leads to the update $G_{S'}(x, a) = G_{S'}(x, a) + x^k a^m G_S(x, a)$.
- Signatures are discarded after processing.

- The most efficient implementation of the algorithm involves moving the cut-line so as to build up the lattice vertex by vertex.
- The sum over all contributing graphs is calculated as the cut-line is moved through the lattice.
- For each configuration of edges we keep a generating function *G_S* for partial walks with signature *S*.
- Clearly, G_S is a polynomial $G_S(x, a)$ where x, a is conjugate to the number of steps/surface vertices.
- Update: Each source signature *S* (before the boundary move) generates a few new target signatures *S'* as k = 0, 1 or 2 new edges are inserted with m = 0 or 1 surface visits.
- This leads to the update $G_{S'}(x, a) = G_{S'}(x, a) + x^k a^m G_S(x, a)$.
- Signatures are discarded after processing.

- The most efficient implementation of the algorithm involves moving the cut-line so as to build up the lattice vertex by vertex.
- The sum over all contributing graphs is calculated as the cut-line is moved through the lattice.
- For each configuration of edges we keep a generating function G_S for partial walks with signature *S*.
- Clearly, G_S is a polynomial $G_S(x, a)$ where x, a is conjugate to the number of steps/surface vertices.
- Update: Each source signature *S* (before the boundary move) generates a few new target signatures *S'* as k = 0, 1 or 2 new edges are inserted with m = 0 or 1 surface visits.
- This leads to the update $G_{S'}(x, a) = G_{S'}(x, a) + x^k a^m G_S(x, a)$.
- Signatures are discarded after processing.

- The most efficient implementation of the algorithm involves moving the cut-line so as to build up the lattice vertex by vertex.
- The sum over all contributing graphs is calculated as the cut-line is moved through the lattice.
- For each configuration of edges we keep a generating function *G_S* for partial walks with signature *S*.
- Clearly, G_S is a polynomial $G_S(x, a)$ where x, a is conjugate to the number of steps/surface vertices.
- Update: Each source signature *S* (before the boundary move) generates a few new target signatures *S'* as k = 0, 1 or 2 new edges are inserted with m = 0 or 1 surface visits.
- This leads to the update $G_{S'}(x, a) = G_{S'}(x, a) + x^k a^m G_S(x, a)$.
- Signatures are discarded after processing.

- The most efficient implementation of the algorithm involves moving the cut-line so as to build up the lattice vertex by vertex.
- The sum over all contributing graphs is calculated as the cut-line is moved through the lattice.
- For each configuration of edges we keep a generating function G_S for partial walks with signature *S*.
- Clearly, G_S is a polynomial $G_S(x, a)$ where x, a is conjugate to the number of steps/surface vertices.
- Update: Each source signature S (before the boundary move) generates a few new target signatures S' as k = 0, 1 or 2 new edges are inserted with m = 0 or 1 surface visits.
- This leads to the update $G_{S'}(x, a) = G_{S'}(x, a) + x^k a^m G_S(x, a)$.
- Signatures are discarded after processing.

- The most efficient implementation of the algorithm involves moving the cut-line so as to build up the lattice vertex by vertex.
- The sum over all contributing graphs is calculated as the cut-line is moved through the lattice.
- For each configuration of edges we keep a generating function *G_S* for partial walks with signature *S*.
- Clearly, G_S is a polynomial $G_S(x, a)$ where x, a is conjugate to the number of steps/surface vertices.
- Update: Each source signature *S* (before the boundary move) generates a few new target signatures *S'* as k = 0, 1 or 2 new edges are inserted with m = 0 or 1 surface visits.
- This leads to the update $G_{S'}(x, a) = G_{S'}(x, a) + x^k a^m G_S(x, a)$.
- Signatures are discarded after processing.

- The most efficient implementation of the algorithm involves moving the cut-line so as to build up the lattice vertex by vertex.
- The sum over all contributing graphs is calculated as the cut-line is moved through the lattice.
- For each configuration of edges we keep a generating function *G_S* for partial walks with signature *S*.
- Clearly, G_S is a polynomial $G_S(x, a)$ where x, a is conjugate to the number of steps/surface vertices.
- Update: Each source signature *S* (before the boundary move) generates a few new target signatures *S'* as k = 0, 1 or 2 new edges are inserted with m = 0 or 1 surface visits.
- This leads to the update $G_{S'}(x, a) = G_{S'}(x, a) + x^k a^m G_S(x, a)$.
- Signatures are discarded after processing.

