Mixing time of the Swendsen-Wang process on the complete graph

Tim Garoni

School of Mathematical Sciences Monash University

Collaborators

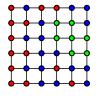
▶ Peter Lin (Monash University → University of Washington)

Probability on Graphs

- Many problems in statistical mechanics are of the form:
 - ▶ Consider a sequence of finite graphs $G_n = (V_n, E_n)$ with:
 - $G_n \subset G_{n+1}$ and $|V_{n+1}| > |V_n|$
 - ▶ E.g. complete graphs K_n , or tori \mathbb{Z}_n^d
 - Construct sample space Ω_n of combinatorial objects built from G_n
 - ▶ Define (up to normalization) a probability $\pi_{n,\beta}(\cdot)$ on Ω_n

Probability on Graphs

- Many problems in statistical mechanics are of the form:
 - ▶ Consider a sequence of finite graphs $G_n = (V_n, E_n)$ with:
 - $G_n \subset G_{n+1}$ and $|V_{n+1}| > |V_n|$
 - ▶ E.g. complete graphs K_n , or tori \mathbb{Z}_n^d
 - ▶ Construct sample space Ω_n of combinatorial objects built from G_n
 - ▶ Define (up to normalization) a probability $\pi_{n,\beta}(\cdot)$ on Ω_n
- Potts model:

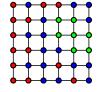


- $\Omega = [q]^V$ for fixed $q \in \{2, 3, 4 \ldots\}$
- $\pi(\sigma) = \frac{1}{Z} e^{-\beta H(\sigma)} \text{ for } \sigma \in \Omega$
 - $H(\sigma) = -\sum_{uv \in E} \delta_{\sigma_u, \sigma_v}$
 - $\beta = 1/\text{temperature}$

Probability on Graphs

- Many problems in statistical mechanics are of the form:
 - ▶ Consider a sequence of finite graphs $G_n = (V_n, E_n)$ with:
 - $G_n \subset G_{n+1}$ and $|V_{n+1}| > |V_n|$
 - ▶ E.g. complete graphs K_n , or tori \mathbb{Z}_n^d
 - ▶ Construct sample space Ω_n of combinatorial objects built from G_n
 - ▶ Define (up to normalization) a probability $\pi_{n,\beta}(\cdot)$ on Ω_n

Potts model:



- $\Omega = [q]^V$ for fixed $q \in \{2, 3, 4 \ldots\}$
- $\pi(\sigma) = \frac{1}{Z} e^{-\beta H(\sigma)} \text{ for } \sigma \in \Omega$
 - $H(\sigma) = -\sum_{uv \in E} \delta_{\sigma_u, \sigma_v}$
 - $\qquad \beta = 1/{\rm temperature}$
- If $\beta \approx 0$ then $\pi(\cdot) \approx$ uniform on Ω

("Disorder")

- If $\beta \gg 1$ preference for $u \sim v$ to have $\sigma_u = \sigma_v$ ("Order")
- Phase transition between order and disorder at critical β_c

- \blacktriangleright We often don't know how to normalize $\pi(\cdot)$
 - ightharpoonup E.g. Potts partition function Z is (essentially) the Tutte polynomial

- We often don't know how to normalize $\pi(\cdot)$
 - ightharpoonup E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - $\blacktriangleright \ \ \text{Has stationary distribution} \ \pi(\cdot)$

- We often don't know how to normalize $\pi(\cdot)$
 - ► E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
 - ▶ Construct a transition matrix P on Ω which:
 - Is irreducible
 - $\blacktriangleright \ \ \text{Has stationary distribution} \ \pi(\cdot)$
 - Generate random samples with (approximate) distribution π

- We often don't know how to normalize $\pi(\cdot)$
 - ightharpoonup E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
 - ▶ Construct a transition matrix P on Ω which:
 - Is irreducible
 - ▶ Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- ► E.g. Single-vertex Glauber chain for Potts model:

