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INTRODUCTION

Techniques such as AFM allow adsorbed polymer molecules to
be pulled off a surface. Need theories of adsorbed polymers
subject to a force.
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PREVIOUS WORK

Earlier work focussed on random, directed and partially directed
walk models. We consider the more realistic SAW model.

Recently, vR & W established the existence of a phase boundary
between an adsorbed phase and a ballistic phase when the force
is applied normal to the surface.

We give the first proof that this phase transition is first-order.
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OUTLINE OF THIS WORK

We use exact enumeration and series analysis techniques to
identify this phase boundary for SAWs on the square lattice.

We give precise estimates of various critical points.

And various critical exponents.

A combination of three ingredients

Ne rigorous results.

Faster algorithms giving extended series data

New numerical techniques.
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14 STEPS, 3 CONTACTS, END-POINT AT HEIGHT 2 =⇒
x14a3y2.

f

1
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NOTATION AND DEFINITIONS

Square lattice: vertex coordinates (xi, yi), i = 0, 1, 2, . . . n.

cn is the number of n-step SAWs.

lim
n→∞

n−1 log cn = logµ

exists (HM54), where µ is the growth constant of SAWs.

A positive walk is a SAW that starts at the origin and has yi ≥ 0
for all 0 ≤ i ≤ n. Cardinality c+n .

lim
n→∞

n−1 log c+n = logµ. (W75)

Vertices of a positive walk with yi = 0 are visits to the surface,
(by convention we exclude the vertex at the origin).
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PARTITION FUNCTION AND VARIABLES a AND y

The walk has height h if yn = h.

c+n (v, h) is card. of positive walks of n steps, v visits, height h.

The partition function is

Cn(a, y) =
∑
v,h

c+n (v, h)a
vyh. (1)

ε is the energy associated with a visit and f is the force applied
normally at the last vertex,

a = exp[−ε/kBT] and y = exp[f/kBT] (2)

No force: y = 1 and the partition function is Cn(a, 1),

No surface interaction: a = 1. The partition function is Cn(1, y).
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EMBARRASINGLY FEW RIGOROUS RESULTS

HTW1982 proved (no force)

lim
n→∞

n−1 log Cn(a, 1) ≡ κ(a)

exists. κ(a) is a convex function of log a.

There exists a = ao
c > 1 such that κ(a) = logµ for a ≤ ao

c .
κ(a) is strictly monotone increasing for a > ao

c .

So κ(a) is non-analytic at a = ao
c .

For a < ao
c , 〈v〉 = o(n). For a > ao

c , (the adsorbed phase,)

lim
n→∞

〈v〉
n
> 0
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EMBARRASINGLY FEW RIGOROUS RESULTS

Similarly
lim

n→∞
n−1 log Cn(1, y) ≡ λ(y)

exists and λ(y) is a convex function of log y.

There is a critical point yo
c ≥ 1 such that λ(y) = logµ for y ≤ yo

c
and λ(y) is strictly monotone increasing for y > yo

c (R09).

At yo
c : Transition from a free phase, (〈h〉 = o(n)) to a ballistic

phase where

lim
n→∞

〈h〉
n
> 0.

There are good reasons to believe that yo
c = 1.
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MORE GENERAL MODEL

For the two variable model, vRW2013 proved the existence of
the free energy

ψ(a, y) = lim
n→∞

n−1 log Cn(a, y).

Further, ψ(a, y) is a convex function of log a and log y and

ψ(a, y) = max[κ(a), λ(y)].

This implies that there is a free phase when a < ao
c and y < yo

c
where 〈v〉 = o(n) and 〈h〉 = o(n), and a strictly monotone curve
y = yc(a) through the point (ao

c , y
o
c) separating two phases:

1 an adsorbed phase when a > ao
c and y < yc(a), and

2 a ballistic phase when y > max[yo
c , yc(a)].

Moreover, yc(a) is asymptotic to y = a as a→∞. (SQ).
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SCHEMATIC PHASE DIAGRAM. (VAN RENSBURG &
WHITTINGTON)
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IMPROVED ALGORITHM

The algorithm is based on the CEG (1993) SAW algorithm.

The TM algorithm keeps track of the way partially constructed
SAWs are connected to the left of a cut-line.

Recently Clisby and Jensen (2012) devised a more efficient
implementation of the algorithm for SAPs.

They kept track of how a partially constructed SAP must connect
up to the right of the cut-line.

Jensen recently extended this approach to SAWs.
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GEOMETRY OF RECTANGLE

We count the number of walks in rectangles W × L unit cells.