- We force the SAW to have a free end at the top of the rectangle.
- We must consider all rectangles with $W \le n + 1$.
- The number of signatures grows exponentially with *W*. Hence we must minimize the length of the cut-line for optimality.
- The rectangles are broken into two sub-sets, $L \ge W$ and L < W.
- For L < W rectangles have start-point on the left-most border.
- To keep track of the height *h*, the end-point must be in a row *h* units from the surface, Then repeat for all *h*.
- We calculated the number of SAW up to length n = 59.
- Parallel calculations were performed using up to 16 processors, up to 40GB of memory and just under 6000 CPU hours

- We force the SAW to have a free end at the top of the rectangle.
- We must consider all rectangles with $W \le n+1$.
- The number of signatures grows exponentially with *W*. Hence we must minimize the length of the cut-line for optimality.
- The rectangles are broken into two sub-sets, $L \ge W$ and L < W.
- For L < W rectangles have start-point on the left-most border.
- To keep track of the height *h*, the end-point must be in a row *h* units from the surface, Then repeat for all *h*.
- We calculated the number of SAW up to length n = 59.
- Parallel calculations were performed using up to 16 processors, up to 40GB of memory and just under 6000 CPU hours

- We force the SAW to have a free end at the top of the rectangle.
- We must consider all rectangles with $W \le n+1$.
- The number of signatures grows exponentially with *W*. Hence we must minimize the length of the cut-line for optimality.
- The rectangles are broken into two sub-sets, $L \ge W$ and L < W.
- For L < W rectangles have start-point on the left-most border.
- To keep track of the height *h*, the end-point must be in a row *h* units from the surface, Then repeat for all *h*.
- We calculated the number of SAW up to length n = 59.
- Parallel calculations were performed using up to 16 processors, up to 40GB of memory and just under 6000 CPU hours

- We force the SAW to have a free end at the top of the rectangle.
- We must consider all rectangles with $W \le n+1$.
- The number of signatures grows exponentially with *W*. Hence we must minimize the length of the cut-line for optimality.
- The rectangles are broken into two sub-sets, $L \ge W$ and L < W.
- For L < W rectangles have start-point on the left-most border.
- To keep track of the height *h*, the end-point must be in a row *h* units from the surface, Then repeat for all *h*.
- We calculated the number of SAW up to length n = 59.
- Parallel calculations were performed using up to 16 processors, up to 40GB of memory and just under 6000 CPU hours

- We force the SAW to have a free end at the top of the rectangle.
- We must consider all rectangles with $W \le n+1$.
- The number of signatures grows exponentially with *W*. Hence we must minimize the length of the cut-line for optimality.
- The rectangles are broken into two sub-sets, $L \ge W$ and L < W.
- For L < W rectangles have start-point on the left-most border.
- To keep track of the height *h*, the end-point must be in a row *h* units from the surface, Then repeat for all *h*.
- We calculated the number of SAW up to length n = 59.
- Parallel calculations were performed using up to 16 processors, up to 40GB of memory and just under 6000 CPU hours

- We force the SAW to have a free end at the top of the rectangle.
- We must consider all rectangles with $W \le n+1$.
- The number of signatures grows exponentially with *W*. Hence we must minimize the length of the cut-line for optimality.
- The rectangles are broken into two sub-sets, $L \ge W$ and L < W.
- For L < W rectangles have start-point on the left-most border.
- To keep track of the height *h*, the end-point must be in a row *h* units from the surface, Then repeat for all *h*.
- We calculated the number of SAW up to length n = 59.
- Parallel calculations were performed using up to 16 processors, up to 40GB of memory and just under 6000 CPU hours

- We force the SAW to have a free end at the top of the rectangle.
- We must consider all rectangles with $W \le n+1$.
- The number of signatures grows exponentially with *W*. Hence we must minimize the length of the cut-line for optimality.
- The rectangles are broken into two sub-sets, $L \ge W$ and L < W.
- For L < W rectangles have start-point on the left-most border.
- To keep track of the height *h*, the end-point must be in a row *h* units from the surface, Then repeat for all *h*.
- We calculated the number of SAW up to length n = 59.
- Parallel calculations were performed using up to 16 processors, up to 40GB of memory and just under 6000 CPU hours

- We force the SAW to have a free end at the top of the rectangle.
- We must consider all rectangles with $W \le n+1$.
- The number of signatures grows exponentially with *W*. Hence we must minimize the length of the cut-line for optimality.
- The rectangles are broken into two sub-sets, $L \ge W$ and L < W.
- For L < W rectangles have start-point on the left-most border.
- To keep track of the height *h*, the end-point must be in a row *h* units from the surface, Then repeat for all *h*.
- We calculated the number of SAW up to length n = 59.
- Parallel calculations were performed using up to 16 processors, up to 40GB of memory and just under 6000 CPU hours

ANALYSIS. NO SURFACE INTERACTION, a = 1

- We have analysed the series using differential approximants when a = 1, corresponding to no surface interaction.
- For $\log y < 0$, $\lambda(y) = \log \mu$ while for $\log y > 0$, $\max[\log \mu, \log y] \le \lambda(y) \le \log \mu + \log y$.

