Some inter-relations between random matrix ensembles

Peter Forrester,

M\&S, University of Melbourne
Outline

- Superpositions and decimations
- Averages of characteristic polynomials
- Structure function
- Moments and resolvent

Peter J. Forrester

12F5110

Log.Gases and Random Matrices

Peter J. Forrester

Superimposed spectra

$$
H=\left[\begin{array}{ll}
H_{1} & \\
& H_{2}
\end{array}\right]
$$

Superimposed spectra (cont)

Label the $2 N$ points $x_{1}<x_{2}<\cdots<x_{2 N}$. Must compute

$$
\sum_{\substack{S \subset\{1, \ldots, 2 N\} \\ 1 S \mid=N}} p\left(x_{S}\right) p\left(x_{\{1, \ldots, 2 N\}-S}\right)
$$

With $\Delta\left(\theta_{S}\right)=\prod_{1 \leq j<k \leq N} \sin \left(\left(\theta_{s_{k}}-\theta_{s_{j}}\right) / 2\right)$ it was proved by Gunson that

$$
\sum_{\substack{S \subset\{1, \ldots, 2 N\} \\|S|=N}} \Delta\left(\theta_{S}\right) \Delta\left(\theta_{\{1, \ldots, 2 N\}-S}\right)=2^{N} \Delta\left(\theta_{\{1,3, \ldots, 2 N-1\}}\right) \Delta\left(\theta_{\{2,4, \ldots, 2 N\}}\right)
$$

Superimposed spectra (cont)

Suggests that the distribution of every second eigenvalue is special. Integrate $\left\{\theta_{2}, \theta_{2}, \ldots, \theta_{2 N}\right\}$ over the region

$$
R_{N}=\theta_{1}<\theta_{2}<\theta_{3}<\theta_{4}<\cdots<\theta_{2 N-1}<\theta_{2 N}<2 \pi+\theta_{1}
$$

Using the Vandermonde identity

$$
\prod_{1 \leq j<k \leq N}\left(x_{j}-x_{k}\right)=\left|\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
x_{N} & x_{N-1} & x_{N-2} & \cdots & x_{1} \\
x_{N}^{2} & x_{N-1}^{2} & x_{N-2}^{2} & \cdots & x_{1}^{2} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
x_{N}^{N-1} & x_{N-1}^{N-1} & x_{N-2}^{N-1} & \cdots & x_{1}^{N-1}
\end{array}\right|
$$

can compute

$$
\int_{R_{N}} d \theta_{2} \cdots d \theta_{2 N} \Delta\left(\theta_{\{2,4, \ldots, 2 N\}}\right) \propto \Delta\left(\theta_{\{1,3, \ldots, 2 N-1\}}\right)
$$

Dyson (1962) ex-conjecture

Let alt denote the operation of integration over every second eigenvalue.
Let \cup denote the operation of random superposition.
We have

$$
\operatorname{alt}\left(\operatorname{COE}_{N} \cup \operatorname{COE}_{N}\right)=\mathrm{CUE}_{N}
$$

Consequence for gap probabilities

Let $E_{N}^{\mathrm{ME}}(0, J)$ denote the probability that there are no eigenvalues in the interval J of the matrix ensemble ME consisting of N eigenvalues. We have

$$
\begin{aligned}
& E_{N}^{\mathrm{CUE}}(0 ;(-\theta, \theta))= \\
& \quad E_{N}^{\mathrm{COE}}(0 ;(-\theta, \theta))\left(E_{N}^{\mathrm{COE}}(0 ;(-\theta, \theta))+E_{N}^{\mathrm{COE}}(1 ;(-\theta, \theta))\right)
\end{aligned}
$$

F \& Rains (2001) (cont)

Question: For matrix ensembles with orthogonal symmetry, eigenvalue PDF of the form

$$
\frac{1}{C_{N}} \prod_{l=1}^{N} f\left(x_{l}\right) \prod_{1 \leq j<k \leq N}\left|x_{k}-x_{j}\right|=: \operatorname{OE}_{N}(f)
$$

for what choices of f does

$$
\operatorname{even}\left(\operatorname{OE}_{N}(f) \cup \mathrm{OE}_{N+1}(f)\right)=\mathrm{UE}_{N}(g)
$$

for some g ?
Must first obtain a Gunson type identity

$$
\sum_{\substack{S \subset\{1, \ldots, 2 N+1\} \\|S|=N}} \Delta\left(x_{S}\right) \Delta\left(x_{\{1, \ldots, 2 N+1\}-S}\right)=2^{N} \Delta\left(x_{\{1,3, \ldots, 2 N+1\}}\right) \Delta\left(x_{\{2,4, \ldots, 2 N\}}\right)
$$

where $\Delta\left(x_{S}\right)=\prod_{1 \leq j<k \leq N}\left(x_{s_{k}}-x_{s_{j}}\right)$.

