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Superimposed spectra
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Superimposed spectra (cont)

Label the 2N points x; < xp < --- < xon. Must compute

> p(xs)p(xq,.. onp-s)

With A(0s) = [I;<j<k<nsin((0s, — 0s;)/2) it was proved by
Gunson that

()
o
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Superimposed spectra (cont)

Suggests that the distribution of every second eigenvalue is special.

Integrate {62,062, ...,0>n} over the region
Ry=01<0<l03<0s4< - <bony_1 <boy<22m+6;

Using the Vandermonde identity

1 1 1 1

XN XN-1 Xn—2 X1

2 2 2 2

— X X X R X:

H (xj — xk) = N N—1 XN—2 1

1<j<k<N : : L :
N—-1 _N-1 _N-1 N—1

XN XN—1 Xn—2 X

can compute

/R dth - dOan A(Op2,4,...2ny) < A(O(1 3, 2n-1})
N
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Dyson (1962) ex-conjecture

Let alt denote the operation of integration over every second
eigenvalue.

Let U denote the operation of random superposition.

We have

alt (COEN U COEN) — CUEy

Consequence for gap probabilities

Let E}\\,/IE(O, J) denote the probability that there are no eigenvalues
in the interval J of the matrix ensemble ME consisting of N
eigenvalues. We have

EnP(0:(=0.0)) =

EROP(0: (=0.0))(ERC"(0:(~0.0)) + EGOR(1:(-6.9)))
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F & Rains (2001) (cont)

—@ @ @ *—

Question: For matrix ensembles with orthogonal symmetry,
eigenvalue PDF of the form

1 N
CNllJlf(x,) IT 1 — x| = OEn()

1<j<k<N

for what choices of f does
even (OEN(f) U OEN+1(f)) — UEn(g)

for some g7
Must first obtain a Gunson type identity

> Axs)A(xq,. ons1y-s) = 2V A(xq s, 2n11) AlXp24, 20)

SC{1,....2N+1}
IS|=N

where A(xs) = [T;<jpn(xs, — x5)-
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F & Rains (2001) (cont)

Answer: (up to linear fractional transformation) the four classical
weight functions:

e/ 2, Gaussian
F(x) = x(a=1)/2e=x/2 (x > (), Laguerre
)] (1—x)@ D214 x)-D/2 (1 < x < 1), Jacobi
(1 + ix)~(@+D)/2(1 — jx)—(@+1)/2, Cauchy
e , Gaussian
(x) = x%e ™ (x > 0), Laguerre
EYITY (1—x)(1+x)® (-1 <x<1), Jacobi
(1+ix)"(1— ix)™9, Cauchy
In particular

even (GOEN+1 U GOEN) — GUEy
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Mehta and Dyson (1963)

Using direct integration, showed
alt (COE,y) = CSEy

Consequence for gap probabilities
We have

EN°P(0:(—6.9))

= ES0%(0:(~6,6)) + SESO(L (—0,0))

] _ ESVE(0; (—0,0))
= (EQC,\(,)E(O, (—0,0)) + Ezc,I:I(I)E(O; (=0, 9)))



Further new question:

For what choice of f does
even (OE2N+1(f)> = SEn(g)

for some g7
Answer (FR 2001)

even <OE2N+1(f)> — SEn((g/f)?) &
even (OEN(f) U OENH(f)) — UEn(g)

In particular, with (f,g) = (e /2, &™)

even (GOE2N+1> = GSEpn
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A family of decimation relations (inspired by Balint Virag)

Denote by MEg n(g(x)) the PDF proportional to

N
JJECO | P
=1

1<j<k<N

and let D, denote the distribution of every r-th eigenvalue.
For the Gaussian case we have (F. 2009)

D1 (MEs(r11) (1wt r(€ 7)) = MEp(r 43y w(e )

e.g.
7X2 _ X2
D3(ME2/373N+2(6 ) = ME6}N(€ 3 )

_x2 A2
Dy(ME; 5 an43(e™*) = MEg y(e*)
AE - OO0
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Consequences for asymptotic spacing distributions

Let p]Olllk *P(n; s) denote the probability that in the bulk scaling
limit there are n eigenvalues between 2 eigenvalues separated by
distance s.

The decimation relations imply that for large s

Eyjriay((r + Dk +ri (r +1)s) ~ ERY, (ks ).

A conjecture of Dyson, and of Fogler and Shklovskii (1995),

2
og £5°4(m; (0.5))_~_— 8"+ (gn+ 2 1)

2 e

has this property.
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Averages of characteristic polynomials
For the Gaussian /3 ensemble (Baker & F 1997)

N n
< H(C B \/ayj)n>ME2/a,N(e—y2) - < H(C B i.yj)N>ME2a,n(e_y2).

j=1 j=1

Consequences

» The simplest case is n = 1. It tells us that the average of the
characteristic polynomial for the Gaussian 5 ensemble is
proportional to the Hermite polynomial Hy(c¢).

» Suppose 3 is even. Then setting n = 8 the LHS multiplied by
e~/ s proportional to the eigenvalue density at ¢/+/a.
Hence, for even f3, this can be expressed as a S dimensional
integral.

» Large N asymptotic analysis using the saddle point method
gives oscillatory corrections to the Wigner semi-circle law, and
the scaled density at the edge.
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Explicit form of the scaled density at the edge

We have (Desrosiers & F (2006))

M TSN fN1/6 (FJF\TNM) -
r(1+5/2) 82 5 T(1+2/8)
2 ( ) Hr1+2j/5 Ksup(x).
where

1 ioo i
o . v; /3 XV .\, 14/B
Kn p(x) := @) /_ioo Vi /—/oo anH eYi i H [vk—vi| 7.