Figure: The free energy $\lambda(y)$, with bounds
ANALYSIS. NO SURFACE INTERACTION, a = 1

- We have analysed the series using differential approximants when a = 1, corresponding to no surface interaction.
- For $\log y < 0$, $\lambda(y) = \log \mu$ while for $\log y > 0$, $\max[\log \mu, \log y] \le \lambda(y) \le \log \mu + \log y$.

Figure: The free energy $\lambda(y)$, with bounds

No surface interaction, a = 1 – more details

$$H(x,y) = \sum_{n} C_n(1,y) x^n = \sum_{n} e^{\lambda(y)n + o(n)} x^n$$

• H(x, y) will be singular at $x = x_c(y) = \exp[-\lambda(y)]$, and near $x_c(y)$

$$H(x,y) \sim rac{A}{[x_c(y) - x]^{\gamma(y)}}$$

where $\gamma(y)$ depends on y.

$$H(x,y) = \sum_{n} C_n(1,y) x^n = \sum_{n} e^{\lambda(y)n + o(n)} x^n$$

• H(x, y) will be singular at $x = x_c(y) = \exp[-\lambda(y)]$, and near $x_c(y)$

$$H(x, y) \sim rac{A}{[x_c(y) - x]^{\gamma(y)}}$$

where $\gamma(y)$ depends on y.

- At y = 1 the series is well behaved. The critical point $= 1/\mu$, the exponent is $\gamma_1 = 61/64$ (TASAW), as one expects.
- For y < 1, $x_c(y)$ remains unchanged at $1/\mu$, but the exponent estimates decrease rapidly with y, settling at at $\gamma_{1,1} = -3/16 = -0.1875$.
- For y > 1, $x_c(y)$ mon. dec. as y inc. The sing. is a simple pole.
- The analysis is exquisitely sensitive to the value of y near y = 1. This gives us a method for confirming that $y_c = 1$.
- $1/\mu = 0.379052277751$, with uncertainty in the last digit. We vary our estimate of y_c until we get agreement with $1/\mu$.
- This turns out to be at $y_c = 0.9999995 \pm 0.0000005$.
- Now $y_c \ge 1$, plus the numerical result, suggests $y_c = 1$.
- In summary: For $y > y_c$, the exponent is 1. For $y = y_c$ it is $\gamma_1 = 61/64$, and is $\gamma_{1,1} = -3/16$ for $y < y_c$.

- At y = 1 the series is well behaved. The critical point $= 1/\mu$, the exponent is $\gamma_1 = 61/64$ (TASAW), as one expects.
- For y < 1, $x_c(y)$ remains unchanged at $1/\mu$, but the exponent estimates decrease rapidly with *y*, settling at at $\gamma_{1,1} = -3/16 = -0.1875$.
- For y > 1, $x_c(y)$ mon. dec. as y inc. The sing. is a simple pole.
- The analysis is exquisitely sensitive to the value of y near y = 1. This gives us a method for confirming that $y_c = 1$.
- $1/\mu = 0.379052277751$, with uncertainty in the last digit. We vary our estimate of y_c until we get agreement with $1/\mu$.
- This turns out to be at $y_c = 0.9999995 \pm 0.0000005$.
- Now $y_c \ge 1$, plus the numerical result, suggests $y_c = 1$.
- In summary: For $y > y_c$, the exponent is 1. For $y = y_c$ it is $\gamma_1 = 61/64$, and is $\gamma_{1,1} = -3/16$ for $y < y_c$.

- At y = 1 the series is well behaved. The critical point $= 1/\mu$, the exponent is $\gamma_1 = 61/64$ (TASAW), as one expects.
- For y < 1, $x_c(y)$ remains unchanged at $1/\mu$, but the exponent estimates decrease rapidly with *y*, settling at at $\gamma_{1,1} = -3/16 = -0.1875$.
- For y > 1, $x_c(y)$ mon. dec. as y inc. The sing. is a simple pole.
- The analysis is exquisitely sensitive to the value of y near y = 1. This gives us a method for confirming that $y_c = 1$.
- $1/\mu = 0.379052277751$, with uncertainty in the last digit. We vary our estimate of y_c until we get agreement with $1/\mu$.
- This turns out to be at $y_c = 0.9999995 \pm 0.0000005$.
- Now $y_c \ge 1$, plus the numerical result, suggests $y_c = 1$.
- In summary: For $y > y_c$, the exponent is 1. For $y = y_c$ it is $\gamma_1 = 61/64$, and is $\gamma_{1,1} = -3/16$ for $y < y_c$.