A spanning walk has length at least W + L steps.

We add contributions from all rectangles of width W ≤ Wmax,
and length W ≤ L ≤ 2Wmax −W + 1

This gives the number of walks for an infinite lattice correctly up
to length N = 2Wmax + 1.
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EXAMPLE OF A SAW IN A RECTANGLE

Figure: An example of a self-avoiding walk on a 10× 8
rectangle. The walk is tethered to the surface, has the
end-point at h = 5 and four vertices (other than the
start-point) in the surface.

Basic idea: Any SAW has exactly two end-points.
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OUTLINE OF THE ALGORITHM

Cutting the SAW by a vertical line (dashed), the SAW is broken into
pieces to the left and right of the cut-line. On either side of the line
are a set of arcs connecting two edges on the cut-line and at most two
line pieces connected to the end-points of the SAW.

Figure: Examples of cut-lines through the SAW such that
the signature of the incomplete section to the right of the
cut-line (black lines) contains, respectively, two, one and no
free edges.
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MOVING THROUGH THE RECTANGLE–BUILDING THE TM

At every stage a configuration of occupied edges along the
cut-line can be described in two ways.

The edges are connected forming either arcs or line pieces to the
left or right of the cut-line.

Moving the cut-line from left to right we can keep track of how
the pieces are connected to the left (the past). This is the
traditional TM.

Tracking how edges can be connected to the right of the cut-line
so as to form a valid SAW (the future), is the basis of the new
algorithm.

Looking at a given SAW and cut-line, the partial SAW to the
right of this line consists of a number of arcs connecting two
edges and at most two free edges which are not connected to any
occupied edge on the current cut-line.
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edges and at most two free edges which are not connected to any
occupied edge on the current cut-line.
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LABELING RULES

Any configuration along the cut-line can thus be represented by a
set of edge states {σi}, where

σi =


0 empty edge,
1 lower edge,
2 upper edge.
3 free edge.

Reading from bottom to top, the signature S along the cut-lines
of the SAW above are, respectively, S = {030010230},
S = {300000000}, and S = {102001002}.
Since crossings are not permitted this encoding uniquely
describes how the occupied edges are connected.
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UPDATING AFTER A BOUNDARY MOVE

The most efficient implementation of the algorithm involves
moving the cut-line so as to build up the lattice vertex by vertex.

The sum over all contributing graphs is calculated as the cut-line
is moved through the lattice.

For each configuration of edges we keep a generating function
GS for partial walks with signature S.

Clearly, GS is a polynomial GS(x, a) where x, a is conjugate to
the number of steps/surface vertices.

Update: Each source signature S (before the boundary move)
generates a few new target signatures S′ as k = 0, 1 or 2 new
edges are inserted with m = 0 or 1 surface visits.

This leads to the update GS′(x, a) = GS′(x, a) + xkamGS(x, a).

Signatures are discarded after processing.
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MODIFICATIONS FOR THIS PROBLEM

We force the SAW to have a free end at the top of the rectangle.

We must consider all rectangles with W ≤ n + 1.

The number of signatures grows exponentially with W. Hence
we must minimize the length of the cut-line for optimality.

The rectangles are broken into two sub-sets, L ≥ W and L < W.

For L < W rectangles have start-point on the left-most border.

To keep track of the height h, the end-point must be in a row h
units from the surface, Then repeat for all h.

We calculated the number of SAW up to length n = 59.

Parallel calculations were performed using up to 16 processors,
up to 40GB of memory and just under 6000 CPU hours
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ANALYSIS. NO SURFACE INTERACTION, a = 1

We have anaysed the series using differential approximants when
a = 1, corresponding to no surface interaction.
For log y < 0, λ(y) = logµ while for log y > 0,
max[logµ, log y] ≤ λ(y) ≤ logµ+ log y.
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Figure: The free energy λ(y), with bounds
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NO SURFACE INTERACTION, a = 1 – MORE DETAILS

H(x, y) =
∑

n

Cn(1, y)xn =
∑

n

eλ(y)n+o(n)xn

H(x, y) will be singular at x = xc(y) = exp[−λ(y)], and near
xc(y)

H(x, y) ∼ A
[xc(y)− x]γ(y)

where γ(y) depends on y.

Pulling self-avoiding walks from a surface. Tony Guttmann



MIN2Col

NO SURFACE INTERACTION, a = 1 – MORE DETAILS

H(x, y) =
∑

n

Cn(1, y)xn =
∑

n

eλ(y)n+o(n)xn

H(x, y) will be singular at x = xc(y) = exp[−λ(y)], and near
xc(y)

H(x, y) ∼ A
[xc(y)− x]γ(y)

where γ(y) depends on y.