F \& Rains (2001) (cont)

Answer: (up to linear fractional transformation) the four classical weight functions:

$$
f(x)= \begin{cases}e^{-x^{2} / 2}, & \text { Gaussian } \\ x^{(a-1) / 2} e^{-x / 2}(x>0), & \text { Laguerre } \\ (1-x)^{(a-1) / 2}(1+x)^{(b-1) / 2}(-1<x<1), & \text { Jacobi } \\ (1+i x)^{-(\alpha+1) / 2}(1-i x)^{-(\bar{\alpha}+1) / 2}, & \text { Cauchy }\end{cases}
$$

$$
g(x)= \begin{cases}e^{-x^{2}}, & \text { Gaussian } \\ x^{a} e^{-x}(x>0), & \text { Laguerre } \\ (1-x)^{a}(1+x)^{b}(-1<x<1), & \text { Jacobi } \\ (1+i x)^{-\alpha}(1-i x)^{-\bar{\alpha}}, & \text { Cauchy }\end{cases}
$$

In particular

$$
\operatorname{even}\left(\operatorname{GOE}_{N+1} \cup \operatorname{GOE}_{N}\right)=\mathrm{GUE}_{N}
$$

Mehta and Dyson (1963)

Using direct integration, showed

$$
\operatorname{alt}\left(\mathrm{COE}_{2 N}\right)=\mathrm{CSE}_{N}
$$

Consequence for gap probabilities
We have

$$
\begin{aligned}
E_{N}^{\mathrm{CSE}} & (0 ;(-\theta, \theta)) \\
& =E_{2 N}^{\mathrm{COE}}(0 ;(-\theta, \theta))+\frac{1}{2} E_{2 N}^{\mathrm{COE}}(1 ;(-\theta, \theta)) \\
= & \frac{1}{2}\left(E_{2 N}^{\mathrm{COE}}(0 ;(-\theta, \theta))+\frac{E_{2 N}^{\mathrm{CUE}}(0 ;(-\theta, \theta))}{E_{2 N}^{\mathrm{COE}}(0 ;(-\theta, \theta))}\right)
\end{aligned}
$$

Further new question:

For what choice of f does

$$
\operatorname{even}\left(\mathrm{OE}_{2 N+1}(f)\right)=\mathrm{SE}_{N}(g)
$$

for some g ?
Answer (FR 2001)

$$
\begin{aligned}
& \text { even }\left(\mathrm{OE}_{2 N+1}(f)\right)=\operatorname{SE}_{N}\left((g / f)^{2}\right) \Leftrightarrow \\
& \quad \operatorname{even}\left(\operatorname{OE}_{N}(f) \cup \mathrm{OE}_{N+1}(f)\right)=\mathrm{UE}_{N}(g)
\end{aligned}
$$

In particular, with $(f, g)=\left(e^{-x^{2} / 2}, e^{-x^{2}}\right)$

$$
\operatorname{even}\left(\operatorname{GOE}_{2 N+1}\right)=\operatorname{GSE}_{N}
$$

A family of decimation relations (inspired by Bálint Virág)

Denote by $\mathrm{ME}_{\beta, N}(g(x))$ the PDF proportional to

$$
\prod_{l=1}^{N} g\left(x_{l}\right) \prod_{1 \leq j<k \leq N}\left|x_{k}-x_{j}\right|^{\beta}
$$

and let D_{r} denote the distribution of every r-th eigenvalue.
For the Gaussian case we have (F. 2009)

$$
\mathrm{D}_{r+1}\left(\mathrm{ME}_{2 /(r+1),(r+1) N+r}\left(e^{-x^{2}}\right)\right)=\mathrm{ME}_{2(r+1), N}\left(e^{-(r+1) x^{2}}\right)
$$

e.g.

$$
\begin{aligned}
& D_{3}\left(\mathrm{ME}_{2 / 3,3 N+2}\left(e^{-x^{2}}\right)=\mathrm{ME}_{6, N}\left(e^{-3 x^{2}}\right)\right. \\
& D_{4}\left(\mathrm{ME}_{1 / 2,4 N+3}\left(e^{-x^{2}}\right)=\mathrm{ME}_{8, N}\left(e^{-4 x^{2}}\right)\right. \\
&
\end{aligned}
$$