- At y = 1 the series is well behaved. The critical point $= 1/\mu$, the exponent is $\gamma_1 = 61/64$ (TASAW), as one expects.
- For y < 1, $x_c(y)$ remains unchanged at $1/\mu$, but the exponent estimates decrease rapidly with y, settling at at $\gamma_{1,1} = -3/16 = -0.1875$.
- For y > 1, $x_c(y)$ mon. dec. as y inc. The sing. is a simple pole.
- The analysis is exquisitely sensitive to the value of y near y = 1. This gives us a method for confirming that $y_c = 1$.
- $1/\mu = 0.379052277751$, with uncertainty in the last digit. We vary our estimate of y_c until we get agreement with $1/\mu$.
- This turns out to be at $y_c = 0.9999995 \pm 0.0000005$.
- Now $y_c \ge 1$, plus the numerical result, suggests $y_c = 1$.
- In summary: For $y > y_c$, the exponent is 1. For $y = y_c$ it is $\gamma_1 = 61/64$, and is $\gamma_{1,1} = -3/16$ for $y < y_c$.

- At y = 1 the series is well behaved. The critical point $= 1/\mu$, the exponent is $\gamma_1 = 61/64$ (TASAW), as one expects.
- For y < 1, $x_c(y)$ remains unchanged at $1/\mu$, but the exponent estimates decrease rapidly with *y*, settling at at $\gamma_{1,1} = -3/16 = -0.1875$.
- For y > 1, $x_c(y)$ mon. dec. as y inc. The sing. is a simple pole.
- The analysis is exquisitely sensitive to the value of y near y = 1. This gives us a method for confirming that $y_c = 1$.
- $1/\mu = 0.379052277751$, with uncertainty in the last digit. We vary our estimate of y_c until we get agreement with $1/\mu$.
- This turns out to be at $y_c = 0.9999995 \pm 0.0000005$.
- Now $y_c \ge 1$, plus the numerical result, suggests $y_c = 1$.
- In summary: For $y > y_c$, the exponent is 1. For $y = y_c$ it is $\gamma_1 = 61/64$, and is $\gamma_{1,1} = -3/16$ for $y < y_c$.

- At y = 1 the series is well behaved. The critical point $= 1/\mu$, the exponent is $\gamma_1 = 61/64$ (TASAW), as one expects.
- For y < 1, $x_c(y)$ remains unchanged at $1/\mu$, but the exponent estimates decrease rapidly with *y*, settling at at $\gamma_{1,1} = -3/16 = -0.1875$.
- For y > 1, $x_c(y)$ mon. dec. as y inc. The sing. is a simple pole.
- The analysis is exquisitely sensitive to the value of y near y = 1. This gives us a method for confirming that $y_c = 1$.
- $1/\mu = 0.379052277751$, with uncertainty in the last digit. We vary our estimate of y_c until we get agreement with $1/\mu$.
- This turns out to be at $y_c = 0.9999995 \pm 0.0000005$.
- Now $y_c \ge 1$, plus the numerical result, suggests $y_c = 1$.
- In summary: For $y > y_c$, the exponent is 1. For $y = y_c$ it is $\gamma_1 = 61/64$, and is $\gamma_{1,1} = -3/16$ for $y < y_c$.

- At y = 1 the series is well behaved. The critical point $= 1/\mu$, the exponent is $\gamma_1 = 61/64$ (TASAW), as one expects.
- For y < 1, $x_c(y)$ remains unchanged at $1/\mu$, but the exponent estimates decrease rapidly with *y*, settling at at $\gamma_{1,1} = -3/16 = -0.1875$.
- For y > 1, $x_c(y)$ mon. dec. as y inc. The sing. is a simple pole.
- The analysis is exquisitely sensitive to the value of y near y = 1. This gives us a method for confirming that $y_c = 1$.
- $1/\mu = 0.379052277751$, with uncertainty in the last digit. We vary our estimate of y_c until we get agreement with $1/\mu$.
- This turns out to be at $y_c = 0.9999995 \pm 0.0000005$.
- Now $y_c \ge 1$, plus the numerical result, suggests $y_c = 1$.
- In summary: For $y > y_c$, the exponent is 1. For $y = y_c$ it is $\gamma_1 = 61/64$, and is $\gamma_{1,1} = -3/16$ for $y < y_c$.