Pulling self-avoiding walks from a surface. Tony Guttmann



MIN2Col

NO SURFACE INTERACTION, a = 1 – STILL MORE

At y = 1 the series is well behaved. The critical point = 1/µ, the
exponent is γ1 = 61/64 (TASAW), as one expects.
For y < 1 , xc(y) remains unchanged at 1/µ, but the exponent
estimates decrease rapidly with y, settling at at
γ1,1 = −3/16 = −0.1875.
For y > 1, xc(y) mon. dec. as y inc. The sing. is a simple pole.
The analysis is exquisitely sensitive to the value of y near y = 1.
This gives us a method for confirming that yc = 1.
1/µ = 0.379052277751, with uncertainty in the last digit. We
vary our estimate of yc until we get agreement with 1/µ.
This turns out to be at yc = 0.9999995± 0.0000005.
Now yc ≥ 1, plus the numerical result, suggests yc = 1.
In summary: For y > yc, the exponent is 1. For y = yc it is
γ1 = 61/64, and is γ1,1 = −3/16 for y < yc.
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ANALYSIS. NO APPLIED FORCE, y = 1

K(x, a) =
∑

n

Cn(a, 1)xn =
∑

n

eκ(a)n+o(n)xn.

K(x, a) will be singular at x = xc(a) = exp[−κ(a)] and near
xc(a)

K(x, a) ∼ B
[xc(a)− x]γ(a)

where γ(a) depends on a.
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NO APPLIED FORCE, y = 1 – MORE

We have analysed the series using differential approximants
when y = 1, corresponding to no applied force.
For log a < 0, κ(a) = logµ while for log a > 0
max[logµ, log a] ≤ κ(a) ≤ logµ+ log a.
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Figure: The free energy κ(a), with bounds.
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For log a < 0, κ(a) = logµ while for log a > 0
max[logµ, log a] ≤ κ(a) ≤ logµ+ log a.
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NO APPLIED FORCE, y = 1 – FIND ac.

The best exisiting estimate of ac is ac = 1.77564 (BGJ12).

The series analysis is exquisitely sensitive to the value of a near
ac. This gives us a method for estimating ac.

1/µ = 0.379052277751, with uncertainty in the last digit. We
vary our estimate of ac until we get agreement with 1/µ.

This turns out to be at ac = 1.775615± 0.000005 .

At ac the exponent is 1.4539.

The exponent γsp
1 for the special transition is conjectured to be

93/64 = 1.453125, which is satisfyingly close.

Pulling self-avoiding walks from a surface. Tony Guttmann



MIN2Col

NO APPLIED FORCE, y = 1 – FIND ac.

The best exisiting estimate of ac is ac = 1.77564 (BGJ12).

The series analysis is exquisitely sensitive to the value of a near
ac. This gives us a method for estimating ac.

1/µ = 0.379052277751, with uncertainty in the last digit. We
vary our estimate of ac until we get agreement with 1/µ.

This turns out to be at ac = 1.775615± 0.000005 .

At ac the exponent is 1.4539.

The exponent γsp
1 for the special transition is conjectured to be

93/64 = 1.453125, which is satisfyingly close.

Pulling self-avoiding walks from a surface. Tony Guttmann



MIN2Col

NO APPLIED FORCE, y = 1 – FIND ac.

The best exisiting estimate of ac is ac = 1.77564 (BGJ12).

The series analysis is exquisitely sensitive to the value of a near
ac. This gives us a method for estimating ac.

1/µ = 0.379052277751, with uncertainty in the last digit. We
vary our estimate of ac until we get agreement with 1/µ.

This turns out to be at ac = 1.775615± 0.000005 .

At ac the exponent is 1.4539.

The exponent γsp
1 for the special transition is conjectured to be

93/64 = 1.453125, which is satisfyingly close.

Pulling self-avoiding walks from a surface. Tony Guttmann



MIN2Col

NO APPLIED FORCE, y = 1 – FIND ac.

The best exisiting estimate of ac is ac = 1.77564 (BGJ12).

The series analysis is exquisitely sensitive to the value of a near
ac. This gives us a method for estimating ac.

1/µ = 0.379052277751, with uncertainty in the last digit. We
vary our estimate of ac until we get agreement with 1/µ.

This turns out to be at ac = 1.775615± 0.000005 .