Consequences for asymptotic spacing distributions

Let $p_{\beta}^{\text {bulk,sp. }}(n ; s)$ denote the probability that in the bulk scaling limit there are n eigenvalues between 2 eigenvalues separated by distance s.
The decimation relations imply that for large s

$$
E_{2 /(r+1)}^{\text {bulk }}((r+1) k+r ;(r+1) s) \sim E_{2(r+1)}^{\text {bulk }}(k ; s)
$$

A conjecture of Dyson, and of Fogler and Shklovskii (1995),

$$
\begin{aligned}
\log E_{\beta}^{\text {bulk }}(n ;(0, s)) \underset{s \rightarrow \infty}{\sim} & -\beta \frac{(\pi s)^{2}}{16}+\left(\beta n+\frac{\beta}{2}-1\right) \frac{\pi s}{2} \\
& +\left\{\frac{n}{2}\left(1-\frac{\beta}{2}-\frac{\beta n}{2}\right)+\frac{1}{4}\left(\frac{\beta}{2}+\frac{2}{\beta}-3\right)\right\} \log s
\end{aligned}
$$

has this property.

Averages of characteristic polynomials

For the Gaussian β ensemble (Baker \& F 1997)

$$
\left\langle\prod_{j=1}^{N}\left(c-\sqrt{\alpha} y_{j}\right)^{n}\right\rangle_{\mathrm{ME}_{2 / \alpha, N}\left(e^{-y^{2}}\right)}=\left\langle\prod_{j=1}^{n}\left(c-i y_{j}\right)^{N}\right\rangle_{\mathrm{ME}_{2 \alpha, n}\left(e^{-y^{2}}\right)} .
$$

Consequences

- The simplest case is $n=1$. It tells us that the average of the characteristic polynomial for the Gaussian β ensemble is proportional to the Hermite polynomial $H_{N}(c)$.
- Suppose β is even. Then setting $n=\beta$ the LHS multiplied by $e^{-c^{2} / \alpha}$ is proportional to the eigenvalue density at $c / \sqrt{\alpha}$. Hence, for even β, this can be expressed as a β dimensional integral.
- Large N asymptotic analysis using the saddle point method gives oscillatory corrections to the Wigner semi-circle law, and the scaled density at the edge.

Explicit form of the scaled density at the edge

We have (Desrosiers \& F (2006))

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{\sqrt{2} N^{1 / 6}} \rho_{(1)}\left(\sqrt{2 N}+\frac{x}{\sqrt{2} N^{1 / 6}}\right)= \\
& \frac{\Gamma(1+\beta / 2)}{2 \pi}\left(\frac{4 \pi}{\beta}\right)^{\beta / 2} \prod_{j=1}^{\beta} \frac{\Gamma(1+2 / \beta)}{\Gamma(1+2 j / \beta)} K_{\beta, \beta}(x),
\end{aligned}
$$

where
$K_{n, \beta}(x):=-\frac{1}{(2 \pi i)^{n}} \int_{-i \infty}^{i \infty} d v_{1} \cdots \int_{-i \infty}^{i \infty} d v_{n} \prod_{j=1}^{n} e^{v_{j}^{3} / 3-x v_{j}} \prod_{1 \leq k<I \leq n}\left|v_{k}-v_{l}\right|^{4 / \beta}$.

Asymptotics of the edge density

$$
\begin{aligned}
& \rho_{(1)}^{\text {soft }, \beta}(x) \underset{x \rightarrow \infty}{\sim} \frac{1}{\pi} \frac{\Gamma(1+\beta / 2)}{(4 \beta)^{\beta / 2}} \frac{e^{-2 \beta x^{3 / 2} / 3}}{x^{3 \beta / 4-1 / 2}}+\mathrm{O}\left(\frac{1}{x^{3 \beta / 4+1}}\right), \\
& \rho_{(1)}^{\text {soft }, \beta}(x) \underset{x \rightarrow-\infty}{\sim} \frac{\sqrt{|x|}}{\pi}-\frac{\Gamma(1+\beta / 2)}{2^{6 / \beta-1}|x|^{3 / \beta-1 / 2}} \cos \left(\frac{4}{3}|x|^{3 / 2}-\frac{\pi}{2}\left(1-\frac{2}{\beta}\right)\right)
\end{aligned}
$$

This has consequence to the asymptotics of the right tail of the scaled distribution of the largest eigenvalue:

$$
p_{\beta}^{\text {soft }}(X) \underset{X \rightarrow \infty}{\sim} \rho_{(1)}^{\text {soft }, \beta}(X)
$$