- We often don't know how to normalize $\pi(\cdot)$
 - ▶ E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - ▶ Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- E.g. Single-vertex Glauber chain for Potts model:

▶ Transitions: $\sigma \mapsto \sigma'$

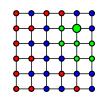
- We often don't know how to normalize $\pi(\cdot)$
 - ▶ E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
 - ▶ Construct a transition matrix P on Ω which:
 - Is irreducible
 - $\blacktriangleright \ \ \text{Has stationary distribution} \ \pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- E.g. Single-vertex Glauber chain for Potts model:

- ▶ Transitions: $\sigma \mapsto \sigma'$
 - $\blacktriangleright \ \ \text{Uniformly choose} \ v \in V$

- We often don't know how to normalize $\pi(\cdot)$
 - ▶ E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
 - ▶ Construct a transition matrix P on Ω which:
 - Is irreducible
 - ▶ Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- ▶ E.g. Single-vertex Glauber chain for Potts model:

- ▶ Transitions: $\sigma \mapsto \sigma'$
 - $\blacktriangleright \ \ \text{Uniformly choose} \ v \in V$

- We often don't know how to normalize $\pi(\cdot)$
 - ▶ E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - ▶ Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- ► E.g. Single-vertex Glauber chain for Potts model:



Introduction

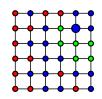
0000

- ▶ Transitions: $\sigma \mapsto \sigma'$
 - ▶ Uniformly choose $v \in V$

 - Choose $\sigma'_v \in [q]$ independently of σ_v via

$$\pi(\sigma_v'|\{\sigma_u\}_{u\in V\setminus v}) = \frac{e^{\beta\#\{u\sim v:\sigma_v'=\sigma_u\}}}{\sum_{\sigma_v\in[q]} e^{\beta\#\{u\sim v:\sigma_v=\sigma_u\}}}$$

- We often don't know how to normalize $\pi(\cdot)$
 - ▶ E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - ▶ Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- E.g. Single-vertex Glauber chain for Potts model:

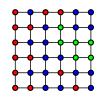


- ▶ Transitions: $\sigma \mapsto \sigma'$
 - ▶ Uniformly choose $v \in V$

 - ▶ Choose $\sigma'_v \in [q]$ independently of σ_v via

$$\pi(\sigma_v'|\{\sigma_u\}_{u\in V\setminus v}) = \frac{e^{\beta\#\{u\sim v:\sigma_v'=\sigma_u\}}}{\sum_{\sigma_v\in[q]} e^{\beta\#\{u\sim v:\sigma_v=\sigma_u\}}}$$

- We often don't know how to normalize $\pi(\cdot)$
 - ▶ E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - ▶ Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- ► E.g. Single-vertex Glauber chain for Potts model:



Introduction

0000

- ▶ Transitions: $\sigma \mapsto \sigma'$
 - ▶ Uniformly choose $v \in V$

 - Choose $\sigma'_v \in [q]$ independently of σ_v via

$$\pi(\sigma_v'|\{\sigma_u\}_{u\in V\setminus v}) = \frac{e^{\beta\#\{u\sim v:\sigma_v'=\sigma_u\}}}{\sum_{\sigma_v\in[q]} e^{\beta\#\{u\sim v:\sigma_v=\sigma_u\}}}$$

Mixing times

- ► Consider a Markov chain
 - finite state space Ω
 transition matrix P
 - atation and distribution
 - stationary distribution π
 - irreducible
 - aperiodic

Mixing times

- Consider a Markov chain
 - finite state space Ω
 - transition matrix P
 - stationary distribution π
 - irreducible
 - aperiodic

$$d(t) := \max_{x \in \Omega} \|P^t(x,\cdot) - \pi(\cdot)\| \leq C\alpha^t, \qquad \text{ for } \alpha \in (0,1)$$