- At y = 1 the series is well behaved. The critical point $= 1/\mu$, the exponent is $\gamma_1 = 61/64$ (TASAW), as one expects.
- For y < 1, $x_c(y)$ remains unchanged at $1/\mu$, but the exponent estimates decrease rapidly with *y*, settling at at $\gamma_{1,1} = -3/16 = -0.1875$.
- For y > 1, $x_c(y)$ mon. dec. as y inc. The sing. is a simple pole.
- The analysis is exquisitely sensitive to the value of y near y = 1. This gives us a method for confirming that $y_c = 1$.
- $1/\mu = 0.379052277751$, with uncertainty in the last digit. We vary our estimate of y_c until we get agreement with $1/\mu$.
- This turns out to be at $y_c = 0.9999995 \pm 0.0000005$.
- Now $y_c \ge 1$, plus the numerical result, suggests $y_c = 1$.
- In summary: For $y > y_c$, the exponent is 1. For $y = y_c$ it is $\gamma_1 = 61/64$, and is $\gamma_{1,1} = -3/16$ for $y < y_c$.

ANALYSIS. NO APPLIED FORCE, y = 1

$$K(x,a) = \sum_{n} C_n(a,1)x^n = \sum_{n} e^{\kappa(a)n + o(n)}x^n.$$

• K(x, a) will be singular at $x = x_c(a) = \exp[-\kappa(a)]$ and near $x_c(a)$

$$K(x,a) \sim rac{B}{[x_c(a)-x]^{\gamma(a)}}$$

where $\gamma(a)$ depends on *a*.

ANALYSIS. NO APPLIED FORCE, y = 1

$$K(x,a) = \sum_{n} C_n(a,1)x^n = \sum_{n} e^{\kappa(a)n + o(n)}x^n.$$

• K(x, a) will be singular at $x = x_c(a) = \exp[-\kappa(a)]$ and near $x_c(a)$ K(x, a) = B

$$K(x,a) \sim \frac{B}{[x_c(a) - x]^{\gamma(a)}}$$

where $\gamma(a)$ depends on *a*.

- We have analysed the series using differential approximants when *y* = 1, corresponding to no applied force.
- For $\log a < 0$, $\kappa(a) = \log \mu$ while for $\log a > 0$ $\max[\log \mu, \log a] \le \kappa(a) \le \log \mu + \log a$.

Figure: The free energy $\kappa(a)$, with bounds.

- We have analysed the series using differential approximants when y = 1, corresponding to no applied force.
- For $\log a < 0$, $\kappa(a) = \log \mu$ while for $\log a > 0$ $\max[\log \mu, \log a] \le \kappa(a) \le \log \mu + \log a$.

Figure: The free energy $\kappa(a)$, with bounds.

No applied force, $y = 1 - \text{find } a_c$.

• The best exisiting estimate of a_c is $a_c = 1.77564$ (BGJ12).

- The series analysis is exquisitely sensitive to the value of a near a_c . This gives us a method for estimating a_c .
- $1/\mu = 0.379052277751$, with uncertainty in the last digit. We vary our estimate of a_c until we get agreement with $1/\mu$.
- This turns out to be at $a_c = 1.775615 \pm 0.000005$.
- At a_c the exponent is 1.4539.
- The exponent γ_1^{sp} for the special transition is conjectured to be 93/64 = 1.453125, which is satisfyingly close.

- The best exisiting estimate of a_c is $a_c = 1.77564$ (BGJ12).
- The series analysis is exquisitely sensitive to the value of *a* near a_c . This gives us a method for estimating a_c .
- $1/\mu = 0.379052277751$, with uncertainty in the last digit. We vary our estimate of a_c until we get agreement with $1/\mu$.
- This turns out to be at $a_c = 1.775615 \pm 0.000005$.
- At a_c the exponent is 1.4539.
- The exponent γ_1^{sp} for the special transition is conjectured to be 93/64 = 1.453125, which is satisfyingly close.

- The best exisiting estimate of a_c is $a_c = 1.77564$ (BGJ12).
- The series analysis is exquisitely sensitive to the value of a near a_c . This gives us a method for estimating a_c .
- $1/\mu = 0.379052277751$, with uncertainty in the last digit. We vary our estimate of a_c until we get agreement with $1/\mu$.
- This turns out to be at $a_c = 1.775615 \pm 0.000005$.
- At a_c the exponent is 1.4539.
- The exponent γ_1^{sp} for the special transition is conjectured to be 93/64 = 1.453125, which is satisfyingly close.

- The best exisiting estimate of a_c is $a_c = 1.77564$ (BGJ12).
- The series analysis is exquisitely sensitive to the value of a near a_c . This gives us a method for estimating a_c .
- $1/\mu = 0.379052277751$, with uncertainty in the last digit. We vary our estimate of a_c until we get agreement with $1/\mu$.
- This turns out to be at $a_c = 1.775615 \pm 0.000005$.
- At a_c the exponent is 1.4539.
- The exponent γ_1^{sp} for the special transition is conjectured to be 93/64 = 1.453125, which is satisfyingly close.