Averages of characteristic polynomials - circular ensemble

Let $\alpha=2 / \beta-1$ and $\mu \in \mathbb{Z}^{+}$. We have
$\left.\left\langle\prod_{l=1}^{N}\right| z-\left.e^{i \theta \theta^{2}}\right|^{2 \mu}\right\rangle_{\mathrm{CE}_{\beta, N}} \propto\left\langle\prod_{l=1}^{\mu}\left(1-\left(1-|z|^{2}\right) x_{l}\right)^{N}\right\rangle_{\mathrm{ME}_{4 / \beta, \mu}\left(x^{\alpha}(1-x)^{\alpha}\right)^{2}}$.
This can be generalized to allow a factor $\left|z-e^{i \theta \theta_{1}}\right|^{2 \mu_{1}}$ in the product on the LHS.
Hence for even β the two-point function can be written as a β-dimensional integral. It's proportional to (F. (1994))

$$
\begin{aligned}
& \left(2 \sin \pi\left(r_{1}-r_{2}\right) / L\right)^{\beta} e^{-\pi i \beta N\left(r_{1}-r_{2}\right)} \int_{[0,1]^{\beta}} d u_{1} \cdots d u_{\beta} \\
& \times \prod_{j=1}^{\beta}\left(1-\left(1-e^{2 \pi i\left(r_{1}-r_{2}\right)}\right) u_{j}\right)^{N} u_{j}^{-1+2 / \beta}\left(1-u_{j}\right)^{-1+2 / \beta} \prod_{j<k}\left|u_{k}-u_{j}\right|^{4 / \beta}
\end{aligned}
$$

- The large N bulk scaled limit can be taken immediately.
- Can analyze the large N global expansion (no scaling of variables)

$$
\left(\frac{2 \pi}{N}\right)^{2} \rho_{(2)}(0, \theta)=1-\frac{1}{\beta(2 N \sin \theta / 2)^{2}}+\frac{3(\beta-2)^{2}}{2 \beta^{3}(2 N \sin \theta / 2)^{4}}-\cdots
$$

Not suited to computing the structure function. In the bulk, for $\beta=p / q$ have

$$
S(k ; \beta)=\frac{|k|}{\pi \beta} f(|k| ; \beta),
$$

where for $|k|<2 \pi$

$$
\begin{align*}
f(k ; \beta) \propto \prod_{i=1}^{q} \int_{0}^{\infty} d x_{i} \prod_{j=1}^{p} & \int_{0}^{\infty} d y_{j} Q_{p, q}^{2} \hat{F}\left(q, p, \lambda \mid\left\{x_{i}, y_{j}\right\} ; k\right) \delta\left(1-Q_{p, q}\right), \\
\text { with } \lambda=\beta / 2, Q_{p, q}= & 2 \pi\left(\sum_{i=1}^{q} x_{i}+\sum_{j=1}^{p} y_{j}\right), \\
\hat{F}\left(q, p, \lambda \mid\left\{x_{i}, y_{j}\right\} ; k\right)= & \frac{1}{\prod_{i=1}^{q}\left(x_{i}\left(1+k x_{i} / \lambda\right)\right)^{1-\lambda} \prod_{j=1}^{p}\left(y_{j}\left(1-k y_{j}\right)\right)^{1-1 / \lambda}} \\
& \times \frac{\prod_{i<i^{\prime}}\left|x_{i}-x_{i^{\prime}}\right|^{2 \lambda} \prod_{j<j^{\prime}}\left|y_{j}-y_{j^{\prime}}\right|^{2 / \lambda}}{\prod_{i=1}^{q} \prod_{j=1}^{p}\left(x_{i}+\lambda y_{j}\right)^{2}} .
\end{align*}
$$

Functional equation for the structure function

From the exact form of $\rho_{(2)}^{\text {bulk }}(0 ; x)$ have

$$
S(k)= \begin{cases}\frac{|k|}{\pi}-\frac{|k|}{2 \pi} \log \left(1+\frac{|k|}{\pi}\right), & |k| \leq 2 \pi,(\beta=1) \\ \frac{|k|}{2 \pi}, & |k| \leq 2 \pi,(\beta=2) \\ \frac{|k|}{4 \pi}-\frac{|k|}{8 \pi} \log \left(1-\frac{|k|}{2 \pi}\right), & |k| \leq 4 \pi,(\beta=4)\end{cases}
$$