At ac the exponent is 1.4539.

The exponent γsp
1 for the special transition is conjectured to be

93/64 = 1.453125, which is satisfyingly close.

Pulling self-avoiding walks from a surface. Tony Guttmann



MIN2Col

NO APPLIED FORCE, y = 1 – FIND ac.

The best exisiting estimate of ac is ac = 1.77564 (BGJ12).

The series analysis is exquisitely sensitive to the value of a near
ac. This gives us a method for estimating ac.

1/µ = 0.379052277751, with uncertainty in the last digit. We
vary our estimate of ac until we get agreement with 1/µ.

This turns out to be at ac = 1.775615± 0.000005 .

At ac the exponent is 1.4539.

The exponent γsp
1 for the special transition is conjectured to be

93/64 = 1.453125, which is satisfyingly close.

Pulling self-avoiding walks from a surface. Tony Guttmann



MIN2Col

NO APPLIED FORCE, y = 1 – FIND ac.

The best exisiting estimate of ac is ac = 1.77564 (BGJ12).

The series analysis is exquisitely sensitive to the value of a near
ac. This gives us a method for estimating ac.

1/µ = 0.379052277751, with uncertainty in the last digit. We
vary our estimate of ac until we get agreement with 1/µ.

This turns out to be at ac = 1.775615± 0.000005 .

At ac the exponent is 1.4539.

The exponent γsp
1 for the special transition is conjectured to be

93/64 = 1.453125, which is satisfyingly close.

Pulling self-avoiding walks from a surface. Tony Guttmann



MIN2Col

NO APPLIED FORCE, y = 1 – STILL MORE

For a > ac, xc(a) is monotonically decreasing as a increases.
The singularity is a simple pole.

For a < ac , xc(a) remains unchanged at 1/µ, but the exponent
estimates decrease rapidly with a, settling at at γ1 = 61/64.

Finally, with y = 0 and a = ac we expect loops at the special
transition, with exponent γsp

11 = 13/16 = 0.8125. Our estimate is
0.816± 0.006.

In summary: For a > ac, the exponent is 1. For a = ac it is
γsp

1 = 93/64, and is γ1 = 61/64 for a < ac.
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PHASE DIAGRAM CALCULATION

Recall that ψ(a, y) = κ(a) throughout the adsorbed phase and
ψ(a, y) = λ(y) throughout the ballistic phase.

The phase boundary is the locus of points where

κ(a) = λ(y)

.

For a given a we calculated κ(a) as above, then found the value
of y s.t. λ(y) = κ(a) by interpolation.

More precisely, we calculated y = f1(xc) by using the program
Eureqa on our (y, xc) data, and a = f2(xc) from our (a, xc) data.

Thus for any xc, we could calculate (a(xc), y(xc)).
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PHASE DIAGRAM CALCULATION
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Figure: The phase boundary between the adsorbed and
ballistic phases in the (log a, log y)-plane.
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PHYSICAL VARIABLES

We can switch to physical variables (force and temperature)
using a = exp[−ε/kBT] and y = exp[f/kBT].
W.l.o.g we set ε = −1 and kB = 1.
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f (T = 0) = 1, and the slope at T = 0 is zero, (vRW2013). The
curve is monotone decreasing, with no re-entrance.
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THE NATURE OF THE PHASE TRANSITION ON THE PHASE

BOUNDARY.

The phase transition from ballistic to adsorbed is first-order.
Theorem The free energy ψ(a, y) is not differentiable at the
phase boundary between the ballistic and adsorbed phases,
except perhaps at the triple point (ao

c , y
o
c).

At the phase boundary we find a double pole.

That is, at any point (ac, yc), the series is singular at xc(ac, yc)
with a double pole.

The same situation is found with a Dyck path model and a
Motzkin path model.
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CONCLUSION

We have considered a SAW model of polymer adsorption at an
impenetrable surface where

1 the walk is terminally attached to the surface,
2 the walk interacts with the surface, and
3 a force applied normal to the surface at the last vertex of the walk.

For the square lattice we have used series analysis techniques to
investigate the phases and phase boundaries for the system.
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CONCLUSION

There are three phases,

a free phase where the walk is desorbed but not ballistic,

an adsorbed phase where the walk is adsorbed at the surface

and a ballistic phase where the walk is desorbed but ballistic.

We have located the phase boundaries and proved that the phase
transition from the adsorbed to the ballistic phase is first order.

In addition we have very precise values for the critical points for
adsorption without a force and for the free to ballistic transition
with no surface interaction.
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