- The best exisiting estimate of a_c is $a_c = 1.77564$ (BGJ12).
- The series analysis is exquisitely sensitive to the value of a near a_c . This gives us a method for estimating a_c .
- $1/\mu = 0.379052277751$, with uncertainty in the last digit. We vary our estimate of a_c until we get agreement with $1/\mu$.
- This turns out to be at $a_c = 1.775615 \pm 0.000005$.
- At a_c the exponent is 1.4539.
- The exponent γ_1^{sp} for the special transition is conjectured to be 93/64 = 1.453125, which is satisfyingly close.

- The best exisiting estimate of a_c is $a_c = 1.77564$ (BGJ12).
- The series analysis is exquisitely sensitive to the value of *a* near a_c . This gives us a method for estimating a_c .
- $1/\mu = 0.379052277751$, with uncertainty in the last digit. We vary our estimate of a_c until we get agreement with $1/\mu$.
- This turns out to be at $a_c = 1.775615 \pm 0.000005$.
- At a_c the exponent is 1.4539.
- The exponent γ_1^{sp} for the special transition is conjectured to be 93/64 = 1.453125, which is satisfyingly close.

- For $a > a_c$, $x_c(a)$ is monotonically decreasing as *a* increases. The singularity is a simple pole.
- For $a < a_c$, $x_c(a)$ remains unchanged at $1/\mu$, but the exponent estimates decrease rapidly with a, settling at at $\gamma_1 = 61/64$.
- Finally, with y = 0 and $a = a_c$ we expect loops at the special transition, with exponent $\gamma_{11}^{sp} = 13/16 = 0.8125$. Our estimate is 0.816 ± 0.006 .
- In summary: For $a > a_c$, the exponent is 1. For $a = a_c$ it is $\gamma_1^{sp} = 93/64$, and is $\gamma_1 = 61/64$ for $a < a_c$.

- For $a > a_c$, $x_c(a)$ is monotonically decreasing as *a* increases. The singularity is a simple pole.
- For $a < a_c$, $x_c(a)$ remains unchanged at $1/\mu$, but the exponent estimates decrease rapidly with a, settling at at $\gamma_1 = 61/64$.
- Finally, with y = 0 and $a = a_c$ we expect loops at the special transition, with exponent $\gamma_{11}^{sp} = 13/16 = 0.8125$. Our estimate is 0.816 ± 0.006 .
- In summary: For $a > a_c$, the exponent is 1. For $a = a_c$ it is $\gamma_1^{sp} = 93/64$, and is $\gamma_1 = 61/64$ for $a < a_c$.

- For $a > a_c$, $x_c(a)$ is monotonically decreasing as *a* increases. The singularity is a simple pole.
- For $a < a_c$, $x_c(a)$ remains unchanged at $1/\mu$, but the exponent estimates decrease rapidly with *a*, settling at at $\gamma_1 = 61/64$.
- Finally, with y = 0 and $a = a_c$ we expect loops at the special transition, with exponent $\gamma_{11}^{sp} = 13/16 = 0.8125$. Our estimate is 0.816 ± 0.006 .
- In summary: For $a > a_c$, the exponent is 1. For $a = a_c$ it is $\gamma_1^{sp} = 93/64$, and is $\gamma_1 = 61/64$ for $a < a_c$.

- For $a > a_c$, $x_c(a)$ is monotonically decreasing as *a* increases. The singularity is a simple pole.
- For $a < a_c$, $x_c(a)$ remains unchanged at $1/\mu$, but the exponent estimates decrease rapidly with *a*, settling at at $\gamma_1 = 61/64$.
- Finally, with y = 0 and $a = a_c$ we expect loops at the special transition, with exponent $\gamma_{11}^{sp} = 13/16 = 0.8125$. Our estimate is 0.816 ± 0.006 .
- In summary: For $a > a_c$, the exponent is 1. For $a = a_c$ it is $\gamma_1^{sp} = 93/64$, and is $\gamma_1 = 61/64$ for $a < a_c$.

- Recall that $\psi(a, y) = \kappa(a)$ throughout the adsorbed phase and $\psi(a, y) = \lambda(y)$ throughout the ballistic phase.
- The phase boundary is the locus of points where

 $\kappa(a) = \lambda(y)$

- For a given a we calculated κ(a) as above, then found the value of y s.t. λ(y) = κ(a) by interpolation.
- More precisely, we calculated $y = f_1(x_c)$ by using the program Eureqa on our (y, x_c) data, and $a = f_2(x_c)$ from our (a, x_c) data.
- Thus for any x_c , we could calculate $(a(x_c), y(x_c))$.