Mixing time quantifies the rate of convergence

$$t_{\text{mix}}(\epsilon) := \min\{t : d(t) \le \epsilon\}$$

- Consider a Markov chain
 - finite state space Ω
 - ▶ transition matrix P
 - stationary distribution π
 - irreducible
 - aperiodic

$$d(t) := \max_{x \in \Omega} \|P^t(x, \cdot) - \pi(\cdot)\| \leq C\alpha^t, \qquad \text{ for } \alpha \in (0, 1)$$

Mixing time quantifies the rate of convergence

$$t_{\text{mix}}(\epsilon) := \min\{t : d(t) \le \epsilon\}$$

▶ How does t_{mix} depend on size of Ω ?

Mixing times

- Consider a Markov chain
 - finite state space Ω
 - transition matrix P
 - stationary distribution π
 - irreducible
 - aperiodic

$$d(t) := \max_{x \in \Omega} \|P^t(x, \cdot) - \pi(\cdot)\| \leq C\alpha^t, \qquad \text{ for } \alpha \in (0, 1)$$

Mixing time quantifies the rate of convergence

$$t_{\text{mix}}(\epsilon) := \min\{t : d(t) \le \epsilon\}$$

- ▶ How does t_{mix} depend on size of Ω ?
 - If $t_{\rm mix} = O(\operatorname{poly}(\log |\Omega|))$ we have rapid mixing
 - Otherwise, we have torpid mixing

- lacktriangle Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

- ▶ Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

- ▶ Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:

Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p=1-e^{-\beta}$.

- ▶ Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:

Independently for each $i\in[q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p=1-e^{-\beta}$.

- ▶ Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:

Independently for each $i\in[q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p=1-e^{-\beta}$.

- lacktriangle Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:

Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p=1-e^{-\beta}$. Let $A_{t+1} \subset E(G)$ be the union of all occupied edges 000

Swendsen-Wang process

- ▶ Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

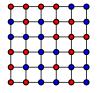
Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:

▶ Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p=1-e^{-\beta}$. Let $A_{t+1} \subseteq E(G)$ be the union of all occupied edges

- lacktriangle Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

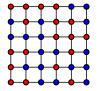
- Independently for each $i\in[q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p=1-e^{-\beta}$. Let $A_{t+1}\subseteq E(G)$ be the union of all occupied edges
- ▶ Independently & uniformly q-colour each component of (V, A_{t+1})

- lacktriangle Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model



- Independently for each $i\in[q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p=1-e^{-\beta}$. Let $A_{t+1}\subseteq E(G)$ be the union of all occupied edges
- ▶ Independently & uniformly q-colour each component of (V, A_{t+1})

- lacktriangle Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model



- Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p=1-e^{-\beta}$. Let $A_{t+1} \subseteq E(G)$ be the union of all occupied edges
- ▶ Independently & uniformly q-colour each component of (V, A_{t+1})

- ▶ Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - ▶ Continuous transition for q = 2 (Ising)
 - ▶ Discontinuous transition for $q \ge 3$

SW process on complete graph

On K_n :

- ▶ Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - ► Continuous transition for q=2 (Ising)
 - ▶ Discontinuous transition for $q \ge 3$
- ▶ Potts energy depends only on magnetization $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} \, n \, s(\sigma) \cdot s(\sigma) + \, \, \text{constant} \label{eq:beta}$$

• $s^i(\sigma) = |\sigma^{-1}(i)|/n = \text{fraction of vertices coloured } i \in [q] \text{ by } \sigma$

SW process on complete graph

- ▶ Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for q=2 (Ising)
 - ▶ Discontinuous transition for $q \ge 3$
- ▶ Potts energy depends only on magnetization $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} \, n \, s(\sigma) \cdot s(\sigma) + \text{ constant}$$

- $\blacktriangleright \ s^i(\sigma) = |\sigma^{-1}(i)|/n = \text{fraction of vertices coloured } i \in [q] \text{ by } \sigma$
- ▶ Let $SW_n(\lambda, q) = SW$ process on K_n with parameters λ and q