1<k<I<n
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Asymptotics of the edge density

1T(1+ B/2) e 2652/ 1
soft, 3 ~ =
P() (X)X_>OO T (4B)B2 x3B/4-12 +O<X3ﬁ/4+1)’

(1) X——00 T 26/5_1‘)(‘3/5_1/2

2

i e M PO cos (- T (1 2)

This has consequence to the asymptotics of the right tail of the
scaled distribution of the largest eigenvalue:

SO soft,
pX) ~ A ()
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Averages of characteristic polynomials — circular ensemble

Let « =2/ —1and u € Z". We have

& 0,2 £ N
</1;[1 |z=e™ M>CE6, <H ( ~laf X’) >ME4/ﬁ7u(XQ(1X)a)‘

I=1

This can be generalized to allow a factor |z — e/ |21 in the
product on the LHS.

Hence for even [ the two-point function can be written as a
S-dimensional integral. It's proportional to (F. (1994))

(2sin7(r — ry)/L)P e ™BN(=r) / duy - - - dug
[0,1)

B
% H(l —(1- e2mi(n— rz)) )N —1+2//3( ,)71+2/B H |uye — uj|4/ﬁ_
j=1 J<k
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» The large N bulk scaled limit can be taken immediately.
» Can analyze the large N global expansion (no scaling of
variables)
2 2 1 3(8 —2)?
- 0,0)=1- ..
() P00 B(2Nsin0/2)2 | 233(2Nsin 6/2)°
Not suited to computing the structure function. In the bulk, for
B =p/q have

S(k: B) = lfﬁ‘fuktﬁ),

where for |k| < 27
q9 0o P oo
i) o [T [ oIl | by QaaF(a.pAlLx}ik) 301~ @r)
i=1 j=1

with A = 3/2, Qpq = 2(37y i + 271 y),
1

F(q, p, A{xi,y;}: k) =
' T 061+ koA T (v (1 — ky)) 2
ITicir Ixi = xi P T Ly — yir P72

7:1 jp:1(xi + )\-)/.1)2
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Functional equation for the structure function
From the exact form of p'(OZ‘l)lk(O x) have

(|k| k] | K|
_ < —
o lo (1 + ), k| <2m, (B=1)
_ k|
S k = |— < =
(k=9 54 M <or (3=2)
K| |k| k|
— 7 < —
4 87r (1 27r)’ [k < 4, (8 =4)

From the exact form for S(k) for § rational can check that with

f(k;B) = |kﬁ] (k; B), 0 < k < min (27, 7f3)

and f defined by analytic continuation for k < 0,
2k 4)

f(k;ﬁ):f(—z,g :
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The simplest structure consistent with the functional equation is
k
‘k|5(k ) = 1+ij 3/2) (‘ |) . 0< k< min (27, 7R)

where pj(x) is a polynomial of degree j which satisfies the
functional relation

pi(1/x) = (=1Yx 7 pj(x).

Put k = 8/2, y = |k|/m3. We have (F., Jancovici, McAnally
(2000))

|kﬁ| (kiB) =1+ (k= 1)y + (k — 1)°y* + (k — 1)(x° —%mﬂ) 3

3 91 62 91
S22 - k41 At S S e |
+ (k — 1)%(K? 2/£+ W+ (k= 1)(x* 30" + 15& 30" K+ 1)y°
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Moments of the density and loop equations

For the Gaussian 3 ensemble, with the eigenvalues scaled so that
the leading support is (—1,1), and with k = /2, let

mo (N, k) = / X2Ip(l\{)(x; K) dx

It is known rigorously (Dumitriu and Edleman (2006)) that
my (N, k) is a polynomial of a degree / + 1 in N with constant
term zero, satisfying

my (N, k) = (—1)’+1n*’*1m2/(—f<;N, ffl).

mgy = N
mo = N?+ N(—-1+r71)
mg = 2N3 4+ 5N?(—1+ k1) + N(3 — 551 4 3x72)
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Consequences.
Let N (i r)
> pyy(yik
W(x, N, k) :/ Wy
—c0 XY
Then
W(x,N, k) = -k *W(x,—kN,x™1)
A linear differential equation of degree 2x + 1 for k € Z™* can be
derived for Y := p?{)(y; k), e.g. for § = 2 (Haagerup and
Thorbjornsen (2003))
1
Y+ (1-y})Y' +yY =0.
Can check that W satisfies an inhomogeneous form of the same
equation. Hence must have that

p(l\{)(x7 /{) = _I{_lpa,)dv(xa ’{'_1)
e.g. For § =1 the density satisfies a 5th order homogeneous

differential equation which is the same as that satisfied for g = 4
but with N replaced by —N /2.



On going research

» Linear differential equations for one-point functions/ averages
of characteristic polynomials. e.g. What is the behaviour of

N
< H |Z _ ei9,|2u>
I=1 CEp.n

as z — 1 for p < 07

» Can the loop equation formalism be used to systematically
generate the expansion

2 2 _ 1 3(8 —2)?
(W) ’)(2)(0’9)_1_5(2/v5ine/2)2 283(2Nsin6/2)%

» What is the g, t generalization of the family of
Dixon-Anderson integrals used to derive the decimation
identities?

» Duality formulas for random matrix ensembles with a source
(Desrosiers).
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