- Recall that $\psi(a, y) = \kappa(a)$ throughout the adsorbed phase and $\psi(a, y) = \lambda(y)$ throughout the ballistic phase.
- The phase boundary is the locus of points where

 $\kappa(a) = \lambda(y)$

- For a given a we calculated κ(a) as above, then found the value of y s.t. λ(y) = κ(a) by interpolation.
- More precisely, we calculated $y = f_1(x_c)$ by using the program Eureqa on our (y, x_c) data, and $a = f_2(x_c)$ from our (a, x_c) data.
- Thus for any x_c , we could calculate $(a(x_c), y(x_c))$.

- Recall that $\psi(a, y) = \kappa(a)$ throughout the adsorbed phase and $\psi(a, y) = \lambda(y)$ throughout the ballistic phase.
- The phase boundary is the locus of points where

 $\kappa(a) = \lambda(y)$

- For a given a we calculated κ(a) as above, then found the value of y s.t. λ(y) = κ(a) by interpolation.
- More precisely, we calculated $y = f_1(x_c)$ by using the program Eureqa on our (y, x_c) data, and $a = f_2(x_c)$ from our (a, x_c) data.
- Thus for any x_c , we could calculate $(a(x_c), y(x_c))$.

- Recall that $\psi(a, y) = \kappa(a)$ throughout the adsorbed phase and $\psi(a, y) = \lambda(y)$ throughout the ballistic phase.
- The phase boundary is the locus of points where

 $\kappa(a) = \lambda(y)$

- For a given a we calculated κ(a) as above, then found the value of y s.t. λ(y) = κ(a) by interpolation.
- More precisely, we calculated $y = f_1(x_c)$ by using the program Eureqa on our (y, x_c) data, and $a = f_2(x_c)$ from our (a, x_c) data.
- Thus for any x_c , we could calculate $(a(x_c), y(x_c))$.

- Recall that $\psi(a, y) = \kappa(a)$ throughout the adsorbed phase and $\psi(a, y) = \lambda(y)$ throughout the ballistic phase.
- The phase boundary is the locus of points where

 $\kappa(a) = \lambda(y)$

- For a given a we calculated κ(a) as above, then found the value of y s.t. λ(y) = κ(a) by interpolation.
- More precisely, we calculated $y = f_1(x_c)$ by using the program Eureqa on our (y, x_c) data, and $a = f_2(x_c)$ from our (a, x_c) data.
- Thus for any x_c , we could calculate $(a(x_c), y(x_c))$.

Figure: The phase boundary between the adsorbed and ballistic phases in the $(\log a, \log y)$ -plane.

PHYSICAL VARIABLES

• We can switch to physical variables (force and temperature) using $a = \exp[-\epsilon/k_BT]$ and $y = \exp[f/k_BT]$.

• W.l.o.g we set $\epsilon = -1$ and $k_B = 1$.

• f(T = 0) = 1, and the slope at T = 0 is zero, (vRW2013). The curve is monotone decreasing, with no re-entrance.

Pulling self-avoiding walks from a surface.

PHYSICAL VARIABLES

- We can switch to physical variables (force and temperature) using $a = \exp[-\epsilon/k_BT]$ and $y = \exp[f/k_BT]$.
- W.l.o.g we set $\epsilon = -1$ and $k_B = 1$.

• f(T = 0) = 1, and the slope at T = 0 is zero, (vRW2013). The curve is monotone decreasing, with no re-entrance.

Pulling self-avoiding walks from a surface.

PHYSICAL VARIABLES

- We can switch to physical variables (force and temperature) using $a = \exp[-\epsilon/k_BT]$ and $y = \exp[f/k_BT]$.
- W.l.o.g we set $\epsilon = -1$ and $k_B = 1$.

• f(T = 0) = 1, and the slope at T = 0 is zero, (vRW2013). The curve is monotone decreasing, with no re-entrance.

Pulling self-avoiding walks from a surface.

THE NATURE OF THE PHASE TRANSITION ON THE PHASE BOUNDARY.

- The phase transition from ballistic to adsorbed is first-order. **Theorem** The free energy $\psi(a, y)$ is not differentiable at the phase boundary between the ballistic and adsorbed phases, except perhaps at the triple point (a_c^o, y_c^o) .
- At the phase boundary we find a double pole.
- That is, at any point (a_c, y_c) , the series is singular at $x_c(a_c, y_c)$ with a double pole.
- The same situation is found with a Dyck path model and a Motzkin path model.

THE NATURE OF THE PHASE TRANSITION ON THE PHASE BOUNDARY.

- The phase transition from ballistic to adsorbed is first-order. **Theorem** The free energy $\psi(a, y)$ is not differentiable at the phase boundary between the ballistic and adsorbed phases, except perhaps at the triple point (a_c^o, y_c^o) .
- At the phase boundary we find a double pole.
- That is, at any point (a_c, y_c) , the series is singular at $x_c(a_c, y_c)$ with a double pole.
- The same situation is found with a Dyck path model and a Motzkin path model.
THE NATURE OF THE PHASE TRANSITION ON THE PHASE BOUNDARY.