From the exact form for $S(k)$ for β rational can check that with

$$
f(k ; \beta)=\frac{\pi \beta}{|k|} S(k ; \beta), \quad 0<k<\min (2 \pi, \pi \beta)
$$

and f defined by analytic continuation for $k<0$,

$$
f(k ; \beta)=f\left(-\frac{2 k}{\beta} ; \frac{4}{\beta}\right)
$$

The simplest structure consistent with the functional equation is

$$
\frac{\pi \beta}{|k|} S(k ; \beta)=1+\sum_{j=1}^{\infty} p_{j}(\beta / 2)\left(\frac{|k|}{\pi \beta}\right)^{j}, \quad 0<k<\min (2 \pi, \pi \beta)
$$

where $p_{j}(x)$ is a polynomial of degree j which satisfies the functional relation

$$
p_{j}(1 / x)=(-1)^{j} x^{-j} p_{j}(x) .
$$

Put $\kappa=\beta / 2, y=|k| / \pi \beta$. We have (F., Jancovici, McAnally (2000))

$$
\begin{aligned}
& \frac{\pi \beta}{|k|} S(k ; \beta)=1+(\kappa-1) y+(\kappa-1)^{2} y^{2}+(\kappa-1)\left(\kappa^{2}-\frac{11}{6} \kappa+1\right) y^{3} \\
& \quad+(\kappa-1)^{2}\left(\kappa^{2}-\frac{3}{2} \kappa+1\right) y^{4}+(\kappa-1)\left(\kappa^{4}-\frac{91}{30} \kappa^{3}+\frac{62}{15} \kappa^{2}-\frac{91}{30} \kappa+1\right) y^{5}+\cdot
\end{aligned}
$$

Moments of the density and loop equations

For the Gaussian β ensemble, with the eigenvalues scaled so that the leading support is $(-1,1)$, and with $\kappa=\beta / 2$, let

$$
m_{2 \prime}(N, \kappa)=\int_{-\infty}^{\infty} x^{2 \prime} \rho_{(1)}^{N}(x ; \kappa) d x
$$

It is known rigorously (Dumitriu and Edleman (2006)) that $m_{2 I}(N, \kappa)$ is a polynomial of a degree $I+1$ in N with constant term zero, satisfying

$$
m_{2 \prime}(N, \kappa)=(-1)^{I+1} \kappa^{-l-1} m_{2 \prime}\left(-\kappa N, \kappa^{-1}\right)
$$

$$
\begin{aligned}
& m_{0}=N \\
& m_{2}=N^{2}+N\left(-1+\kappa^{-1}\right) \\
& m_{4}=2 N^{3}+5 N^{2}\left(-1+\kappa^{-1}\right)+N\left(3-5 \kappa^{-1}+3 \kappa^{-2}\right)
\end{aligned}
$$

Consequences.
Let

$$
W(x, N, \kappa)=\int_{-\infty}^{\infty} \frac{\rho_{(1)}^{N}(y ; \kappa)}{x-y} d y
$$

Then

$$
W(x, N, \kappa)=-\kappa^{-1} W\left(x,-\kappa N, \kappa^{-1}\right)
$$

A linear differential equation of degree $2 \kappa+1$ for $\kappa \in \mathbb{Z}^{+}$can be derived for $Y:=\rho_{(1)}^{N}(y ; \kappa)$, e.g. for $\beta=2$ (Haagerup and Thorbjornsen (2003))

$$
\frac{1}{4 N^{2}} Y^{\prime \prime \prime}+\left(1-y^{2}\right) Y^{\prime}+y Y=0
$$

Can check that W satisfies an inhomogeneous form of the same equation. Hence must have that

$$
\rho_{(1)}^{N}(x, \kappa)=-\kappa^{-1} \rho_{(1)}^{-\kappa N}\left(x, \kappa^{-1}\right)
$$

e.g. For $\beta=1$ the density satisfies a 5 th order homogeneous differential equation which is the same as that satisfied for $\beta=4$ but with N replaced by $-N / 2$.

On going research

- Linear differential equations for one-point functions/ averages of characteristic polynomials. e.g. What is the behaviour of

$$
\left.\left\langle\prod_{I=1}^{N}\right| z-\left.e^{i \theta_{l}}\right|^{2 \mu}\right\rangle_{\mathrm{CE}_{\beta, N}}
$$

as $z \rightarrow 1$ for $\mu<0$?

- Can the loop equation formalism be used to systematically generate the expansion

$$
\left(\frac{2 \pi}{N}\right)^{2} \rho_{(2)}(0, \theta)=1-\frac{1}{\beta(2 N \sin \theta / 2)^{2}}+\frac{3(\beta-2)^{2}}{2 \beta^{3}(2 N \sin \theta / 2)^{4}}-\cdots
$$

- What is the q, t generalization of the family of Dixon-Anderson integrals used to derive the decimation identities?
- Duality formulas for random matrix ensembles with a source (Desrosiers).