- ▶ Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - ► Continuous transition for q = 2 (Ising)
 - ▶ Discontinuous transition for $q \ge 3$
- lackbox Potts energy depends only on magnetization $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} \, n \, s(\sigma) \cdot s(\sigma) + \text{ constant}$$

- $\blacktriangleright \ s^i(\sigma) = |\sigma^{-1}(i)|/n = \text{fraction of vertices coloured } i \in [q] \text{ by } \sigma$
- Let $SW_n(\lambda, q) = SW$ process on K_n with parameters λ and q Given $\sigma_t \in [q]^n$, $SW_n(\lambda, q)$ chooses σ_{t+1} as follows:

- ▶ Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - ► Continuous transition for q = 2 (Ising)
 - ▶ Discontinuous transition for $q \ge 3$
- ▶ Potts energy depends only on magnetization $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} \, n \, s(\sigma) \cdot s(\sigma) + \text{ constant}$$

- $s^i(\sigma) = |\sigma^{-1}(i)|/n =$ fraction of vertices coloured $i \in [q]$ by σ
- Let $SW_n(\lambda, q) = SW$ process on K_n with parameters λ and qGiven $\sigma_t \in [q]^n$, $SW_n(\lambda, q)$ chooses σ_{t+1} as follows:
 - Independently for each $i \in [q]$ choose Erdös-Renyi graph $\mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$.

SW process on complete graph

- ▶ Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for q=2 (Ising)
 - ▶ Discontinuous transition for $q \ge 3$
- ▶ Potts energy depends only on magnetization $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} \, n \, s(\sigma) \cdot s(\sigma) + \text{ constant}$$

- $s^i(\sigma) = |\sigma^{-1}(i)|/n =$ fraction of vertices coloured $i \in [q]$ by σ
- Let $SW_n(\lambda, q) = SW$ process on K_n with parameters λ and q Given $\sigma_t \in [q]^n$, $SW_n(\lambda, q)$ chooses σ_{t+1} as follows:
 - Independently for each $i \in [q]$ choose Erdös-Renyi graph $\mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$. Let $A_{t+1} = \bigcup_{i \in [q]} \mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$.

On K_n :

- ▶ Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - ightharpoonup Continuous transition for q=2 (Ising)
 - ▶ Discontinuous transition for q > 3
- ▶ Potts energy depends only on magnetization $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{constant}$$

- $s^i(\sigma) = |\sigma^{-1}(i)|/n =$ fraction of vertices coloured $i \in [q]$ by σ
- Let $SW_n(\lambda, q) = SW$ process on K_n with parameters λ and q

Given $\sigma_t \in [q]^n$, $SW_n(\lambda, q)$ chooses σ_{t+1} as follows:

- ▶ Independently for each $i \in [q]$ choose Erdös-Renyi graph $\mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$. Let $A_{t+1} = \bigcup_{i \in [q]} \mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$.
- ▶ Independently and uniformly q-colour each component of (V, A_{t+1})

SW process on complete graph

On K_n :

- ▶ Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - ightharpoonup Continuous transition for q=2 (Ising)
 - ▶ Discontinuous transition for q > 3
- ▶ Potts energy depends only on magnetization $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{constant}$$

- $s^i(\sigma) = |\sigma^{-1}(i)|/n = \text{fraction of vertices coloured } i \in [q] \text{ by } \sigma$
- Let $SW_n(\lambda, q) = SW$ process on K_n with parameters λ and q

Given $\sigma_t \in [q]^n$, $SW_n(\lambda, q)$ chooses σ_{t+1} as follows:

- ▶ Independently for each $i \in [q]$ choose Erdös-Renyi graph $\mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$. Let $A_{t+1} = \bigcup_{i \in [q]} \mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$.
- ▶ Independently and uniformly q-colour each component of (V, A_{t+1})