- The phase transition from ballistic to adsorbed is first-order. **Theorem** The free energy $\psi(a, y)$ is not differentiable at the phase boundary between the ballistic and adsorbed phases, except perhaps at the triple point (a_c^o, y_c^o) .
- At the phase boundary we find a double pole.
- That is, at any point (a_c, y_c) , the series is singular at $x_c(a_c, y_c)$ with a double pole.
- The same situation is found with a Dyck path model and a Motzkin path model.

THE NATURE OF THE PHASE TRANSITION ON THE PHASE BOUNDARY.

- The phase transition from ballistic to adsorbed is first-order. **Theorem** The free energy $\psi(a, y)$ is not differentiable at the phase boundary between the ballistic and adsorbed phases, except perhaps at the triple point (a_c^o, y_c^o) .
- At the phase boundary we find a double pole.
- That is, at any point (a_c, y_c) , the series is singular at $x_c(a_c, y_c)$ with a double pole.
- The same situation is found with a Dyck path model and a Motzkin path model.

THE NATURE OF THE PHASE TRANSITION ON THE PHASE BOUNDARY.

- The phase transition from ballistic to adsorbed is first-order. **Theorem** The free energy $\psi(a, y)$ is not differentiable at the phase boundary between the ballistic and adsorbed phases, except perhaps at the triple point (a_c^o, y_c^o) .
- At the phase boundary we find a double pole.
- That is, at any point (a_c, y_c) , the series is singular at $x_c(a_c, y_c)$ with a double pole.
- The same situation is found with a Dyck path model and a Motzkin path model.

- We have considered a SAW model of polymer adsorption at an impenetrable surface where
 - the walk is terminally attached to the surface,
 - 2) the walk interacts with the surface, and
 - 3 a force applied normal to the surface at the last vertex of the walk.
- For the square lattice we have used series analysis techniques to investigate the phases and phase boundaries for the system.

- We have considered a SAW model of polymer adsorption at an impenetrable surface where
 - the walk is terminally attached to the surface,
 - 2) the walk interacts with the surface, and
 - (a) a force applied normal to the surface at the last vertex of the walk.
- For the square lattice we have used series analysis techniques to investigate the phases and phase boundaries for the system.

• There are three phases,

- a free phase where the walk is desorbed but not ballistic,
- an adsorbed phase where the walk is adsorbed at the surface
- and a ballistic phase where the walk is desorbed but ballistic.
- We have located the phase boundaries and proved that the phase transition from the adsorbed to the ballistic phase is first order.
- In addition we have very precise values for the critical points for adsorption without a force and for the free to ballistic transition with no surface interaction.

CONCLUSION

- There are three phases,
- a free phase where the walk is desorbed but not ballistic,
- an adsorbed phase where the walk is adsorbed at the surface
- and a ballistic phase where the walk is desorbed but ballistic.
- We have located the phase boundaries and proved that the phase transition from the adsorbed to the ballistic phase is first order.
- In addition we have very precise values for the critical points for adsorption without a force and for the free to ballistic transition with no surface interaction.

CONCLUSION

- There are three phases,
- a free phase where the walk is desorbed but not ballistic,
- an adsorbed phase where the walk is adsorbed at the surface
- and a ballistic phase where the walk is desorbed but ballistic.
- We have located the phase boundaries and proved that the phase transition from the adsorbed to the ballistic phase is first order.
- In addition we have very precise values for the critical points for adsorption without a force and for the free to ballistic transition with no surface interaction.

- There are three phases,
- a free phase where the walk is desorbed but not ballistic,
- an adsorbed phase where the walk is adsorbed at the surface
- and a ballistic phase where the walk is desorbed but ballistic.
- We have located the phase boundaries and proved that the phase transition from the adsorbed to the ballistic phase is first order.
- In addition we have very precise values for the critical points for adsorption without a force and for the free to ballistic transition with no surface interaction.

- There are three phases,
- a free phase where the walk is desorbed but not ballistic,
- an adsorbed phase where the walk is adsorbed at the surface
- and a ballistic phase where the walk is desorbed but ballistic.
- We have located the phase boundaries and proved that the phase transition from the adsorbed to the ballistic phase is first order.
- In addition we have very precise values for the critical points for adsorption without a force and for the free to ballistic transition with no surface interaction.

- There are three phases,
- a free phase where the walk is desorbed but not ballistic,
- an adsorbed phase where the walk is adsorbed at the surface
- and a ballistic phase where the walk is desorbed but ballistic.
- We have located the phase boundaries and proved that the phase transition from the adsorbed to the ballistic phase is first order.
- In addition we have very precise values for the critical points for adsorption without a force and for the free to ballistic transition with no surface interaction.