Note: edge probability in $\mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$ is $\lambda/n = s^i(\sigma_t)\lambda/|\sigma_t^{-1}(i)|$

Rapid mixing for q = 2

Potts model on K_n has **continuous** phase transition when q=2

Rapid mixing for q=2

Potts model on K_n has **continuous** phase transition when q=2

Theorem (Cooper, Dyer, Frieze & Rue 2000)

If q=2 then $\mathrm{SW}_n(\lambda,q)$ has mixing time

$$t_{\text{mix}} = O(\sqrt{n})$$

for all $\lambda \not\in (\lambda_{\rm c} - \delta, \lambda_{\rm c} + \delta)$ with $\delta \sqrt{\log n} \to \infty$ as $n \to \infty$.

Potts model on K_n has **continuous** phase transition when q=2

Theorem (Cooper, Dyer, Frieze & Rue 2000)

If q=2 then $\mathrm{SW}_n(\lambda,q)$ has mixing time

$$t_{\text{mix}} = O(\sqrt{n})$$

for all $\lambda \notin (\lambda_c - \delta, \lambda_c + \delta)$ with $\delta \sqrt{\log n} \to \infty$ as $n \to \infty$.

Theorem (Long, Nachmias, Ning, & Peres 2012)

If q=2 then $\mathrm{SW}_n(\lambda,q)$ has mixing time

$$t_{\text{mix}} = \begin{cases} \Theta(1) & \lambda < \lambda_{\text{c}} \\ \Theta(n^{1/4}) & \lambda = \lambda_{\text{c}} \\ \Theta(\log n) & \lambda > \lambda_{\text{c}} \end{cases}$$

Pay, Tamayo, & Klein (1989) conjectured $n^{1/4}$ at $\lambda_{\rm c}$

Torpid mixing for $q \ge 3$

Potts model on K_n has **discontinuous** phase transition when $q \geq 3$

Torpid mixing for $q \ge 3$

Potts model on K_n has **discontinuous** phase transition when $q \ge 3$

Theorem (Gore & Jerrum 1999)

If $q \geq 3$ then $\mathrm{SW}_n(\lambda_\mathrm{c},q)$ has mixing time

$$t_{\text{mix}} = \exp(\mathbf{\Omega}(\sqrt{n}))$$

Potts model on K_n has **discontinuous** phase transition when $q \geq 3$

Theorem (Gore & Jerrum 1999)

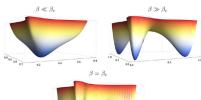
If $q \geq 3$ then $\mathrm{SW}_n(\lambda_\mathrm{c},q)$ has mixing time

$$t_{\rm mix} = \exp(\mathbf{\Omega}(\sqrt{n}))$$

Theorem (Cuff, Ding, Louidor, Lubetzky, Peres, Sly 2012) If q > 3 then the single-site Glauber process for the Potts model has

$$t_{\text{mix}} = \begin{cases} \Theta(n \log n) & \lambda < \lambda_{\text{o}}(q) \\ \Theta(n^{4/3}) & \lambda = \lambda_{\text{o}}(q) \\ \exp(\Omega(n)) & \lambda > \lambda_{\text{o}}(q) \end{cases}$$

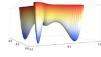
where $\lambda_{\rm o}(q) < \lambda_{\rm c}(q)$, so torpid mixing begins **before** transition



Large
$$n$$
 distribution of $s(\sigma)$ known explicitly:

$$-\frac{1}{n}\log \mathbb{P}(s(\sigma) = a) \sim \phi_{\lambda}(a) - \inf_{a \in \Delta^{q-1}} \phi_{\lambda}(a)$$

$$\phi_{\lambda}(a) = \sum_{i=1}^{q} \left(a_i \log a_i - \frac{1}{2} \lambda a_i^2 \right)$$



 $\beta \in (\beta_c, \beta_S)$

Figure: From Cuff et. al 2012

Minima of ϕ_{λ} correspond either to:

- ▶ **disordered** state: $s^i = 1/q$ for all $i \in [q]$
- ▶ ordered states: $s^i = \alpha > 1/q$ and $s^j = \frac{1-\alpha}{q-1}$ for $j \neq i$

 $\lambda_{o}(q) := \inf\{\lambda \geq 0 : \text{there exist ordered local minima of } \phi_{\lambda}\},\$ $\lambda_{d}(q) := \sup\{\lambda \geq 0 : \text{the disordered state locally minimizes } \phi_{\lambda}\}.$

Theorem (Lin & G. 2013)

If $q \geq 3$ then $SW_n(\lambda, q)$ has mixing time

$$t_{\text{mix}} = \begin{cases} \Theta(1) & \lambda < \lambda_{\text{o}}(q) \\ \Theta(n^{1/3}) & \lambda = \lambda_{\text{o}}(q) \\ \exp(\Omega(\sqrt{n})) & \lambda_{\text{o}}(q) < \lambda < \lambda_{\text{d}}(q) \\ \Theta(\log(n)) & \lambda \geq \lambda_{\text{d}}(q) \end{cases}$$

Complete picture for $SW_n(\lambda, q)$ with $q \geq 3$

Theorem (Lin & G. 2013)

If $q \geq 3$ then $\mathrm{SW}_n(\lambda, q)$ has mixing time

$$t_{\text{mix}} = \begin{cases} \Theta(1) & \lambda < \lambda_{\text{o}}(q) \\ \Theta(n^{1/3}) & \lambda = \lambda_{\text{o}}(q) \\ \exp(\Omega(\sqrt{n})) & \lambda_{\text{o}}(q) < \lambda < \lambda_{\text{d}}(q) \\ \Theta(\log(n)) & \lambda \geq \lambda_{\text{d}}(q) \end{cases}$$

- ▶ Gore & Jerrum's torpid mixing result extends to a non-trivial interval $(\lambda_{\rm o}(q), \lambda_{\rm d}(q))$ containing $\lambda_{\rm c}(q)$
- ▶ Nothing special happens at $\lambda_{c}(q)$
- ▶ Non-trivial scaling arises at $\lambda_{o}(q)$
- Low and high temperature same as Ising case

Sketch of Proof

• If $Y_{t+1} := s_{t+1}^1 - \mathbb{E}[s_{t+1}^1 | \sigma_t]$ then

$$s_{t+1}^1 \approx s_t^1 + D(s_t^1) + Y_{t+1} \tag{*}$$

where

$$D_{\lambda,q}(x) := \theta(\lambda x)(1 - 1/q)x + 1/q - x$$

- ullet $heta(\lambda)\,n=\mathbb{E}(ext{size of giant component})$ in Erdös-Renyi $\mathcal{G}(n,\lambda/n)$
- $(Y_t)_{t\geq 0}$ is a sequence of martingale increments
- $var(Y_t|\sigma_t) = \Theta(n^{-1})$

▶ If $Y_{t+1} := s_{t+1}^1 - \mathbb{E}[s_{t+1}^1 | \sigma_t]$ then

$$s_{t+1}^1 \approx s_t^1 + D(s_t^1) + Y_{t+1} \tag{*}$$

where

$$D_{\lambda,q}(x) := \theta(\lambda x)(1 - 1/q)x + 1/q - x$$

- \bullet $\theta(\lambda)$ $n = \mathbb{E}(\text{size of giant component})$ in Erdös-Renyi $\mathcal{G}(n, \lambda/n)$
- $(Y_t)_{t\geq 0}$ is a sequence of martingale increments
- $\triangleright \operatorname{var}(Y_t|\sigma_t) = \Theta(n^{-1})$
- ▶ Roots of $D_{\lambda,q}$ coincide with minima of Potts free energy $\phi_{\lambda,q}$

$$\lambda_{\text{o}} = \inf\{\lambda \geq 0 : D_{\lambda,q}(x) \text{ has a root on } (1/q,1]\}$$

 $\lambda_{\text{d}} = \sup\{\lambda \geq 0 : D_{\lambda,q}(1/q) = 0\}$

Sketch of Proof

▶ If $Y_{t+1} := s_{t+1}^1 - \mathbb{E}[s_{t+1}^1 | \sigma_t]$ then

$$s_{t+1}^1 \approx s_t^1 + D(s_t^1) + Y_{t+1} \tag{*}$$

where

$$D_{\lambda,q}(x) := \theta(\lambda x)(1 - 1/q)x + 1/q - x$$

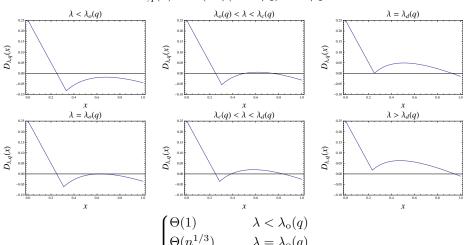
- \bullet $\theta(\lambda)$ $n = \mathbb{E}(\text{size of giant component})$ in Erdös-Renyi $\mathcal{G}(n, \lambda/n)$
- $(Y_t)_{t>0}$ is a sequence of martingale increments
- $\triangleright \operatorname{var}(Y_t|\sigma_t) = \Theta(n^{-1})$
- ▶ Roots of $D_{\lambda,q}$ coincide with minima of Potts free energy $\phi_{\lambda,q}$

$$\begin{split} &\lambda_{\mathrm{o}} = \inf\{\lambda \geq 0: D_{\lambda,q}(x) \text{ has a root on } (1/q,1]\} \\ &\lambda_{\mathrm{d}} = \sup\{\lambda \geq 0: D_{\lambda,q}(1/q) = 0\} \end{split}$$

ightharpoonup Coupling arguments reduce mixing time to hitting time of s_t^1

Swendsen-Wang drift

$$D_{\lambda,q}(x) := \theta(\lambda x)(1 - 1/q)x + 1/q - x$$



$$t_{\text{mix}} = \begin{cases} \Theta(1) & \lambda < \lambda_{\text{o}}(q) \\ \Theta(n^{1/3}) & \lambda = \lambda_{\text{o}}(q) \\ \exp(\Omega(\sqrt{n})) & \lambda_{\text{o}}(q) < \lambda < \lambda_{\text{d}}(q) \\ \Theta(\log(n)) & \lambda \geq \lambda_{\text{d}}(q) \end{cases}$$

Discussion

- lacktriangle Our hitting-time estimates for s_t^1 explain exponent values in mixing times for several other Potts/Ising processes
 - Mixing time exponents depend on:
 - drift asymptotics near roots
 - decay of noise term
 - Give conjectured results for the Potts censored Glauber chain
 - construct couplings to complete proof

Discussion

- ▶ Our hitting-time estimates for s_t^1 explain exponent values in mixing times for several other Potts/Ising processes
 - Mixing time exponents depend on:
 - drift asymptotics near roots
 - decay of noise term
 - Give conjectured results for the Potts censored Glauber chain
 - construct couplings to complete proof
- ▶ Jon Machta (private communication) has conjectured mixing time asymptotics at λ_c for all real q>1 for complete graph Chayes-Machta chain. Can this be proved?

Discussion

- ▶ Our hitting-time estimates for s_t^1 explain exponent values in mixing times for several other Potts/Ising processes
 - Mixing time exponents depend on:
 - drift asymptotics near roots
 - decay of noise term
 - Give conjectured results for the Potts censored Glauber chain
 - construct couplings to complete proof
- ▶ Jon Machta (private communication) has conjectured mixing time asymptotics at λ_c for all real q>1 for complete graph Chayes-Machta chain. Can this be proved?
- Can one say anything for the Glauber chain for the Fortuin-Kasteleyn model?